|
|
|
@ -51,53 +51,172 @@ |
|
|
|
|
namespace cv |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
//! various border interpolation methods
|
|
|
|
|
enum { BORDER_REPLICATE=IPL_BORDER_REPLICATE, BORDER_CONSTANT=IPL_BORDER_CONSTANT, |
|
|
|
|
BORDER_REFLECT=IPL_BORDER_REFLECT, BORDER_REFLECT_101=IPL_BORDER_REFLECT_101, |
|
|
|
|
BORDER_REFLECT101=BORDER_REFLECT_101, BORDER_WRAP=IPL_BORDER_WRAP, |
|
|
|
|
BORDER_TRANSPARENT, BORDER_DEFAULT=BORDER_REFLECT_101, BORDER_ISOLATED=16 }; |
|
|
|
|
|
|
|
|
|
//! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p.
|
|
|
|
|
CV_EXPORTS int borderInterpolate( int p, int len, int borderType ); |
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
The Base Class for 1D or Row-wise Filters |
|
|
|
|
|
|
|
|
|
This is the base class for linear or non-linear filters that process 1D data. |
|
|
|
|
In particular, such filters are used for the "horizontal" filtering parts in separable filters. |
|
|
|
|
|
|
|
|
|
Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters, |
|
|
|
|
and those pointers can be used directly or within cv::FilterEngine. |
|
|
|
|
*/ |
|
|
|
|
class CV_EXPORTS BaseRowFilter |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
//! the default constructor
|
|
|
|
|
BaseRowFilter(); |
|
|
|
|
//! the destructor
|
|
|
|
|
virtual ~BaseRowFilter(); |
|
|
|
|
//! the filtering operator. Must be overrided in the derived classes. The horizontal border interpolation is done outside of the class.
|
|
|
|
|
virtual void operator()(const uchar* src, uchar* dst, |
|
|
|
|
int width, int cn) = 0; |
|
|
|
|
int ksize, anchor; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
The Base Class for Column-wise Filters |
|
|
|
|
|
|
|
|
|
This is the base class for linear or non-linear filters that process columns of 2D arrays. |
|
|
|
|
Such filters are used for the "vertical" filtering parts in separable filters. |
|
|
|
|
|
|
|
|
|
Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters, |
|
|
|
|
and those pointers can be used directly or within cv::FilterEngine. |
|
|
|
|
|
|
|
|
|
Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information, |
|
|
|
|
i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset() |
|
|
|
|
must be called (e.g. the method is called by cv::FilterEngine) |
|
|
|
|
*/
|
|
|
|
|
class CV_EXPORTS BaseColumnFilter |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
//! the default constructor
|
|
|
|
|
BaseColumnFilter(); |
|
|
|
|
//! the destructor
|
|
|
|
|
virtual ~BaseColumnFilter(); |
|
|
|
|
//! the filtering operator. Must be overrided in the derived classes. The vertical border interpolation is done outside of the class.
|
|
|
|
|
virtual void operator()(const uchar** src, uchar* dst, int dststep, |
|
|
|
|
int dstcount, int width) = 0; |
|
|
|
|
//! resets the internal buffers, if any
|
|
|
|
|
virtual void reset(); |
|
|
|
|
int ksize, anchor; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
The Base Class for Non-Separable 2D Filters. |
|
|
|
|
|
|
|
|
|
This is the base class for linear or non-linear 2D filters. |
|
|
|
|
|
|
|
|
|
Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters, |
|
|
|
|
and those pointers can be used directly or within cv::FilterEngine. |
|
|
|
|
|
|
|
|
|
Similar to cv::BaseColumnFilter, the class may have some context information, |
|
|
|
|
that should be reset using BaseFilter::reset() method before processing the new array. |
|
|
|
|
*/
|
|
|
|
|
class CV_EXPORTS BaseFilter |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
//! the default constructor
|
|
|
|
|
BaseFilter(); |
|
|
|
|
//! the destructor
|
|
|
|
|
virtual ~BaseFilter(); |
|
|
|
|
//! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class.
|
|
|
|
|
virtual void operator()(const uchar** src, uchar* dst, int dststep, |
|
|
|
|
int dstcount, int width, int cn) = 0; |
|
|
|
|
//! resets the internal buffers, if any
|
|
|
|
|
virtual void reset(); |
|
|
|
|
Size ksize; |
|
|
|
|
Point anchor; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
The Main Class for Image Filtering. |
|
|
|
|
|
|
|
|
|
The class can be used to apply an arbitrary filtering operation to an image. |
|
|
|
|
It contains all the necessary intermediate buffers, it computes extrapolated values |
|
|
|
|
of the "virtual" pixels outside of the image etc. |
|
|
|
|
Pointers to the initialized cv::FilterEngine instances |
|
|
|
|
are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(), |
|
|
|
|
cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(), |
|
|
|
|
cv::createBoxFilter() and cv::createMorphologyFilter(). |
|
|
|
|
|
|
|
|
|
Using the class you can process large images by parts and build complex pipelines |
|
|
|
|
that include filtering as some of the stages. If all you need is to apply some pre-defined |
|
|
|
|
filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc. |
|
|
|
|
functions that create FilterEngine internally. |
|
|
|
|
|
|
|
|
|
Here is the example on how to use the class to implement Laplacian operator, which is the sum of |
|
|
|
|
second-order derivatives. More complex variant for different types is implemented in cv::Laplacian(). |
|
|
|
|
|
|
|
|
|
\code |
|
|
|
|
void laplace_f(const Mat& src, Mat& dst) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( src.type() == CV_32F ); |
|
|
|
|
// make sure the destination array has the proper size and type
|
|
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
|
|
|
|
|
|
// get the derivative and smooth kernels for d2I/dx2.
