Merge pull request #20036 from APrigarina:tracking_api

Tracking API: added DaSiamRPN tracker

* added dasiamrpn tracker

* dasiamrpn: add test, rewrite sample

* change python samples

* fix tests

* fix params
pull/20189/head
Anna Prigarina 4 years ago committed by GitHub
parent 73ee01a7f4
commit 478663b08c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 30
      modules/video/include/opencv2/video/tracking.hpp
  2. 1
      modules/video/misc/python/pyopencv_video.hpp
  3. 440
      modules/video/src/tracking/tracker_dasiamrpn.cpp
  4. 32
      modules/video/test/test_trackers.cpp
  5. 1
      samples/dnn/CMakeLists.txt
  6. 382
      samples/dnn/dasiamrpn_tracker.cpp
  7. 291
      samples/dnn/dasiamrpn_tracker.py
  8. 65
      samples/python/tracker.py

@ -818,6 +818,36 @@ public:
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
};
class CV_EXPORTS_W TrackerDaSiamRPN : public Tracker
{
protected:
TrackerDaSiamRPN(); // use ::create()
public:
virtual ~TrackerDaSiamRPN() CV_OVERRIDE;
struct CV_EXPORTS_W_SIMPLE Params
{
CV_WRAP Params();
CV_PROP_RW std::string model;
CV_PROP_RW std::string kernel_cls1;
CV_PROP_RW std::string kernel_r1;
CV_PROP_RW int backend;
CV_PROP_RW int target;
};
/** @brief Constructor
@param parameters DaSiamRPN parameters TrackerDaSiamRPN::Params
*/
static CV_WRAP
Ptr<TrackerDaSiamRPN> create(const TrackerDaSiamRPN::Params& parameters = TrackerDaSiamRPN::Params());
/** @brief Return tracking score
*/
CV_WRAP virtual float getTrackingScore() = 0;
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
};
//! @} video_track

@ -1,4 +1,5 @@
#ifdef HAVE_OPENCV_VIDEO
typedef TrackerMIL::Params TrackerMIL_Params;
typedef TrackerGOTURN::Params TrackerGOTURN_Params;
typedef TrackerDaSiamRPN::Params TrackerDaSiamRPN_Params;
#endif

