|
|
|
@ -31,7 +31,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
|
|
|
|
size_type boxes_per_cell, size_type box_size, |
|
|
|
|
size_type rows, size_type cols, T scale_x_y, |
|
|
|
|
size_type height_norm, size_type width_norm, |
|
|
|
|
T object_prob_cutoff) |
|
|
|
|
T object_prob_cutoff, bool new_coords) |
|
|
|
|
{ |
|
|
|
|
using vector2_type = get_vector_type_t<T, 2>; |
|
|
|
|
auto bias_vPtr = vector2_type::get_pointer(bias.data()); |
|
|
|
@ -47,22 +47,43 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
|
|
|
|
const auto y = (box_index % batch_inner_size) / row_inner_size; |
|
|
|
|
const auto x = (box_index % row_inner_size) / col_inner_size; |
|
|
|
|
|
|
|
|
|
using device::fast_sigmoid; |
|
|
|
|
const auto tmp_x = (fast_sigmoid(input[box_offset + 0]) - static_cast<T>(0.5)) * scale_x_y + static_cast<T>(0.5); |
|
|
|
|
const auto tmp_y = (fast_sigmoid(input[box_offset + 1]) - static_cast<T>(0.5)) * scale_x_y + static_cast<T>(0.5); |
|
|
|
|
output[box_offset + 0] = (T(x) + tmp_x) / T(cols); |
|
|
|
|
output[box_offset + 1] = (T(y) + tmp_y) / T(rows); |
|
|
|
|
/* When new_coords is true, we shouldn't use logistic activation again */ |
|
|
|
|
T objectness_prob; |
|
|
|
|
if (new_coords) |
|
|
|
|
{ |
|
|
|
|
const auto tmp_x = (input[box_offset + 0] - static_cast<T>(0.5)) * scale_x_y + static_cast<T>(0.5); |
|
|
|
|
const auto tmp_y = (input[box_offset + 1] - static_cast<T>(0.5)) * scale_x_y + static_cast<T>(0.5); |
|
|
|
|
|
|
|
|
|
vector2_type bias_xy; |
|
|
|
|
v_load(bias_xy, bias_vPtr[box_of_the_cell]); |
|
|
|
|
output[box_offset + 0] = fast_divide_ftz(static_cast<T>(x) + tmp_x, static_cast<T>(cols)); |
|
|
|
|
output[box_offset + 1] = fast_divide_ftz(static_cast<T>(y) + tmp_y, static_cast<T>(rows)); |
|
|
|
|
|
|
|
|
|
using device::fast_exp; |
|
|
|
|
output[box_offset + 2] = fast_exp(input[box_offset + 2]) * bias_xy.data[0] / T(width_norm); |
|
|
|
|
output[box_offset + 3] = fast_exp(input[box_offset + 3]) * bias_xy.data[1] / T(height_norm); |
|
|
|
|
vector2_type bias_xy; |
|
|
|
|
v_load(bias_xy, bias_vPtr[box_of_the_cell]); |
|
|
|
|
|
|
|
|
|
/* squash objectness score into a probability */ |
|
|
|
|
using device::fast_sigmoid; |
|
|
|
|
T objectness_prob = fast_sigmoid(input[box_offset + 4]); |
|
|
|
|
output[box_offset + 2] = input[box_offset + 2] * input[box_offset + 2] * |
|
|
|
|
static_cast<T>(4) * bias_xy.data[0] / static_cast<T>(width_norm); |
|
|
|
|
output[box_offset + 3] = input[box_offset + 3] * input[box_offset + 3] * |
|
|
|
|
static_cast<T>(4) * bias_xy.data[1] / static_cast<T>(height_norm); |
|
|
|
|
|
|
|
|
|
objectness_prob = input[box_offset + 4]; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
const auto tmp_x = (fast_sigmoid(input[box_offset + 0]) - static_cast<T>(0.5)) * scale_x_y + static_cast<T>(0.5); |
|
|
|
|
const auto tmp_y = (fast_sigmoid(input[box_offset + 1]) - static_cast<T>(0.5)) * scale_x_y + static_cast<T>(0.5); |
|
|
|
|
|
|
|
|
|
output[box_offset + 0] = fast_divide_ftz(static_cast<T>(x) + tmp_x, static_cast<T>(cols)); |
|
|
|
|
output[box_offset + 1] = fast_divide_ftz(static_cast<T>(y) + tmp_y, static_cast<T>(rows)); |
|
|
|
|
|
|
|
|
|
vector2_type bias_xy; |
|
|
|
|
v_load(bias_xy, bias_vPtr[box_of_the_cell]); |
|
|
|
|
|
|
|
|
|
output[box_offset + 2] = fast_exp(input[box_offset + 2]) * bias_xy.data[0] / static_cast<T>(width_norm); |
|
|
|
|
output[box_offset + 3] = fast_exp(input[box_offset + 3]) * bias_xy.data[1] / static_cast<T>(height_norm); |
|
|
|
|
|
|
|
|
|
/* squash objectness score into a probability */ |
|
|
|
|
objectness_prob = fast_sigmoid(input[box_offset + 4]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* ignore prediction if the objectness probability is less than the cutoff */ |
|
|
|
|