|
|
|
|
|
// for d2I/dy2 we could use the same kernels, just swapped
|
|
|
|
|
Mat kd, ks; |
|
|
|
|
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype ); |
|
|
|
|
|
|
|
|
|
// let's process 10 source rows at once
|
|
|
|
|
int DELTA = std::min(10, src.rows); |
|
|
|
|
Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(), |
|
|
|
|
dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
|
|
|
|
|
Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(), |
|
|
|
|
dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() ); |
|
|
|
|
|
|
|
|
|
int y = Fxx->start(src), dsty = 0, dy = 0; |
|
|
|
|
Fyy->start(src); |
|
|
|
|
const uchar* sptr = src.data + y*src.step; |
|
|
|
|
|
|
|
|
|
// allocate the buffers for the spatial image derivatives;
|
|
|
|
|
// the buffers need to have more than DELTA rows, because at the
|
|
|
|
|
// last iteration the output may take max(kd.rows-1,ks.rows-1)
|
|
|
|
|
// rows more than the input.
|
|
|
|
|
Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() ); |
|
|
|
|
Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() ); |
|
|
|
|
|
|
|
|
|
// inside the loop we always pass DELTA rows to the filter
|
|
|
|
|
// (note that the "proceed" method takes care of possibe overflow, since
|
|
|
|
|
// it was given the actual image height in the "start" method)
|
|
|
|
|
// on output we can get:
|
|
|
|
|
// * < DELTA rows (the initial buffer accumulation stage)
|
|
|
|
|
// * = DELTA rows (settled state in the middle)
|
|
|
|
|
// * > DELTA rows (then the input image is over, but we generate
|
|
|
|
|
// "virtual" rows using the border mode and filter them)
|
|
|
|
|
// this variable number of output rows is dy.
|
|
|
|
|
// dsty is the current output row.
|
|
|
|
|
// sptr is the pointer to the first input row in the portion to process
|
|
|
|
|
for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy ) |
|
|
|
|
{ |
|
|
|
|
Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step ); |
|
|
|
|
dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step ); |
|
|
|
|
if( dy > 0 ) |
|
|
|
|
{ |
|
|
|
|
Mat dstripe = dst.rowRange(dsty, dsty + dy); |
|
|
|
|
add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
\endcode |
|
|
|
|
*/ |
|
|
|
|
class CV_EXPORTS FilterEngine |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
//! the default constructor
|
|
|
|
|
FilterEngine(); |
|
|
|
|
//! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty.
|
|
|
|
|
FilterEngine(const Ptr<BaseFilter>& _filter2D, |
|
|
|
|
const Ptr<BaseRowFilter>& _rowFilter, |
|
|
|
|
const Ptr<BaseColumnFilter>& _columnFilter, |
|
|
|
@ -105,23 +224,31 @@ public: |
|
|
|
|
int _rowBorderType=BORDER_REPLICATE, |
|
|
|
|
int _columnBorderType=-1, |
|
|
|
|
const Scalar& _borderValue=Scalar()); |
|
|
|
|
//! the destructor
|
|
|
|
|
virtual ~FilterEngine(); |
|
|
|
|
//! reinitializes the engine. The previously assigned filters are released.
|
|
|
|
|
void init(const Ptr<BaseFilter>& _filter2D, |
|
|
|
|
const Ptr<BaseRowFilter>& _rowFilter, |
|
|
|
|
const Ptr<BaseColumnFilter>& _columnFilter, |
|
|
|
|
int srcType, int dstType, int bufType, |
|
|
|
|
int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1, |
|
|
|
|
const Scalar& _borderValue=Scalar()); |
|
|
|
|
//! starts filtering of the specified ROI of an image of size wholeSize.
|
|
|
|
|
virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1); |
|
|
|
|
//! starts filtering of the specified ROI of the specified image.
|
|
|
|
|
virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1), |
|
|
|
|
bool isolated=false, int maxBufRows=-1); |
|
|
|
|
//! processes the next srcCount rows of the image.
|
|
|
|
|
virtual int proceed(const uchar* src, int srcStep, int srcCount, |
|
|
|
|
uchar* dst, int dstStep); |
|
|
|
|
//! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered.