@ -0,0 +1,440 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#ifdef HAVE_OPENCV_DNN
#include "opencv2/dnn.hpp"
#endif
namespace cv {
TrackerDaSiamRPN::TrackerDaSiamRPN()
{
// nothing
}
TrackerDaSiamRPN::~TrackerDaSiamRPN()
{
// nothing
}
TrackerDaSiamRPN::Params::Params()
{
model = "dasiamrpn_model.onnx";
kernel_cls1 = "dasiamrpn_kernel_cls1.onnx";
kernel_r1 = "dasiamrpn_kernel_r1.onnx";
#ifdef HAVE_OPENCV_DNN
backend = dnn::DNN_BACKEND_DEFAULT;
target = dnn::DNN_TARGET_CPU;
#else
backend = -1; // invalid value
target = -1; // invalid value
#endif
}
#ifdef HAVE_OPENCV_DNN
template <typename T> static
T sizeCal(const T& w, const T& h)
{
T pad = (w + h) * T(0.5);
T sz2 = (w + pad) * (h + pad);
return sqrt(sz2);
}
template <>
Mat sizeCal(const Mat& w, const Mat& h)
{
Mat pad = (w + h) * 0.5;
Mat sz2 = (w + pad).mul((h + pad));
cv::sqrt(sz2, sz2);
return sz2;
}
class TrackerDaSiamRPNImpl : public TrackerDaSiamRPN
{
public:
TrackerDaSiamRPNImpl(const TrackerDaSiamRPN::Params& parameters)
: params(parameters)
{
siamRPN = dnn::readNet(params.model);
siamKernelCL1 = dnn::readNet(params.kernel_cls1);
siamKernelR1 = dnn::readNet(params.kernel_r1);
CV_Assert(!siamRPN.empty());
CV_Assert(!siamKernelCL1.empty());
CV_Assert(!siamKernelR1.empty());
siamRPN.setPreferableBackend(params.backend);
siamRPN.setPreferableTarget(params.target);
siamKernelR1.setPreferableBackend(params.backend);
siamKernelR1.setPreferableTarget(params.target);
siamKernelCL1.setPreferableBackend(params.backend);
siamKernelCL1.setPreferableTarget(params.target);
}
void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
bool update(InputArray image, Rect& boundingBox) CV_OVERRIDE;
float getTrackingScore() CV_OVERRIDE;
TrackerDaSiamRPN::Params params;
protected:
dnn::Net siamRPN, siamKernelR1, siamKernelCL1;
Rect boundingBox_;
Mat image_;
struct trackerConfig
{
float windowInfluence = 0.43f;
float lr = 0.4f;
int scale = 8;
bool swapRB = false;
int totalStride = 8;
float penaltyK = 0.055f;
int exemplarSize = 127;
int instanceSize = 271;
float contextAmount = 0.5f;
std::vector<float> ratios = { 0.33f, 0.5f, 1.0f, 2.0f, 3.0f };
int anchorNum = int(ratios.size());
Mat anchors;
Mat windows;
Scalar avgChans;
Size imgSize = { 0, 0 };
Rect2f targetBox = { 0, 0, 0, 0 };
int scoreSize = (instanceSize - exemplarSize) / totalStride + 1;
float tracking_score;
void update_scoreSize()
{
scoreSize = int((instanceSize - exemplarSize) / totalStride + 1);
}
};
trackerConfig trackState;
void softmax(const Mat& src, Mat& dst);
void elementMax(Mat& src);
Mat generateHanningWindow();
Mat generateAnchors();
Mat getSubwindow(Mat& img, const Rect2f& targetBox, float originalSize, Scalar avgChans);
void trackerInit(Mat img);
void trackerEval(Mat img);
};
void TrackerDaSiamRPNImpl::init(InputArray image, const Rect& boundingBox)
{
image_ = image.getMat().clone();
trackState.update_scoreSize();
trackState.targetBox = Rect2f(
float(boundingBox.x) + float(boundingBox.width) * 0.5f, // FIXIT don't use center in Rect structures, it is confusing
float(boundingBox.y) + float(boundingBox.height) * 0.5f,
float(boundingBox.width),
float(boundingBox.height)
);
trackerInit(image_);
}
void TrackerDaSiamRPNImpl::trackerInit(Mat img)
{
Rect2f targetBox = trackState.targetBox;
Mat anchors = generateAnchors();
trackState.anchors = anchors;
Mat windows = generateHanningWindow();
trackState.windows = windows;
trackState.imgSize = img.size();
trackState.avgChans = mean(img);
float wc = targetBox.width + trackState.contextAmount * (targetBox.width + targetBox.height);
float hc = targetBox.height + trackState.contextAmount * (targetBox.width + targetBox.height);
float sz = (float)cvRound(sqrt(wc * hc));
Mat zCrop = getSubwindow(img, targetBox, sz, trackState.avgChans);
Mat blob;
dnn::blobFromImage(zCrop, blob, 1.0, Size(trackState.exemplarSize, trackState.exemplarSize), Scalar(), trackState.swapRB, false, CV_32F);
siamRPN.setInput(blob);
Mat out1;
siamRPN.forward(out1, "63");
siamKernelCL1.setInput(out1);
siamKernelR1.setInput(out1);
Mat cls1 = siamKernelCL1.forward();
Mat r1 = siamKernelR1.forward();
std::vector<int> r1_shape = { 20, 256, 4, 4 }, cls1_shape = { 10, 256, 4, 4 };
siamRPN.setParam(siamRPN.getLayerId("65"), 0, r1.reshape(0, r1_shape));
siamRPN.setParam(siamRPN.getLayerId("68"), 0, cls1.reshape(0, cls1_shape));
}
bool TrackerDaSiamRPNImpl::update(InputArray image, Rect& boundingBox)
{
image_ = image.getMat().clone();
trackerEval(image_);
boundingBox = {
int(trackState.targetBox.x - int(trackState.targetBox.width / 2)),
int(trackState.targetBox.y - int(trackState.targetBox.height / 2)),
int(trackState.targetBox.width),
int(trackState.targetBox.height)
};
return true;
}
void TrackerDaSiamRPNImpl::trackerEval(Mat img)
{
Rect2f targetBox = trackState.targetBox;
float wc = targetBox.height + trackState.contextAmount * (targetBox.width + targetBox.height);
float hc = targetBox.width + trackState.contextAmount * (targetBox.width + targetBox.height);
float sz = sqrt(wc * hc);
float scaleZ = trackState.exemplarSize / sz;
float searchSize = float((trackState.instanceSize - trackState.exemplarSize) / 2);
float pad = searchSize / scaleZ;
float sx = sz + 2 * pad;
Mat xCrop = getSubwindow(img, targetBox, (float)cvRound(sx), trackState.avgChans);
Mat blob;
std::vector<Mat> outs;
std::vector<String> outNames;
Mat delta, score;
Mat sc, rc, penalty, pscore;
dnn::blobFromImage(xCrop, blob, 1.0, Size(trackState.instanceSize, trackState.instanceSize), Scalar(), trackState.swapRB, false, CV_32F);
siamRPN.setInput(blob);
outNames = siamRPN.getUnconnectedOutLayersNames();
siamRPN.forward(outs, outNames);
delta = outs[0];
score = outs[1];
score = score.reshape(0, { 2, trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
delta = delta.reshape(0, { 4, trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
softmax(score, score);
targetBox.width *= scaleZ;
targetBox.height *= scaleZ;
score = score.row(1);
score = score.reshape(0, { 5, 19, 19 });
// Post processing
delta.row(0) = delta.row(0).mul(trackState.anchors.row(2)) + trackState.anchors.row(0);
