|
|
@ -40,17 +40,18 @@ TEST(Padding_Halide, Accuracy) |
|
|
|
{ |
|
|
|
{ |
|
|
|
static const int kNumRuns = 10; |
|
|
|
static const int kNumRuns = 10; |
|
|
|
std::vector<int> paddings(8); |
|
|
|
std::vector<int> paddings(8); |
|
|
|
|
|
|
|
cv::RNG& rng = cv::theRNG(); |
|
|
|
for (int t = 0; t < kNumRuns; ++t) |
|
|
|
for (int t = 0; t < kNumRuns; ++t) |
|
|
|
{ |
|
|
|
{ |
|
|
|
for (int i = 0; i < paddings.size(); ++i) |
|
|
|
for (int i = 0; i < paddings.size(); ++i) |
|
|
|
paddings[i] = rand() % 5; |
|
|
|
paddings[i] = rng(5); |
|
|
|
|
|
|
|
|
|
|
|
LayerParams lp; |
|
|
|
LayerParams lp; |
|
|
|
lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size())); |
|
|
|
lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size())); |
|
|
|
lp.type = "Padding"; |
|
|
|
lp.type = "Padding"; |
|
|
|
lp.name = "testLayer"; |
|
|
|
lp.name = "testLayer"; |
|
|
|
|
|
|
|
|
|
|
|
Mat input({1 + rand() % 10, 1 + rand() % 10, 1 + rand() % 10, 1 + rand() % 10}, CV_32F); |
|
|
|
Mat input({1 + rng(10), 1 + rng(10), 1 + rng(10), 1 + rng(10)}, CV_32F); |
|
|
|
test(lp, input); |
|
|
|
test(lp, input); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
@ -633,7 +634,7 @@ TEST_P(Eltwise, Accuracy) |
|
|
|
eltwiseParam.set("operation", op); |
|
|
|
eltwiseParam.set("operation", op); |
|
|
|
if (op == "sum" && weighted) |
|
|
|
if (op == "sum" && weighted) |
|
|
|
{ |
|
|
|
{ |
|
|
|
RNG rng = cv::theRNG(); |
|
|
|
RNG& rng = cv::theRNG(); |
|
|
|
std::vector<float> coeff(1 + numConv); |
|
|
|
std::vector<float> coeff(1 + numConv); |
|
|
|
for (int i = 0; i < coeff.size(); ++i) |
|
|
|
for (int i = 0; i < coeff.size(); ++i) |
|
|
|
{ |
|
|
|
{ |
|
|
|