|
|
|
|
|
virtual void apply( const Mat& src, Mat& dst, |
|
|
|
|
const Rect& srcRoi=Rect(0,0,-1,-1), |
|
|
|
|
Point dstOfs=Point(0,0), |
|
|
|
|
bool isolated=false); |
|
|
|
|
//! returns true if the filter is separable
|
|
|
|
|
bool isSeparable() const { return (const BaseFilter*)filter2D == 0; } |
|
|
|
|
//! returns the number
|
|
|
|
|
int remainingInputRows() const; |
|
|
|
|
int remainingOutputRows() const; |
|
|
|
|
|
|
|
|
@ -147,25 +274,31 @@ public: |
|
|
|
|
Ptr<BaseColumnFilter> columnFilter; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//! type of the kernel
|
|
|
|
|
enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2, |
|
|
|
|
KERNEL_SMOOTH=4, KERNEL_INTEGER=8 }; |
|
|
|
|
|
|
|
|
|
//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
|
|
|
|
|
CV_EXPORTS int getKernelType(const Mat& kernel, Point anchor); |
|
|
|
|
|
|
|
|
|
//! returns the primitive row filter with the specified kernel
|
|
|
|
|
CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType, |
|
|
|
|
const Mat& kernel, int anchor, |
|
|
|
|
int symmetryType); |
|
|
|
|
|
|
|
|
|
//! returns the primitive column filter with the specified kernel
|
|
|
|
|
CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType, |
|
|
|
|
const Mat& kernel, int anchor, |
|
|
|
|
int symmetryType, double delta=0, |
|
|
|
|
int bits=0); |
|
|
|
|
|
|
|
|
|
//! returns 2D filter with the specified kernel
|
|
|
|
|
CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType, |
|
|
|
|
const Mat& kernel, |
|
|
|
|
Point anchor=Point(-1,-1), |
|
|
|
|
double delta=0, int bits=0); |
|
|
|
|
|
|
|
|
|
//! returns the separable linear filter engine
|
|
|
|
|
CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType, |
|
|
|
|
const Mat& rowKernel, const Mat& columnKernel, |
|
|
|
|
Point _anchor=Point(-1,-1), double delta=0, |
|
|
|
@ -173,69 +306,87 @@ CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstTyp |
|
|
|
|
int _columnBorderType=-1, |
|
|
|
|
const Scalar& _borderValue=Scalar()); |
|
|
|
|
|
|
|
|
|
//! returns the non-separable linear filter engine
|
|
|
|
|
CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType, |
|
|
|
|
const Mat& kernel, Point _anchor=Point(-1,-1), |
|
|
|
|
double delta=0, int _rowBorderType=BORDER_DEFAULT, |
|
|
|
|
int _columnBorderType=-1, const Scalar& _borderValue=Scalar()); |
|
|
|
|
|
|
|
|
|
//! returns the Gaussian kernel with the specified parameters
|
|
|
|
|
CV_EXPORTS Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F ); |
|
|
|
|
|
|
|
|
|
//! returns the Gaussian filter engine
|
|
|
|
|
CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize, |
|
|
|
|
double sigma1, double sigma2=0, |
|
|
|
|
int borderType=BORDER_DEFAULT); |
|
|
|
|
|
|
|
|
|
//! initializes kernels of the generalized Sobel operator
|
|
|
|
|
CV_EXPORTS void getDerivKernels( Mat& kx, Mat& ky, int dx, int dy, int ksize, |
|
|
|
|
bool normalize=false, int ktype=CV_32F ); |
|
|
|
|
|
|
|
|
|
//! returns filter engine for the generalized Sobel operator
|
|
|
|
|
CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType, |
|
|
|
|
int dx, int dy, int ksize, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! returns horizontal 1D box filter
|
|
|
|
|
CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType, |
|
|
|
|
int ksize, int anchor=-1); |
|
|
|
|
//! returns vertical 1D box filter
|
|
|
|
|
CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter(int sumType, int dstType, |
|
|
|
|
int ksize, int anchor=-1, |
|
|
|
|
double scale=1); |
|
|
|
|
//! returns box filter engine
|
|
|
|
|
CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize, |
|
|
|
|
Point anchor=Point(-1,-1), |
|
|
|
|
bool normalize=true, |
|
|
|
|
int borderType=BORDER_DEFAULT); |
|
|
|
|
|
|
|
|
|
//! type of morphological operation
|
|
|
|
|
enum { MORPH_ERODE=0, MORPH_DILATE=1, MORPH_OPEN=2, MORPH_CLOSE=3, |
|
|
|
|
MORPH_GRADIENT=4, MORPH_TOPHAT=5, MORPH_BLACKHAT=6 }; |
|
|
|
|
|
|
|
|
|
//! returns horizontal 1D morphological filter
|
|
|
|
|
CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor=-1); |
|
|
|
|
//! returns vertical 1D morphological filter
|
|
|
|
|
CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1); |
|
|
|
|
//! returns 2D morphological filter
|
|
|
|
|
CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, const Mat& kernel, |
|
|
|
|
Point anchor=Point(-1,-1)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
|
|
|
|
|
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } |
|
|
|
|
|
|
|
|
|
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
|
|
|
|
|
CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, const Mat& kernel, |
|
|
|
|
Point anchor=Point(-1,-1), int _rowBorderType=BORDER_CONSTANT, |
|
|
|
|
int _columnBorderType=-1, |
|
|
|
|
const Scalar& _borderValue=morphologyDefaultBorderValue()); |
|
|
|
|
|
|
|
|
|
//! shape of the structuring element
|
|
|
|
|
enum { MORPH_RECT=0, MORPH_CROSS=1, MORPH_ELLIPSE=2 }; |
|
|
|
|
//! returns structuring element of the specified shape and size
|
|
|
|
|
CV_EXPORTS Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1)); |
|
|
|
|
|
|
|
|
|
template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
|
|
|
|
|
CV_EXPORTS void copyMakeBorder( const Mat& src, Mat& dst, |
|
|
|
|
int top, int bottom, int left, int right, |
|
|
|
|
int borderType, const Scalar& value=Scalar() ); |
|
|
|
|
|
|
|
|
|
//! smooths the image using median filter.
|
|
|
|
|
CV_EXPORTS void medianBlur( const Mat& src, Mat& dst, int ksize ); |
|
|
|
|
//! smooths the image using Gaussian filter.