delta.row(1) = delta.row(1).mul(trackState.anchors.row(3)) + trackState.anchors.row(1);
exp(delta.row(2), delta.row(2));
delta.row(2) = delta.row(2).mul(trackState.anchors.row(2));
exp(delta.row(3), delta.row(3));
delta.row(3) = delta.row(3).mul(trackState.anchors.row(3));
sc = sizeCal(delta.row(2), delta.row(3)) / sizeCal(targetBox.width, targetBox.height);
elementMax(sc);
rc = delta.row(2).mul(1 / delta.row(3));
rc = (targetBox.width / targetBox.height) / rc;
elementMax(rc);
// Calculating the penalty
exp(((rc.mul(sc) - 1.) * trackState.penaltyK * (-1.0)), penalty);
penalty = penalty.reshape(0, { trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
pscore = penalty.mul(score);
pscore = pscore * (1.0 - trackState.windowInfluence) + trackState.windows * trackState.windowInfluence;
int bestID[] = { 0 };
// Find the index of best score.
minMaxIdx(pscore.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 }), 0, 0, 0, bestID);
delta = delta.reshape(0, { 4, trackState.anchorNum * trackState.scoreSize * trackState.scoreSize });
penalty = penalty.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 });
score = score.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 });
int index[] = { 0, bestID[0] };
Rect2f resBox = { 0, 0, 0, 0 };
resBox.x = delta.at<float>(index) / scaleZ;
index[0] = 1;
resBox.y = delta.at<float>(index) / scaleZ;
index[0] = 2;
resBox.width = delta.at<float>(index) / scaleZ;
index[0] = 3;
resBox.height = delta.at<float>(index) / scaleZ;
float lr = penalty.at<float>(bestID) * score.at<float>(bestID) * trackState.lr;
resBox.x = resBox.x + targetBox.x;
resBox.y = resBox.y + targetBox.y;
targetBox.width /= scaleZ;
targetBox.height /= scaleZ;
resBox.width = targetBox.width * (1 - lr) + resBox.width * lr;
resBox.height = targetBox.height * (1 - lr) + resBox.height * lr;
resBox.x = float(fmax(0., fmin(float(trackState.imgSize.width), resBox.x)));
resBox.y = float(fmax(0., fmin(float(trackState.imgSize.height), resBox.y)));
resBox.width = float(fmax(10., fmin(float(trackState.imgSize.width), resBox.width)));
resBox.height = float(fmax(10., fmin(float(trackState.imgSize.height), resBox.height)));
trackState.targetBox = resBox;
trackState.tracking_score = score.at<float>(bestID);
}
float TrackerDaSiamRPNImpl::getTrackingScore()
{
return trackState.tracking_score;
}
void TrackerDaSiamRPNImpl::softmax(const Mat& src, Mat& dst)
{
Mat maxVal;
cv::max(src.row(1), src.row(0), maxVal);
src.row(1) -= maxVal;
src.row(0) -= maxVal;
exp(src, dst);
Mat sumVal = dst.row(0) + dst.row(1);
dst.row(0) = dst.row(0) / sumVal;
dst.row(1) = dst.row(1) / sumVal;
}
void TrackerDaSiamRPNImpl::elementMax(Mat& src)
{
int* p = src.size.p;
int index[] = { 0, 0, 0, 0 };
for (int n = 0; n < *p; n++)
{
for (int k = 0; k < *(p + 1); k++)
{
for (int i = 0; i < *(p + 2); i++)
{
for (int j = 0; j < *(p + 3); j++)
{
index[0] = n, index[1] = k, index[2] = i, index[3] = j;
float& v = src.at<float>(index);
v = fmax(v, 1.0f / v);
}
}
}
}
}
Mat TrackerDaSiamRPNImpl::generateHanningWindow()
{
Mat baseWindows, HanningWindows;
createHanningWindow(baseWindows, Size(trackState.scoreSize, trackState.scoreSize), CV_32F);
baseWindows = baseWindows.reshape(0, { 1, trackState.scoreSize, trackState.scoreSize });
HanningWindows = baseWindows.clone();
for (int i = 1; i < trackState.anchorNum; i++)
{
HanningWindows.push_back(baseWindows);
}
return HanningWindows;
}
Mat TrackerDaSiamRPNImpl::generateAnchors()
{
int totalStride = trackState.totalStride, scales = trackState.scale, scoreSize = trackState.scoreSize;
std::vector<float> ratios = trackState.ratios;
std::vector<Rect2f> baseAnchors;
int anchorNum = int(ratios.size());
int size = totalStride * totalStride;
float ori = -(float(scoreSize / 2)) * float(totalStride);
for (auto i = 0; i < anchorNum; i++)
{
int ws = int(sqrt(size / ratios[i]));
int hs = int(ws * ratios[i]);
float wws = float(ws) * scales;
float hhs = float(hs) * scales;
Rect2f anchor = { 0, 0, wws, hhs };
baseAnchors.push_back(anchor);
}
int anchorIndex[] = { 0, 0, 0, 0 };
const int sizes[] = { 4, (int)ratios.size(), scoreSize, scoreSize };
Mat anchors(4, sizes, CV_32F);
for (auto i = 0; i < scoreSize; i++)
{
for (auto j = 0; j < scoreSize; j++)
{
for (auto k = 0; k < anchorNum; k++)
{
anchorIndex[0] = 1, anchorIndex[1] = k, anchorIndex[2] = i, anchorIndex[3] = j;
anchors.at<float>(anchorIndex) = ori + totalStride * i;
anchorIndex[0] = 0;
anchors.at<float>(anchorIndex) = ori + totalStride * j;
anchorIndex[0] = 2;
anchors.at<float>(anchorIndex) = baseAnchors[k].width;
anchorIndex[0] = 3;
anchors.at<float>(anchorIndex) = baseAnchors[k].height;
}
}
}
return anchors;
}
Mat TrackerDaSiamRPNImpl::getSubwindow(Mat& img, const Rect2f& targetBox, float originalSize, Scalar avgChans)
{
Mat zCrop, dst;
Size imgSize = img.size();
float c = (originalSize + 1) / 2;
float xMin = (float)cvRound(targetBox.x - c);
float xMax = xMin + originalSize - 1;
float yMin = (float)cvRound(targetBox.y - c);
float yMax = yMin + originalSize - 1;
int leftPad = (int)(fmax(0., -xMin));
int topPad = (int)(fmax(0., -yMin));
int rightPad = (int)(fmax(0., xMax - imgSize.width + 1));
int bottomPad = (int)(fmax(0., yMax - imgSize.height + 1));
xMin = xMin + leftPad;
xMax = xMax + leftPad;
yMax = yMax + topPad;
yMin = yMin + topPad;
if (topPad == 0 && bottomPad == 0 && leftPad == 0 && rightPad == 0)
{
img(Rect(int(xMin), int(yMin), int(xMax - xMin + 1), int(yMax - yMin + 1))).copyTo(zCrop);
}
else
{
copyMakeBorder(img, dst, topPad, bottomPad, leftPad, rightPad, BORDER_CONSTANT, avgChans);
dst(Rect(int(xMin), int(yMin), int(xMax - xMin + 1), int(yMax - yMin + 1))).copyTo(zCrop);
}
return zCrop;
}
Ptr<TrackerDaSiamRPN> TrackerDaSiamRPN::create(const TrackerDaSiamRPN::Params& parameters)
{
return makePtr<TrackerDaSiamRPNImpl>(parameters);
}
#else // OPENCV_HAVE_DNN
Ptr<TrackerDaSiamRPN> TrackerDaSiamRPN::create(const TrackerDaSiamRPN::Params& parameters)
{
(void)(parameters);
CV_Error(cv::Error::StsNotImplemented, "to use GOTURN, the tracking module needs to be built with opencv_dnn !");
}
#endif // OPENCV_HAVE_DNN
}