if (objectness_prob < object_prob_cutoff) |
|
|
|
@ -73,7 +94,8 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <class T> |
|
|
|
|
__global__ void region_sigmoid_class_score(Span<T> output, View<T> input, T class_prob_cutoff, size_type box_size) |
|
|
|
|
__global__ void region_sigmoid_class_score(Span<T> output, View<T> input, T class_prob_cutoff, |
|
|
|
|
size_type box_size, bool new_coords) |
|
|
|
|
{ |
|
|
|
|
for (auto idx : grid_stride_range(output.size())) { |
|
|
|
|
const index_type box_no = idx / box_size; |
|
|
|
@ -92,9 +114,20 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
|
|
|
|
* |
|
|
|
|
* to obtain the actual class probability, we multiply the conditional probability |
|
|
|
|
* with the object probability |
|
|
|
|
* |
|
|
|
|
* when new_coords is true, we shouldn't use logistic activation again. |
|
|
|
|
*/ |
|
|
|
|
using device::fast_sigmoid; |
|
|
|
|
auto actual_class_prob = objectness_prob * fast_sigmoid(input[idx]); |
|
|
|
|
|
|
|
|
|
T actual_class_prob; |
|
|
|
|
if (new_coords) |
|
|
|
|
{ |
|
|
|
|
actual_class_prob = objectness_prob * input[idx]; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
actual_class_prob = objectness_prob * fast_sigmoid(input[idx]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (actual_class_prob <= class_prob_cutoff) |
|
|
|
|
actual_class_prob = T(0); |
|
|
|
|
output[idx] = actual_class_prob; |
|
|
|
@ -147,7 +180,8 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
|
|
|
|
std::size_t boxes_per_cell, std::size_t box_size, |
|
|
|
|
std::size_t rows, std::size_t cols, T scale_x_y, |
|
|
|
|
std::size_t height_norm, std::size_t width_norm, |
|
|
|
|
bool if_true_sigmoid_else_softmax /* true = sigmoid, false = softmax */) |
|
|
|
|
bool if_true_sigmoid_else_softmax, /* true = sigmoid, false = softmax */ |
|
|
|
|
bool new_coords) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(output.size() == input.size()); |
|
|
|
|
CV_Assert(output.size() % box_size == 0); |
|
|
|
@ -158,12 +192,12 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
|
|
|
|
launch_kernel(box_kernel, box_policy, |
|
|
|
|
output, input, bias, boxes_per_cell, box_size, |
|
|
|
|
rows, cols, scale_x_y, height_norm, width_norm, |
|
|
|
|
object_prob_cutoff); |
|
|
|
|
object_prob_cutoff, new_coords); |
|
|
|
|
|
|
|
|
|
if (if_true_sigmoid_else_softmax) { |
|
|
|
|
auto kernel_score = raw::region_sigmoid_class_score<T>; |
|
|
|
|
auto policy_score = make_policy(kernel_score, output.size(), 0, stream); |
|
|
|
|
launch_kernel(kernel_score, policy_score, output, input, class_prob_cutoff, box_size); |
|
|
|
|
launch_kernel(kernel_score, policy_score, output, input, class_prob_cutoff, box_size, new_coords); |
|
|
|
|
} else { |
|
|
|
|
auto kernel_score = raw::region_softmax_class_score<T>; |
|
|
|
|
auto policy_score = make_policy(kernel_score, output.size(), 0, stream); |
|
|
|
@ -173,10 +207,10 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { |
|
|
|
|
|
|
|
|
|
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) |
|
|
|
|
template void region(const Stream&, Span<__half>, View<__half>, View<__half>, |
|
|
|
|
__half, __half, std::size_t, std::size_t, std::size_t, std::size_t, __half, std::size_t, std::size_t, bool); |
|
|
|
|
__half, __half, std::size_t, std::size_t, std::size_t, std::size_t, __half, std::size_t, std::size_t, bool, bool); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
template void region(const Stream&, Span<float>, View<float>, View<float>, |
|
|
|
|
float, float, std::size_t, std::size_t, std::size_t, std::size_t, float, std::size_t, std::size_t, bool); |
|
|
|
|
float, float, std::size_t, std::size_t, std::size_t, std::size_t, float, std::size_t, std::size_t, bool, bool); |
|
|
|
|
|
|
|
|
|
}}}} /* namespace cv::dnn::cuda4dnn::kernels */ |
|
|
|
|