|
|
|
|
|
CV_EXPORTS void GaussianBlur( const Mat& src, Mat& dst, Size ksize, |
|
|
|
|
double sigma1, double sigma2=0, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
//! smooths the image using bilateral filter
|
|
|
|
|
CV_EXPORTS void bilateralFilter( const Mat& src, Mat& dst, int d, |
|
|
|
|
double sigmaColor, double sigmaSpace, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
//! smooths the image using the box filter. Each pixel is processed in O(1) time
|
|
|
|
|
CV_EXPORTS void boxFilter( const Mat& src, Mat& dst, int ddepth, |
|
|
|
|
Size ksize, Point anchor=Point(-1,-1), |
|
|
|
|
bool normalize=true, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
//! a synonym for normalized box filter
|
|
|
|
|
static inline void blur( const Mat& src, Mat& dst, |
|
|
|
|
Size ksize, Point anchor=Point(-1,-1), |
|
|
|
|
int borderType=BORDER_DEFAULT ) |
|
|
|
@ -243,94 +394,127 @@ static inline void blur( const Mat& src, Mat& dst, |
|
|
|
|
boxFilter( src, dst, -1, ksize, anchor, true, borderType ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//! applies non-separable 2D linear filter to the image
|
|
|
|
|
CV_EXPORTS void filter2D( const Mat& src, Mat& dst, int ddepth, |
|
|
|
|
const Mat& kernel, Point anchor=Point(-1,-1), |
|
|
|
|
double delta=0, int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! applies separable 2D linear filter to the image
|
|
|
|
|
CV_EXPORTS void sepFilter2D( const Mat& src, Mat& dst, int ddepth, |
|
|
|
|
const Mat& kernelX, const Mat& kernelY, |
|
|
|
|
Point anchor=Point(-1,-1), |
|
|
|
|
double delta=0, int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! applies generalized Sobel operator to the image
|
|
|
|
|
CV_EXPORTS void Sobel( const Mat& src, Mat& dst, int ddepth, |
|
|
|
|
int dx, int dy, int ksize=3, |
|
|
|
|
double scale=1, double delta=0, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! applies the vertical or horizontal Scharr operator to the image
|
|
|
|
|
CV_EXPORTS void Scharr( const Mat& src, Mat& dst, int ddepth, |
|
|
|
|
int dx, int dy, double scale=1, double delta=0, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! applies Laplacian operator to the image
|
|
|
|
|
CV_EXPORTS void Laplacian( const Mat& src, Mat& dst, int ddepth, |
|
|
|
|
int ksize=1, double scale=1, double delta=0, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! applies Canny edge detector and produces the edge map.
|
|
|
|
|
CV_EXPORTS void Canny( const Mat& image, Mat& edges, |
|
|
|
|
double threshold1, double threshold2, |
|
|
|
|
int apertureSize=3, bool L2gradient=false ); |
|
|
|
|
|
|
|
|
|
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
|
|
|
|
|
CV_EXPORTS void cornerMinEigenVal( const Mat& src, Mat& dst, |
|
|
|
|
int blockSize, int ksize=3, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! computes Harris cornerness criteria at each image pixel
|
|
|
|
|
CV_EXPORTS void cornerHarris( const Mat& src, Mat& dst, int blockSize, |
|
|
|
|
int ksize, double k, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix.
|
|
|
|
|
CV_EXPORTS void cornerEigenValsAndVecs( const Mat& src, Mat& dst, |
|
|
|
|
int blockSize, int ksize, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! computes another complex cornerness criteria at each pixel
|
|
|
|
|
CV_EXPORTS void preCornerDetect( const Mat& src, Mat& dst, int ksize, |
|
|
|
|
int borderType=BORDER_DEFAULT ); |
|
|
|
|
|
|
|
|
|
//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
|
|
|
|
|
CV_EXPORTS void cornerSubPix( const Mat& image, vector<Point2f>& corners, |
|
|
|
|
Size winSize, Size zeroZone, |
|
|
|
|
TermCriteria criteria ); |
|
|
|
|
|
|
|
|
|
//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
|
|
|
|
|
CV_EXPORTS void goodFeaturesToTrack( const Mat& image, vector<Point2f>& corners, |
|
|
|
|
int maxCorners, double qualityLevel, double minDistance, |
|
|
|
|
const Mat& mask=Mat(), int blockSize=3, |
|
|
|
|
bool useHarrisDetector=false, double k=0.04 ); |
|
|
|
|
|
|
|
|
|
//! finds lines in the black-n-white image using the standard or pyramid Hough transform
|
|
|
|
|
CV_EXPORTS void HoughLines( const Mat& image, vector<Vec2f>& lines, |
|
|
|
|
double rho, double theta, int threshold, |
|
|
|
|
double srn=0, double stn=0 ); |
|
|
|
|
|
|
|
|
|
//! finds line segments in the black-n-white image using probabalistic Hough transform
|
|
|
|
|
CV_EXPORTS void HoughLinesP( Mat& image, vector<Vec4i>& lines, |
|
|
|
|
double rho, double theta, int threshold, |
|
|
|
|
double minLineLength=0, double maxLineGap=0 ); |
|
|
|
|
|
|
|
|
|
//! finds circles in the grayscale image using 2+1 gradient Hough transform
|
|
|
|
|
CV_EXPORTS void HoughCircles( const Mat& image, vector<Vec3f>& circles, |
|
|
|
|
int method, double dp, double minDist, |
|
|
|
|
double param1=100, double param2=100, |
|
|
|
|
int minRadius=0, int maxRadius=0 ); |