@ -94,4 +94,36 @@ TEST(GOTURN, memory_usage)
}
}
TEST(DaSiamRPN, memory_usage)
{
cv::Rect roi(145, 70, 85, 85);
std::string model = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_model.onnx", false);
std::string kernel_r1 = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_kernel_r1.onnx", false);
std::string kernel_cls1 = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_kernel_cls1.onnx", false);
cv::TrackerDaSiamRPN::Params params;
params.model = model;
params.kernel_r1 = kernel_r1;
params.kernel_cls1 = kernel_cls1;
cv::Ptr<Tracker> tracker = TrackerDaSiamRPN::create(params);
string inputVideo = cvtest::findDataFile("tracking/david/data/david.webm");
cv::VideoCapture video(inputVideo);
ASSERT_TRUE(video.isOpened()) << inputVideo;
cv::Mat frame;
video >> frame;
ASSERT_FALSE(frame.empty()) << inputVideo;
tracker->init(frame, roi);
string ground_truth_bb;
for (int nframes = 0; nframes < 15; ++nframes)
{
std::cout << "Frame: " << nframes << std::endl;
video >> frame;
bool res = tracker->update(frame, roi);
ASSERT_TRUE(res);
std::cout << "Predicted ROI: " << roi << std::endl;
}
}
}} // namespace opencv_test::

@ -4,6 +4,7 @@ set(OPENCV_DNN_SAMPLES_REQUIRED_DEPS
opencv_core
opencv_imgproc
opencv_dnn
opencv_video
opencv_imgcodecs
opencv_videoio
opencv_highgui)