|
|
|
|
|
|
|
|
|
//! erodes the image (applies the local minimum operator)
|
|
|
|
|
CV_EXPORTS void erode( const Mat& src, Mat& dst, const Mat& kernel, |
|
|
|
|
Point anchor=Point(-1,-1), int iterations=1, |
|
|
|
|
int borderType=BORDER_CONSTANT, |
|
|
|
|
const Scalar& borderValue=morphologyDefaultBorderValue() ); |
|
|
|
|
|
|
|
|
|
//! dilates the image (applies the local maximum operator)
|
|
|
|
|
CV_EXPORTS void dilate( const Mat& src, Mat& dst, const Mat& kernel, |
|
|
|
|
Point anchor=Point(-1,-1), int iterations=1, |
|
|
|
|
int borderType=BORDER_CONSTANT, |
|
|
|
|
const Scalar& borderValue=morphologyDefaultBorderValue() ); |
|
|
|
|
|
|
|
|
|
//! applies an advanced morphological operation to the image
|
|
|
|
|
CV_EXPORTS void morphologyEx( const Mat& src, Mat& dst, int op, const Mat& kernel, |
|
|
|
|
Point anchor=Point(-1,-1), int iterations=1, |
|
|
|
|
int borderType=BORDER_CONSTANT, |
|
|
|
|
const Scalar& borderValue=morphologyDefaultBorderValue() ); |
|
|
|
|
|
|
|
|
|
enum { INTER_NEAREST=0, INTER_LINEAR=1, INTER_CUBIC=2, INTER_AREA=3, |
|
|
|
|
INTER_LANCZOS4=4, INTER_MAX=7, WARP_INVERSE_MAP=16 }; |
|
|
|
|
//! interpolation algorithm
|
|
|
|
|
enum
|
|
|
|
|
{ |
|
|
|
|
INTER_NEAREST=0, //!< nearest neighbor interpolation
|
|
|
|
|
INTER_LINEAR=1, //!< bilinear interpolation
|
|
|
|
|
INTER_CUBIC=2, //!< bicubic interpolation
|
|
|
|
|
INTER_AREA=3, //!< area-based (or super) interpolation
|
|
|
|
|
INTER_LANCZOS4=4, //!< Lanczos interpolation over 8x8 neighborhood
|
|
|
|
|
INTER_MAX=7, |
|
|
|
|
WARP_INVERSE_MAP=16 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//! resizes the image
|
|
|
|
|
CV_EXPORTS void resize( const Mat& src, Mat& dst, |
|
|
|
|
Size dsize, double fx=0, double fy=0, |
|
|
|
|
int interpolation=INTER_LINEAR ); |
|
|
|
|
|
|
|
|
|
//! warps the image using affine transformation
|
|
|
|
|
CV_EXPORTS void warpAffine( const Mat& src, Mat& dst, |
|
|
|
|
const Mat& M, Size dsize, |
|
|
|
|
int flags=INTER_LINEAR, |
|
|
|
|
int borderMode=BORDER_CONSTANT, |
|
|
|
|
const Scalar& borderValue=Scalar()); |
|
|
|
|
|
|
|
|
|
//! warps the image using perspective transformation
|
|
|
|
|
CV_EXPORTS void warpPerspective( const Mat& src, Mat& dst, |
|
|
|
|
const Mat& M, Size dsize, |
|
|
|
|
int flags=INTER_LINEAR, |
|
|
|
@ -340,213 +524,302 @@ CV_EXPORTS void warpPerspective( const Mat& src, Mat& dst, |
|
|
|
|
enum { INTER_BITS=5, INTER_BITS2=INTER_BITS*2, |
|
|
|
|
INTER_TAB_SIZE=(1<<INTER_BITS), |
|
|
|
|
INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE };
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
|
|
|
|
|
CV_EXPORTS void remap( const Mat& src, Mat& dst, const Mat& map1, const Mat& map2, |
|
|
|
|
int interpolation, int borderMode=BORDER_CONSTANT, |
|
|
|
|
const Scalar& borderValue=Scalar()); |
|
|
|
|
|
|
|
|
|
//! converts maps for remap from floating-point to fixed-point format or backwards
|
|
|
|
|
CV_EXPORTS void convertMaps( const Mat& map1, const Mat& map2, Mat& dstmap1, Mat& dstmap2, |
|
|
|
|
int dstmap1type, bool nninterpolation=false ); |
|
|
|
|
|
|
|
|
|
//! returns 2x3 affine transformation matrix for the planar rotation.
|
|
|
|
|
CV_EXPORTS Mat getRotationMatrix2D( Point2f center, double angle, double scale ); |
|
|
|
|
//! returns 3x3 perspective transformation for the corresponding 4 point pairs.
|
|
|
|
|
CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] ); |
|
|
|
|
//! returns 2x3 affine transformation for the corresponding 3 point pairs.
|
|
|
|
|
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] ); |
|
|
|
|
//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
|
|
|
|
|
CV_EXPORTS void invertAffineTransform(const Mat& M, Mat& iM); |
|
|
|
|
|
|
|
|
|
//! extracts rectangle from the image at sub-pixel location
|
|
|
|
|
CV_EXPORTS void getRectSubPix( const Mat& image, Size patchSize, |
|
|
|
|
Point2f center, Mat& patch, int patchType=-1 ); |
|
|
|
|
|
|
|
|
|
//! computes the integral image
|
|
|
|
|
CV_EXPORTS void integral( const Mat& src, Mat& sum, int sdepth=-1 ); |
|
|
|
|
//! computes the integral image and integral for the squared image
|
|
|
|
|
CV_EXPORTS void integral( const Mat& src, Mat& sum, Mat& sqsum, int sdepth=-1 ); |
|
|
|
|
//! computes the integral image, integral for the squared image and the tilted integral image
|
|
|
|
|
CV_EXPORTS void integral( const Mat& src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth=-1 ); |
|
|
|
|
|
|
|
|
|
//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
|
|
|
|
|
CV_EXPORTS void accumulate( const Mat& src, Mat& dst, const Mat& mask=Mat() ); |
|
|
|
|
//! adds squared src image to the accumulator (dst += src*src).
|
|
|
|
|
CV_EXPORTS void accumulateSquare( const Mat& src, Mat& dst, const Mat& mask=Mat() ); |
|
|
|
|
//! adds product of the 2 images to the accumulator (dst += src1*src2).
|
|
|
|
|
CV_EXPORTS void accumulateProduct( const Mat& src1, const Mat& src2, |
|
|
|
|
Mat& dst, const Mat& mask=Mat() ); |
|
|
|
|
//! updates the running average (dst = dst*(1-alpha) + src*alpha)
|
|
|
|
|
CV_EXPORTS void accumulateWeighted( const Mat& src, Mat& dst, |
|
|
|
|
double alpha, const Mat& mask=Mat() ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! type of the threshold operation
|
|
|
|
|
enum { THRESH_BINARY=0, THRESH_BINARY_INV=1, THRESH_TRUNC=2, THRESH_TOZERO=3, |
|
|
|
|
THRESH_TOZERO_INV=4, THRESH_MASK=7, THRESH_OTSU=8 }; |
|
|
|
|
|
|
|
|
|
//! applies fixed threshold to the image
|
|
|
|
|
CV_EXPORTS double threshold( const Mat& src, Mat& dst, double thresh, double maxval, int type ); |
|
|
|
|
|
|
|
|
|
//! adaptive threshold algorithm
|
|
|
|
|
enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 }; |
|
|
|
|
|
|
|
|
|
//! applies variable (adaptive) threshold to the image
|
|
|
|
|
CV_EXPORTS void adaptiveThreshold( const Mat& src, Mat& dst, double maxValue, |
|
|
|
|
int adaptiveMethod, int thresholdType, |
|
|
|
|
int blockSize, double C ); |
|
|
|
|
|
|
|
|
|
//! smooths and downsamples the image
|
|
|
|
|
CV_EXPORTS void pyrDown( const Mat& src, Mat& dst, const Size& dstsize=Size()); |
|
|
|
|
//! upsamples and smoothes the image
|
|
|
|
|
CV_EXPORTS void pyrUp( const Mat& src, Mat& dst, const Size& dstsize=Size()); |
|
|
|
|
//! builds the gaussian pyramid using pyrDown() as a basic operation
|
|
|
|
|
CV_EXPORTS void buildPyramid( const Mat& src, vector<Mat>& dst, int maxlevel ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! corrects lens distortion for the given camera matrix and distortion coefficients
|
|
|
|
|
CV_EXPORTS void undistort( const Mat& src, Mat& dst, const Mat& cameraMatrix, |
|
|
|
|
const Mat& distCoeffs, const Mat& newCameraMatrix=Mat() ); |
|
|
|
|
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
|
|
|
|
|
CV_EXPORTS void initUndistortRectifyMap( const Mat& cameraMatrix, const Mat& distCoeffs, |
|
|
|
|
const Mat& R, const Mat& newCameraMatrix, |
|
|
|
|
Size size, int m1type, Mat& map1, Mat& map2 ); |
|
|
|
|
//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
|
|
|
|
|
CV_EXPORTS Mat getDefaultNewCameraMatrix( const Mat& cameraMatrix, Size imgsize=Size(), |
|
|
|
|
bool centerPrincipalPoint=false ); |
|
|
|
|
|
|
|
|
|
//! returns points' coordinates after lens distortion correction
|
|
|
|
|
CV_EXPORTS void undistortPoints( const Mat& src, vector<Point2f>& dst, |
|
|
|
|
const Mat& cameraMatrix, const Mat& distCoeffs, |
|
|
|
|
const Mat& R=Mat(), const Mat& P=Mat()); |
|
|
|
|
//! returns points' coordinates after lens distortion correction
|
|
|
|
|
CV_EXPORTS void undistortPoints( const Mat& src, Mat& dst, |
|
|
|
|
const Mat& cameraMatrix, const Mat& distCoeffs, |
|
|
|
|
const Mat& R=Mat(), const Mat& P=Mat()); |
|
|
|
|
|
|
|
|
|
template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj(); |
|
|
|
|
|
|
|
|
|
//! computes the joint dense histogram for a set of images.
|
|
|
|
|
CV_EXPORTS void calcHist( const Mat* images, int nimages, |
|
|
|
|
const int* channels, const Mat& mask, |
|
|
|
|
MatND& hist, int dims, const int* histSize, |
|
|
|
|
const float** ranges, bool uniform=true, |
|
|
|
|
bool accumulate=false ); |
|
|
|
|
|
|
|
|
|
//! computes the joint sparse histogram for a set of images.
|
|
|
|
|
CV_EXPORTS void calcHist( const Mat* images, int nimages, |
|
|
|
|
const int* channels, const Mat& mask, |
|
|
|
|
SparseMat& hist, int dims, const int* histSize, |
|
|
|
|
const float** ranges, bool uniform=true, |
|
|
|
|
bool accumulate=false ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! computes back projection for the set of images
|
|
|
|
|
CV_EXPORTS void calcBackProject( const Mat* images, int nimages, |
|
|
|
|
const int* channels, const MatND& hist, |
|
|
|
|
Mat& backProject, const float** ranges, |
|
|
|
|
double scale=1, bool uniform=true ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! computes back projection for the set of images
|
|
|
|
|
CV_EXPORTS void calcBackProject( const Mat* images, int nimages, |
|
|
|
|
const int* channels, const SparseMat& hist, |
|
|
|
|
Mat& backProject, const float** ranges, |
|
|
|
|
double scale=1, bool uniform=true ); |
|
|
|
|
|
|
|
|
|
//! compares two histograms stored in dense arrays
|
|
|
|
|
CV_EXPORTS double compareHist( const MatND& H1, const MatND& H2, int method ); |
|
|
|
|
|
|
|
|
|
//! compares two histograms stored in sparse arrays
|
|
|
|
|
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); |
|
|
|
|
|
|
|
|
|
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
|
|
|
|
|
CV_EXPORTS void equalizeHist( const Mat& src, Mat& dst ); |
|
|
|
|
|
|
|
|
|
//! segments the image using watershed algorithm
|
|
|
|
|
CV_EXPORTS void watershed( const Mat& image, Mat& markers ); |
|
|
|
|
|
|
|
|
|
enum { GC_BGD = 0, // background
|
|
|
|
|
GC_FGD = 1, // foreground
|
|
|
|
|
GC_PR_BGD = 2, // most probably background
|
|
|
|
|
GC_PR_FGD = 3 // most probably foreground
|
|
|
|
|
//! class of the pixel in GrabCut algorithm
|
|
|
|
|
enum { GC_BGD = 0, //!< background
|