@ -12,6 +12,7 @@
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace cv::dnn;
@ -34,59 +35,6 @@ const char *keys =
"3: VPU }"
;
// Initial parameters of the model
struct trackerConfig
{
float windowInfluence = 0.43f;
float lr = 0.4f;
int scale = 8;
bool swapRB = false;
int totalStride = 8;
float penaltyK = 0.055f;
int exemplarSize = 127;
int instanceSize = 271;
float contextAmount = 0.5f;
std::vector<float> ratios = { 0.33f, 0.5f, 1.0f, 2.0f, 3.0f };
int anchorNum = int(ratios.size());
Mat anchors;
Mat windows;
Scalar avgChans;
Size imgSize = { 0, 0 };
Rect2f targetBox = { 0, 0, 0, 0 };
int scoreSize = (instanceSize - exemplarSize) / totalStride + 1;
void update_scoreSize()
{
scoreSize = int((instanceSize - exemplarSize) / totalStride + 1);
}
};
static void softmax(const Mat& src, Mat& dst);
static void elementMax(Mat& src);
static Mat generateHanningWindow(const trackerConfig& trackState);
static Mat generateAnchors(trackerConfig& trackState);
static Mat getSubwindow(Mat& img, const Rect2f& targetBox, float originalSize, Scalar avgChans);
static float trackerEval(Mat img, trackerConfig& trackState, Net& siamRPN);
static void trackerInit(Mat img, trackerConfig& trackState, Net& siamRPN, Net& siamKernelR1, Net& siamKernelCL1);
template <typename T> static
T sizeCal(const T& w, const T& h)
{
T pad = (w + h) * T(0.5);
T sz2 = (w + pad) * (h + pad);
return sqrt(sz2);
}
template <>
Mat sizeCal(const Mat& w, const Mat& h)
{
Mat pad = (w + h) * 0.5;
Mat sz2 = (w + pad).mul((h + pad));
cv::sqrt(sz2, sz2);
return sz2;
}
static
int run(int argc, char** argv)
{
@ -106,13 +54,16 @@ int run(int argc, char** argv)
int backend = parser.get<int>("backend");
int target = parser.get<int>("target");
// Read nets.
Net siamRPN, siamKernelCL1, siamKernelR1;
Ptr<TrackerDaSiamRPN> tracker;
try
{
siamRPN = readNet(samples::findFile(net));
siamKernelCL1 = readNet(samples::findFile(kernel_cls1));
siamKernelR1 = readNet(samples::findFile(kernel_r1));
TrackerDaSiamRPN::Params params;
params.model = samples::findFile(net);
params.kernel_cls1 = samples::findFile(kernel_cls1);
params.kernel_r1 = samples::findFile(kernel_r1);
params.backend = backend;
params.target = target;
tracker = TrackerDaSiamRPN::create(params);
}
catch (const cv::Exception& ee)
{
@ -124,14 +75,6 @@ int run(int argc, char** argv)
return 2;
}
// Set model backend.
siamRPN.setPreferableBackend(backend);
siamRPN.setPreferableTarget(target);
siamKernelR1.setPreferableBackend(backend);
siamKernelR1.setPreferableTarget(target);
siamKernelCL1.setPreferableBackend(backend);
siamKernelCL1.setPreferableTarget(target);
const std::string winName = "DaSiamRPN";
namedWindow(winName, WINDOW_AUTOSIZE);
@ -174,17 +117,7 @@ int run(int argc, char** argv)
Rect selectRect = selectROI(winName, image_select);
std::cout << "ROI=" << selectRect << std::endl;
trackerConfig trackState;
trackState.update_scoreSize();
trackState.targetBox = Rect2f(
float(selectRect.x) + float(selectRect.width) * 0.5f, // FIXIT don't use center in Rect structures, it is confusing
float(selectRect.y) + float(selectRect.height) * 0.5f,
float(selectRect.width),
float(selectRect.height)
);
// Set tracking template.
trackerInit(image, trackState, siamRPN, siamKernelR1, siamKernelCL1);
tracker->init(image, selectRect);
TickMeter tickMeter;
@ -197,16 +130,14 @@ int run(int argc, char** argv)
break;
}
Rect rect;
tickMeter.start();
float score = trackerEval(image, trackState, siamRPN);
bool ok = tracker->update(image, rect);
tickMeter.stop();
Rect rect = {
int(trackState.targetBox.x - int(trackState.targetBox.width / 2)),
int(trackState.targetBox.y - int(trackState.targetBox.height / 2)),
int(trackState.targetBox.width),
int(trackState.targetBox.height)
};
float score = tracker->getTrackingScore();
std::cout << "frame " << count <<
": predicted score=" << score <<
" rect=" << rect <<
@ -214,12 +145,16 @@ int run(int argc, char** argv)
std::endl;
Mat render_image = image.clone();
rectangle(render_image, rect, Scalar(0, 255, 0), 2);
std::string timeLabel = format("Inference time: %.2f ms", tickMeter.getTimeMilli());
std::string scoreLabel = format("Score: %f", score);
putText(render_image, timeLabel, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
putText(render_image, scoreLabel, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
if (ok)
{
rectangle(render_image, rect, Scalar(0, 255, 0), 2);
std::string timeLabel = format("Inference time: %.2f ms", tickMeter.getTimeMilli());
std::string scoreLabel = format("Score: %f", score);
putText(render_image, timeLabel, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
putText(render_image, scoreLabel, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
}
imshow(winName, render_image);
@ -234,275 +169,6 @@ int run(int argc, char** argv)
return 0;
}
Mat generateHanningWindow(const trackerConfig& trackState)
{
Mat baseWindows, HanningWindows;
createHanningWindow(baseWindows, Size(trackState.scoreSize, trackState.scoreSize), CV_32F);
baseWindows = baseWindows.reshape(0, { 1, trackState.scoreSize, trackState.scoreSize });
HanningWindows = baseWindows.clone();
for (int i = 1; i < trackState.anchorNum; i++)
{
HanningWindows.push_back(baseWindows);
}
return HanningWindows;
}
Mat generateAnchors(trackerConfig& trackState)
{
int totalStride = trackState.totalStride, scales = trackState.scale, scoreSize = trackState.scoreSize;
std::vector<float> ratios = trackState.ratios;
std::vector<Rect2f> baseAnchors;
int anchorNum = int(ratios.size());
int size = totalStride * totalStride;
float ori = -(float(scoreSize / 2)) * float(totalStride);
for (auto i = 0; i < anchorNum; i++)
{
int ws = int(sqrt(size / ratios[i]));
int hs = int(ws * ratios[i]);
float wws = float(ws) * scales;
float hhs = float(hs) * scales;
Rect2f anchor = { 0, 0, wws, hhs };
baseAnchors.push_back(anchor);
}
int anchorIndex[] = { 0, 0, 0, 0 };
const int sizes[] = { 4, (int)ratios.size(), scoreSize, scoreSize };
Mat anchors(4, sizes, CV_32F);
for (auto i = 0; i < scoreSize; i++)
{
for (auto j = 0; j < scoreSize; j++)
{
for (auto k = 0; k < anchorNum; k++)
{
anchorIndex[0] = 1, anchorIndex[1] = k, anchorIndex[2] = i, anchorIndex[3] = j;
anchors.at<float>(anchorIndex) = ori + totalStride * i;
anchorIndex[0] = 0;
anchors.at<float>(anchorIndex) = ori + totalStride * j;
anchorIndex[0] = 2;
anchors.at<float>(anchorIndex) = baseAnchors[k].width;
anchorIndex[0] = 3;
anchors.at<float>(anchorIndex) = baseAnchors[k].height;
}
}
}
return anchors;
}
Mat getSubwindow(Mat& img, const Rect2f& targetBox, float originalSize, Scalar avgChans)
{
Mat zCrop, dst;
Size imgSize = img.size();
float c = (originalSize + 1) / 2;
float xMin = (float)cvRound(targetBox.x - c);
float xMax = xMin + originalSize - 1;
float yMin = (float)cvRound(targetBox.y - c);
float yMax = yMin + originalSize - 1;
int leftPad = (int)(fmax(0., -xMin));
int topPad = (int)(fmax(0., -yMin));
int rightPad = (int)(fmax(0., xMax - imgSize.width + 1));
int bottomPad = (int)(fmax(0., yMax - imgSize.height + 1));
xMin = xMin + leftPad;
xMax = xMax + leftPad;
yMax = yMax + topPad;
yMin = yMin + topPad;
if (topPad == 0 && bottomPad == 0 && leftPad == 0 && rightPad == 0)
{
img(Rect(int(xMin), int(yMin), int(xMax - xMin + 1), int(yMax - yMin + 1))).copyTo(zCrop);
}
else
{
copyMakeBorder(img, dst, topPad, bottomPad, leftPad, rightPad, BORDER_CONSTANT, avgChans);
dst(Rect(int(xMin), int(yMin), int(xMax - xMin + 1), int(yMax - yMin + 1))).copyTo(zCrop);
}
return zCrop;
}
void softmax(const Mat& src, Mat& dst)
{
Mat maxVal;
cv::max(src.row(1), src.row(0), maxVal);
src.row(1) -= maxVal;
src.row(0) -= maxVal;
exp(src, dst);
Mat sumVal = dst.row(0) + dst.row(1);
dst.row(0) = dst.row(0) / sumVal;
dst.row(1) = dst.row(1) / sumVal;
}
void elementMax(Mat& src)
{
int* p = src.size.p;
int index[] = { 0, 0, 0, 0 };
for (int n = 0; n < *p; n++)
{
for (int k = 0; k < *(p + 1); k++)
{
for (int i = 0; i < *(p + 2); i++)
{
for (int j = 0; j < *(p + 3); j++)
{
index[0] = n, index[1] = k, index[2] = i, index[3] = j;
float& v = src.at<float>(index);
v = fmax(v, 1.0f / v);
}
}
}
}
}
float trackerEval(Mat img, trackerConfig& trackState, Net& siamRPN)
{
Rect2f targetBox = trackState.targetBox;
float wc = targetBox.height + trackState.contextAmount * (targetBox.width + targetBox.height);
float hc = targetBox.width + trackState.contextAmount * (targetBox.width + targetBox.height);
float sz = sqrt(wc * hc);
float scaleZ = trackState.exemplarSize / sz;
float searchSize = float((trackState.instanceSize - trackState.exemplarSize) / 2);
float pad = searchSize / scaleZ;
float sx = sz + 2 * pad;
Mat xCrop = getSubwindow(img, targetBox, (float)cvRound(sx), trackState.avgChans);
static Mat blob;
std::vector<Mat> outs;
std::vector<String> outNames;
Mat delta, score;
Mat sc, rc, penalty, pscore;
blobFromImage(xCrop, blob, 1.0, Size(trackState.instanceSize, trackState.instanceSize), Scalar(), trackState.swapRB, false, CV_32F);
siamRPN.setInput(blob);
outNames = siamRPN.getUnconnectedOutLayersNames();
siamRPN.forward(outs, outNames);
delta = outs[0];
score = outs[1];
score = score.reshape(0, { 2, trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
delta = delta.reshape(0, { 4, trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
softmax(score, score);
targetBox.width *= scaleZ;
targetBox.height *= scaleZ;
score = score.row(1);
score = score.reshape(0, { 5, 19, 19 });
// Post processing
delta.row(0) = delta.row(0).mul(trackState.anchors.row(2)) + trackState.anchors.row(0);
delta.row(1) = delta.row(1).mul(trackState.anchors.row(3)) + trackState.anchors.row(1);
exp(delta.row(2), delta.row(2));
delta.row(2) = delta.row(2).mul(trackState.anchors.row(2));
exp(delta.row(3), delta.row(3));
delta.row(3) = delta.row(3).mul(trackState.anchors.row(3));
sc = sizeCal(delta.row(2), delta.row(3)) / sizeCal(targetBox.width, targetBox.height);
elementMax(sc);
rc = delta.row(2).mul(1 / delta.row(3));
rc = (targetBox.width / targetBox.height) / rc;
elementMax(rc);
// Calculating the penalty
exp(((rc.mul(sc) - 1.) * trackState.penaltyK * (-1.0)), penalty);
penalty = penalty.reshape(0, { trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
pscore = penalty.mul(score);
pscore = pscore * (1.0 - trackState.windowInfluence) + trackState.windows * trackState.windowInfluence;
int bestID[] = { 0 };
// Find the index of best score.
minMaxIdx(pscore.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 }), 0, 0, 0, bestID);
delta = delta.reshape(0, { 4, trackState.anchorNum * trackState.scoreSize * trackState.scoreSize });
penalty = penalty.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 });
score = score.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 });
int index[] = { 0, bestID[0] };
Rect2f resBox = { 0, 0, 0, 0 };
resBox.x = delta.at<float>(index) / scaleZ;
index[0] = 1;
resBox.y = delta.at<float>(index) / scaleZ;
index[0] = 2;
resBox.width = delta.at<float>(index) / scaleZ;
index[0] = 3;
resBox.height = delta.at<float>(index) / scaleZ;
float lr = penalty.at<float>(bestID) * score.at<float>(bestID) * trackState.lr;
resBox.x = resBox.x + targetBox.x;
resBox.y = resBox.y + targetBox.y;
targetBox.width /= scaleZ;
targetBox.height /= scaleZ;
resBox.width = targetBox.width * (1 - lr) + resBox.width * lr;
resBox.height = targetBox.height * (1 - lr) + resBox.height * lr;
resBox.x = float(fmax(0., fmin(float(trackState.imgSize.width), resBox.x)));
resBox.y = float(fmax(0., fmin(float(trackState.imgSize.height), resBox.y)));
resBox.width = float(fmax(10., fmin(float(trackState.imgSize.width), resBox.width)));
resBox.height = float(fmax(10., fmin(float(trackState.imgSize.height), resBox.height)));
trackState.targetBox = resBox;
return score.at<float>(bestID);
}
void trackerInit(Mat img, trackerConfig& trackState, Net& siamRPN, Net& siamKernelR1, Net& siamKernelCL1)
{
Rect2f targetBox = trackState.targetBox;
Mat anchors = generateAnchors(trackState);
trackState.anchors = anchors;
Mat windows = generateHanningWindow(trackState);
trackState.windows = windows;
trackState.imgSize = img.size();
trackState.avgChans = mean(img);
float wc = targetBox.width + trackState.contextAmount * (targetBox.width + targetBox.height);
float hc = targetBox.height + trackState.contextAmount * (targetBox.width + targetBox.height);
float sz = (float)cvRound(sqrt(wc * hc));
Mat zCrop = getSubwindow(img, targetBox, sz, trackState.avgChans);
static Mat blob;
blobFromImage(zCrop, blob, 1.0, Size(trackState.exemplarSize, trackState.exemplarSize), Scalar(), trackState.swapRB, false, CV_32F);
siamRPN.setInput(blob);
Mat out1;
siamRPN.forward(out1, "63");
siamKernelCL1.setInput(out1);
siamKernelR1.setInput(out1);
Mat cls1 = siamKernelCL1.forward();
Mat r1 = siamKernelR1.forward();
std::vector<int> r1_shape = { 20, 256, 4, 4 }, cls1_shape = { 10, 256, 4, 4 };
siamRPN.setParam(siamRPN.getLayerId("65"), 0, r1.reshape(0, r1_shape));
siamRPN.setParam(siamRPN.getLayerId("68"), 0, cls1.reshape(0, cls1_shape));
}
int main(int argc, char **argv)
{