|
|
|
|
GC_FGD = 1, //!< foreground
|
|
|
|
|
GC_PR_BGD = 2, //!< most probably background
|
|
|
|
|
GC_PR_FGD = 3 //!< most probably foreground
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//! GrabCut algorithm flags
|
|
|
|
|
enum { GC_INIT_WITH_RECT = 0, |
|
|
|
|
GC_INIT_WITH_MASK = 1, |
|
|
|
|
GC_EVAL = 2 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//! segments the image using GrabCut algorithm
|
|
|
|
|
CV_EXPORTS void grabCut( const Mat& img, Mat& mask, Rect rect,
|
|
|
|
|
Mat& bgdModel, Mat& fgdModel, |
|
|
|
|
int iterCount, int mode = GC_EVAL ); |
|
|
|
|
|
|
|
|
|
enum { INPAINT_NS=0, INPAINT_TELEA=1 }; |
|
|
|
|
//! the inpainting algorithm
|
|
|
|
|
enum
|
|
|
|
|
{ |
|
|
|
|
INPAINT_NS=0, // Navier-Stokes algorithm
|
|
|
|
|
INPAINT_TELEA=1 // A. Telea algorithm
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//! restores the damaged image areas using one of the available intpainting algorithms
|
|
|
|
|
CV_EXPORTS void inpaint( const Mat& src, const Mat& inpaintMask, |
|
|
|
|
Mat& dst, double inpaintRange, int flags ); |
|
|
|
|
|
|
|
|
|
//! builds the discrete Voronoi diagram
|
|
|
|
|
CV_EXPORTS void distanceTransform( const Mat& src, Mat& dst, Mat& labels, |
|
|
|
|
int distanceType, int maskSize ); |
|
|
|
|
|
|
|
|
|
//! computes the distance transform map
|
|
|
|
|
CV_EXPORTS void distanceTransform( const Mat& src, Mat& dst, |
|
|
|
|
int distanceType, int maskSize ); |
|
|
|
|
|
|
|
|
|
enum { FLOODFILL_FIXED_RANGE = 1 << 16, |
|
|
|
|
FLOODFILL_MASK_ONLY = 1 << 17 }; |
|
|
|
|
|
|
|
|
|
//! fills the semi-uniform image region starting from the specified seed point
|
|
|
|
|
CV_EXPORTS int floodFill( Mat& image, |
|
|
|
|
Point seedPoint, Scalar newVal, Rect* rect=0, |
|
|
|
|
Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), |
|
|
|
|
int flags=4 ); |
|
|
|
|
|
|
|
|
|
//! fills the semi-uniform image region and/or the mask starting from the specified seed point
|
|
|
|
|
CV_EXPORTS int floodFill( Mat& image, Mat& mask, |
|
|
|
|
Point seedPoint, Scalar newVal, Rect* rect=0, |
|
|
|
|
Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), |
|
|
|
|
int flags=4 ); |
|
|
|
|
|
|
|
|
|
//! converts image from one color space to another
|
|
|
|
|
CV_EXPORTS void cvtColor( const Mat& src, Mat& dst, int code, int dstCn=0 ); |
|
|
|
|
|
|
|
|
|
//! raster image moments
|
|
|
|
|
class CV_EXPORTS Moments |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
//! the default constructor
|
|
|
|
|
Moments(); |
|
|
|
|
//! the full constructor
|
|
|
|
|
Moments(double m00, double m10, double m01, double m20, double m11, |
|
|
|
|
double m02, double m30, double m21, double m12, double m03 ); |
|
|
|
|
//! the conversion from CvMoments
|
|
|
|
|
Moments( const CvMoments& moments ); |
|
|
|
|
//! the conversion to CvMoments
|
|
|
|
|
operator CvMoments() const; |
|
|
|
|
|
|
|
|
|
double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; // spatial moments
|
|
|
|
|
double mu20, mu11, mu02, mu30, mu21, mu12, mu03; // central moments
|
|
|
|
|
double nu20, nu11, nu02, nu30, nu21, nu12, nu03; // central normalized moments
|
|
|
|
|
//! spatial moments
|
|
|
|
|
double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; |
|
|
|
|
//! central moments
|
|
|
|
|
double mu20, mu11, mu02, mu30, mu21, mu12, mu03; |
|
|
|
|
//! central normalized moments
|
|
|
|
|
double nu20, nu11, nu02, nu30, nu21, nu12, nu03; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//! computes moments of the rasterized shape or a vector of points
|
|
|
|
|
CV_EXPORTS Moments moments( const Mat& array, bool binaryImage=false ); |
|
|
|
|
|
|
|
|
|
//! computes 7 Hu invariants from the moments
|
|
|
|
|
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); |
|
|
|
|
|
|
|
|
|
//! type of the template matching operation
|
|
|
|
|
enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 }; |
|
|
|
|
|
|
|
|
|
//! computes the proximity map for the raster template and the image where the template is searched for
|
|
|
|
|
CV_EXPORTS void matchTemplate( const Mat& image, const Mat& templ, Mat& result, int method ); |
|
|
|
|
|
|
|
|
|
enum { RETR_EXTERNAL=0, RETR_LIST=1, RETR_CCOMP=2, RETR_TREE=3 }; |
|
|
|
|
//! mode of the contour retrieval algorithm
|
|
|
|
|
enum
|
|
|
|
|
{ |
|
|
|
|
RETR_EXTERNAL=0, //!< retrieve only the most external (top-level) contours
|
|
|
|
|
RETR_LIST=1, //!< retrieve all the contours without any hierarchical information
|
|
|
|
|
RETR_CCOMP=2, //!< retrieve the connected components (that can possibly be nested)
|
|
|
|
|
RETR_TREE=3 //!< retrieve all the contours and the whole hierarchy
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
enum { CHAIN_APPROX_NONE=0, CHAIN_APPROX_SIMPLE=1, |
|
|
|
|
CHAIN_APPROX_TC89_L1=2, CHAIN_APPROX_TC89_KCOS=3 }; |
|
|
|
|
//! the contour approximation algorithm
|
|
|
|
|
enum
|
|
|
|
|
{ |
|
|
|
|
CHAIN_APPROX_NONE=0, |
|
|
|
|
CHAIN_APPROX_SIMPLE=1, |
|
|
|
|
CHAIN_APPROX_TC89_L1=2, |
|
|
|
|
CHAIN_APPROX_TC89_KCOS=3 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//! retrieves contours and the hierarchical information from black-n-white image.