@ -1,291 +0,0 @@
"""
DaSiamRPN tracker.
Original paper: https://arxiv.org/abs/1808.06048
Link to original repo: https://github.com/foolwood/DaSiamRPN
Links to onnx models:
network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0
kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0
kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0
"""
import numpy as np
import cv2 as cv
import argparse
import sys
class DaSiamRPNTracker:
# Initialization of used values, initial bounding box, used network
def __init__(self, net="dasiamrpn_model.onnx", kernel_r1="dasiamrpn_kernel_r1.onnx", kernel_cls1="dasiamrpn_kernel_cls1.onnx"):
self.windowing = "cosine"
self.exemplar_size = 127
self.instance_size = 271
self.total_stride = 8
self.score_size = (self.instance_size - self.exemplar_size) // self.total_stride + 1
self.context_amount = 0.5
self.ratios = [0.33, 0.5, 1, 2, 3]
self.scales = [8, ]
self.anchor_num = len(self.ratios) * len(self.scales)
self.penalty_k = 0.055
self.window_influence = 0.42
self.lr = 0.295
self.score = []
if self.windowing == "cosine":
self.window = np.outer(np.hanning(self.score_size), np.hanning(self.score_size))
elif self.windowing == "uniform":
self.window = np.ones((self.score_size, self.score_size))
self.window = np.tile(self.window.flatten(), self.anchor_num)
# Loading network`s and kernel`s models
self.net = cv.dnn.readNet(net)
self.kernel_r1 = cv.dnn.readNet(kernel_r1)
self.kernel_cls1 = cv.dnn.readNet(kernel_cls1)
def init(self, im, init_bb):
target_pos, target_sz = np.array([init_bb[0], init_bb[1]]), np.array([init_bb[2], init_bb[3]])
self.im_h = im.shape[0]
self.im_w = im.shape[1]
self.target_pos = target_pos
self.target_sz = target_sz
self.avg_chans = np.mean(im, axis=(0, 1))
# When we trying to generate ONNX model from the pre-trained .pth model
# we are using only one state of the network. In our case used state
# with big bounding box, so we were forced to add assertion for
# too small bounding boxes - current state of the network can not
# work properly with such small bounding boxes
if ((self.target_sz[0] * self.target_sz[1]) / float(self.im_h * self.im_w)) < 0.004:
raise AssertionError(
"Initializing BB is too small-try to restart tracker with larger BB")
self.anchor = self.__generate_anchor()
wc_z = self.target_sz[0] + self.context_amount * sum(self.target_sz)
hc_z = self.target_sz[1] + self.context_amount * sum(self.target_sz)
s_z = round(np.sqrt(wc_z * hc_z))
z_crop = self.__get_subwindow_tracking(im, self.exemplar_size, s_z)
z_crop = z_crop.transpose(2, 0, 1).reshape(1, 3, 127, 127).astype(np.float32)
self.net.setInput(z_crop)
z_f = self.net.forward('63')
self.kernel_r1.setInput(z_f)
r1 = self.kernel_r1.forward()
self.kernel_cls1.setInput(z_f)
cls1 = self.kernel_cls1.forward()
r1 = r1.reshape(20, 256, 4, 4)
cls1 = cls1.reshape(10, 256 , 4, 4)
self.net.setParam(self.net.getLayerId('65'), 0, r1)
self.net.setParam(self.net.getLayerId('68'), 0, cls1)
# Сreating anchor for tracking bounding box
def __generate_anchor(self):
self.anchor = np.zeros((self.anchor_num, 4), dtype = np.float32)
size = self.total_stride * self.total_stride
count = 0
for ratio in self.ratios:
ws = int(np.sqrt(size / ratio))
hs = int(ws * ratio)
for scale in self.scales:
wws = ws * scale
hhs = hs * scale
self.anchor[count] = [0, 0, wws, hhs]
count += 1
score_sz = int(self.score_size)
self.anchor = np.tile(self.anchor, score_sz * score_sz).reshape((-1, 4))
ori = - (score_sz / 2) * self.total_stride
xx, yy = np.meshgrid([ori + self.total_stride * dx for dx in range(score_sz)], [ori + self.total_stride * dy for dy in range(score_sz)])
xx, yy = np.tile(xx.flatten(), (self.anchor_num, 1)).flatten(), np.tile(yy.flatten(), (self.anchor_num, 1)).flatten()
self.anchor[:, 0], self.anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
return self.anchor
# Function for updating tracker state
def update(self, im):
wc_z = self.target_sz[1] + self.context_amount * sum(self.target_sz)
hc_z = self.target_sz[0] + self.context_amount * sum(self.target_sz)
s_z = np.sqrt(wc_z * hc_z)
scale_z = self.exemplar_size / s_z
d_search = (self.instance_size - self.exemplar_size) / 2
pad = d_search / scale_z
s_x = round(s_z + 2 * pad)
# Region preprocessing part
x_crop = self.__get_subwindow_tracking(im, self.instance_size, s_x)
x_crop = x_crop.transpose(2, 0, 1).reshape(1, 3, 271, 271).astype(np.float32)
self.score = self.__tracker_eval(x_crop, scale_z)
self.target_pos[0] = max(0, min(self.im_w, self.target_pos[0]))
self.target_pos[1] = max(0, min(self.im_h, self.target_pos[1]))
self.target_sz[0] = max(10, min(self.im_w, self.target_sz[0]))
self.target_sz[1] = max(10, min(self.im_h, self.target_sz[1]))
cx, cy = self.target_pos
w, h = self.target_sz
updated_bb = (cx, cy, w, h)
return True, updated_bb
# Function for updating position of the bounding box
def __tracker_eval(self, x_crop, scale_z):
target_size = self.target_sz * scale_z
self.net.setInput(x_crop)
outNames = self.net.getUnconnectedOutLayersNames()
outNames = ['66', '68']
delta, score = self.net.forward(outNames)
delta = np.transpose(delta, (1, 2, 3, 0))
delta = np.ascontiguousarray(delta, dtype = np.float32)
delta = np.reshape(delta, (4, -1))
score = np.transpose(score, (1, 2, 3, 0))
score = np.ascontiguousarray(score, dtype = np.float32)
score = np.reshape(score, (2, -1))
score = self.__softmax(score)[1, :]
delta[0, :] = delta[0, :] * self.anchor[:, 2] + self.anchor[:, 0]
delta[1, :] = delta[1, :] * self.anchor[:, 3] + self.anchor[:, 1]
delta[2, :] = np.exp(delta[2, :]) * self.anchor[:, 2]
delta[3, :] = np.exp(delta[3, :]) * self.anchor[:, 3]
def __change(r):
return np.maximum(r, 1./r)
def __sz(w, h):
pad = (w + h) * 0.5
sz2 = (w + pad) * (h + pad)
return np.sqrt(sz2)
def __sz_wh(wh):
pad = (wh[0] + wh[1]) * 0.5
sz2 = (wh[0] + pad) * (wh[1] + pad)
return np.sqrt(sz2)
s_c = __change(__sz(delta[2, :], delta[3, :]) / (__sz_wh(target_size)))
r_c = __change((target_size[0] / target_size[1]) / (delta[2, :] / delta[3, :]))
penalty = np.exp(-(r_c * s_c - 1.) * self.penalty_k)
pscore = penalty * score
pscore = pscore * (1 - self.window_influence) + self.window * self.window_influence
best_pscore_id = np.argmax(pscore)
target = delta[:, best_pscore_id] / scale_z
target_size /= scale_z
lr = penalty[best_pscore_id] * score[best_pscore_id] * self.lr
res_x = target[0] + self.target_pos[0]
res_y = target[1] + self.target_pos[1]
res_w = target_size[0] * (1 - lr) + target[2] * lr
res_h = target_size[1] * (1 - lr) + target[3] * lr
self.target_pos = np.array([res_x, res_y])
self.target_sz = np.array([res_w, res_h])
return score[best_pscore_id]
def __softmax(self, x):
x_max = x.max(0)
e_x = np.exp(x - x_max)
y = e_x / e_x.sum(axis = 0)
return y
# Reshaping cropped image for using in the model
def __get_subwindow_tracking(self, im, model_size, original_sz):
im_sz = im.shape
c = (original_sz + 1) / 2
context_xmin = round(self.target_pos[0] - c)
context_xmax = context_xmin + original_sz - 1
context_ymin = round(self.target_pos[1] - c)
context_ymax = context_ymin + original_sz - 1
left_pad = int(max(0., -context_xmin))
top_pad = int(max(0., -context_ymin))
right_pad = int(max(0., context_xmax - im_sz[1] + 1))
bot_pad = int(max(0., context_ymax - im_sz[0] + 1))
context_xmin += left_pad
context_xmax += left_pad
context_ymin += top_pad
context_ymax += top_pad
r, c, k = im.shape
if any([top_pad, bot_pad, left_pad, right_pad]):
te_im = np.zeros((
r + top_pad + bot_pad, c + left_pad + right_pad, k), np.uint8)
te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im
if top_pad:
te_im[0:top_pad, left_pad:left_pad + c, :] = self.avg_chans
if bot_pad:
te_im[r + top_pad:, left_pad:left_pad + c, :] = self.avg_chans
if left_pad:
te_im[:, 0:left_pad, :] = self.avg_chans
if right_pad:
te_im[:, c + left_pad:, :] = self.avg_chans
im_patch_original = te_im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
else:
im_patch_original = im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
if not np.array_equal(model_size, original_sz):
im_patch_original = cv.resize(im_patch_original, (model_size, model_size))
return im_patch_original
# Sample for using DaSiamRPN tracker
def main():
parser = argparse.ArgumentParser(description="Run tracker")
parser.add_argument("--input", type=str, help="Full path to input (empty for camera)")
parser.add_argument("--net", type=str, default="dasiamrpn_model.onnx", help="Full path to onnx model of net")
parser.add_argument("--kernel_r1", type=str, default="dasiamrpn_kernel_r1.onnx", help="Full path to onnx model of kernel_r1")
parser.add_argument("--kernel_cls1", type=str, default="dasiamrpn_kernel_cls1.onnx", help="Full path to onnx model of kernel_cls1")
args = parser.parse_args()
point1 = ()
point2 = ()
mark = True
drawing = False
cx, cy, w, h = 0.0, 0.0, 0, 0
# Fucntion for drawing during videostream
def get_bb(event, x, y, flag, param):
nonlocal point1, point2, cx, cy, w, h, drawing, mark
if event == cv.EVENT_LBUTTONDOWN:
if not drawing:
drawing = True
point1 = (x, y)
else:
drawing = False
elif event == cv.EVENT_MOUSEMOVE:
if drawing:
point2 = (x, y)
elif event == cv.EVENT_LBUTTONUP:
cx = point1[0] - (point1[0] - point2[0]) / 2
cy = point1[1] - (point1[1] - point2[1]) / 2
w = abs(point1[0] - point2[0])
h = abs(point1[1] - point2[1])
mark = False
# Creating window for visualization
cap = cv.VideoCapture(args.input if args.input else 0)
cv.namedWindow("DaSiamRPN")
cv.setMouseCallback("DaSiamRPN", get_bb)
whitespace_key = 32
while cv.waitKey(40) != whitespace_key:
has_frame, frame = cap.read()
if not has_frame:
sys.exit(0)
cv.imshow("DaSiamRPN", frame)
while mark:
twin = np.copy(frame)
if point1 and point2:
cv.rectangle(twin, point1, point2, (0, 255, 255), 3)
cv.imshow("DaSiamRPN", twin)
cv.waitKey(40)
init_bb = (cx, cy, w, h)
tracker = DaSiamRPNTracker(args.net, args.kernel_r1, args.kernel_cls1)
tracker.init(frame, init_bb)
# Tracking loop
while cap.isOpened():
has_frame, frame = cap.read()
if not has_frame:
sys.exit(0)
_, new_bb = tracker.update(frame)
cx, cy, w, h = new_bb
cv.rectangle(frame, (int(cx - w // 2), int(cy - h // 2)), (int(cx - w // 2) + int(w), int(cy - h // 2) + int(h)),(0, 255, 255), 3)
cv.imshow("DaSiamRPN", frame)
key = cv.waitKey(1)
if key == ord("q"):
break
cap.release()
cv.destroyAllWindows()
if __name__ == "__main__":
main()

@ -3,8 +3,22 @@
'''
Tracker demo
For usage download models by following links
For GOTURN:
goturn.prototxt and goturn.caffemodel: https://github.com/opencv/opencv_extra/tree/c4219d5eb3105ed8e634278fad312a1a8d2c182d/testdata/tracking
For DaSiamRPN:
network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0
kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0
kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0
USAGE:
tracker.py [<video_source>]
tracker.py [-h] [--input INPUT] [--tracker_algo TRACKER_ALGO]
[--goturn GOTURN] [--goturn_model GOTURN_MODEL]
[--dasiamrpn_net DASIAMRPN_NET]
[--dasiamrpn_kernel_r1 DASIAMRPN_KERNEL_R1]
[--dasiamrpn_kernel_cls1 DASIAMRPN_KERNEL_CLS1]
[--dasiamrpn_backend DASIAMRPN_BACKEND]
[--dasiamrpn_target DASIAMRPN_TARGET]
'''
# Python 2/3 compatibility
@ -14,18 +28,37 @@ import sys
import numpy as np
import cv2 as cv
import argparse
from video import create_capture, presets
class App(object):
def initializeTracker(self, image):
def __init__(self, args):
self.args = args
def initializeTracker(self, image, trackerAlgorithm):
while True:
if trackerAlgorithm == 'mil':
tracker = cv.TrackerMIL_create()
elif trackerAlgorithm == 'goturn':
params = cv.TrackerGOTURN_Params()
params.modelTxt = self.args.goturn
params.modelBin = self.args.goturn_model
tracker = cv.TrackerGOTURN_create(params)
elif trackerAlgorithm == 'dasiamrpn':
params = cv.TrackerDaSiamRPN_Params()
params.model = self.args.dasiamrpn_net
params.kernel_cls1 = self.args.dasiamrpn_kernel_cls1
params.kernel_r1 = self.args.dasiamrpn_kernel_r1
tracker = cv.TrackerDaSiamRPN_create(params)
else:
sys.exit("Tracker {} is not recognized. Please use one of three available: mil, goturn, dasiamrpn.".format(trackerAlgorithm))
print('==> Select object ROI for tracker ...')
bbox = cv.selectROI('tracking', image)
print('ROI: {}'.format(bbox))
tracker = cv.TrackerMIL_create()
try:
tracker.init(image, bbox)
except Exception as e:
@ -37,7 +70,8 @@ class App(object):
return tracker
def run(self):
videoPath = sys.argv[1] if len(sys.argv) >= 2 else 'vtest.avi'
videoPath = self.args.input
trackerAlgorithm = self.args.tracker_algo
camera = create_capture(videoPath, presets['cube'])
if not camera.isOpened():
sys.exit("Can't open video stream: {}".format(videoPath))
@ -48,7 +82,7 @@ class App(object):
assert image is not None
cv.namedWindow('tracking')
tracker = self.initializeTracker(image)
tracker = self.initializeTracker(image, trackerAlgorithm)
print("==> Tracking is started. Press 'SPACE' to re-initialize tracker or 'ESC' for exit...")
@ -76,5 +110,24 @@ class App(object):
if __name__ == '__main__':
print(__doc__)
App().run()
parser = argparse.ArgumentParser(description="Run tracker")
parser.add_argument("--input", type=str, default="vtest.avi", help="Path to video source")
parser.add_argument("--tracker_algo", type=str, default="mil", help="One of three available tracking algorithms: mil, goturn, dasiamrpn")
parser.add_argument("--goturn", type=str, default="goturn.prototxt", help="Path to GOTURN architecture")
parser.add_argument("--goturn_model", type=str, default="goturn.caffemodel", help="Path to GOTERN model")
parser.add_argument("--dasiamrpn_net", type=str, default="dasiamrpn_model.onnx", help="Path to onnx model of DaSiamRPN net")
parser.add_argument("--dasiamrpn_kernel_r1", type=str, default="dasiamrpn_kernel_r1.onnx", help="Path to onnx model of DaSiamRPN kernel_r1")
parser.add_argument("--dasiamrpn_kernel_cls1", type=str, default="dasiamrpn_kernel_cls1.onnx", help="Path to onnx model of DaSiamRPN kernel_cls1")
parser.add_argument("--dasiamrpn_backend", type=int, default=0, help="Choose one of computation backends:\
0: automatically (by default),\
1: Halide language (http://halide-lang.org/),\
2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit),\
3: OpenCV implementation")
parser.add_argument("--dasiamrpn_target", type=int, default=0, help="Choose one of target computation devices:\
0: CPU target (by default),\
1: OpenCL,\
2: OpenCL fp16 (half-float precision),\
3: VPU")
args = parser.parse_args()
App(args).run()
cv.destroyAllWindows()

Loading…
Cancel
Save