|
|
|
|
|
CV_EXPORTS void findContours( Mat& image, vector<vector<Point> >& contours, |
|
|
|
|
vector<Vec4i>& hierarchy, int mode, |
|
|
|
|
int method, Point offset=Point()); |
|
|
|
|
|
|
|
|
|
//! retrieves contours from black-n-white image.
|
|
|
|
|
CV_EXPORTS void findContours( Mat& image, vector<vector<Point> >& contours, |
|
|
|
|
int mode, int method, Point offset=Point()); |
|
|
|
|
|
|
|
|
|
//! draws contours in the image
|
|
|
|
|
CV_EXPORTS void drawContours( Mat& image, const vector<vector<Point> >& contours, |
|
|
|
|
int contourIdx, const Scalar& color, |
|
|
|
|
int thickness=1, int lineType=8, |
|
|
|
|
const vector<Vec4i>& hierarchy=vector<Vec4i>(), |
|
|
|
|
int maxLevel=INT_MAX, Point offset=Point() ); |
|
|
|
|
|
|
|
|
|
//! approximates contour or a curve using Douglas-Peucker algorithm
|
|
|
|
|
CV_EXPORTS void approxPolyDP( const Mat& curve, |
|
|
|
|
vector<Point>& approxCurve, |
|
|
|
|
double epsilon, bool closed ); |
|
|
|
|
//! approximates contour or a curve using Douglas-Peucker algorithm
|
|
|
|
|
CV_EXPORTS void approxPolyDP( const Mat& curve, |
|
|
|
|
vector<Point2f>& approxCurve, |
|
|
|
|
double epsilon, bool closed ); |
|
|
|
|
|
|
|
|
|
//! computes the contour perimeter (closed=true) or a curve length
|
|
|
|
|
CV_EXPORTS double arcLength( const Mat& curve, bool closed ); |
|
|
|
|
//! computes the bounding rectangle for a contour
|
|
|
|
|
CV_EXPORTS Rect boundingRect( const Mat& points ); |
|
|
|
|
CV_EXPORTS double contourArea( const Mat& contour, bool oriented=false );
|
|
|
|
|
//! computes the contour area
|
|
|
|
|
CV_EXPORTS double contourArea( const Mat& contour, bool oriented=false ); |
|
|
|
|
//! computes the minimal rotated rectangle for a set of points
|
|
|
|
|
CV_EXPORTS RotatedRect minAreaRect( const Mat& points ); |
|
|
|
|
//! computes the minimal enclosing circle for a set of points
|
|
|
|
|
CV_EXPORTS void minEnclosingCircle( const Mat& points, |
|
|
|
|
Point2f& center, float& radius );
|
|
|
|
|
//! matches two contours using one of the available algorithms
|
|
|
|
|
CV_EXPORTS double matchShapes( const Mat& contour1, |
|
|
|
|
const Mat& contour2, |
|
|
|
|
int method, double parameter ); |
|
|
|
|
|
|
|
|
|
//! computes convex hull for a set of 2D points.
|
|
|
|
|
CV_EXPORTS void convexHull( const Mat& points, vector<int>& hull, bool clockwise=false ); |
|
|
|
|
//! computes convex hull for a set of 2D points.
|
|
|
|
|
CV_EXPORTS void convexHull( const Mat& points, vector<Point>& hull, bool clockwise=false ); |
|
|
|
|
//! computes convex hull for a set of 2D points.
|
|
|
|
|
CV_EXPORTS void convexHull( const Mat& points, vector<Point2f>& hull, bool clockwise=false ); |
|
|
|
|
|
|
|
|
|
//! returns true iff the contour is convex. Does not support contours with self-intersection
|
|
|
|
|
CV_EXPORTS bool isContourConvex( const Mat& contour ); |
|
|
|
|
|
|
|
|
|
//! fits ellipse to the set of 2D points
|
|
|
|
|
CV_EXPORTS RotatedRect fitEllipse( const Mat& points ); |
|
|
|
|
|
|
|
|
|
//! fits line to the set of 2D points using M-estimator algorithm
|
|
|
|
|
CV_EXPORTS void fitLine( const Mat& points, Vec4f& line, int distType, |
|
|
|
|
double param, double reps, double aeps ); |
|
|
|
|
//! fits line to the set of 3D points using M-estimator algorithm
|
|
|
|
|
CV_EXPORTS void fitLine( const Mat& points, Vec6f& line, int distType, |
|
|
|
|
double param, double reps, double aeps ); |
|
|
|
|
|
|
|
|
|
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
|
|
|
|
|
CV_EXPORTS double pointPolygonTest( const Mat& contour, |
|
|
|
|
Point2f pt, bool measureDist ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//! estimates the best-fit affine transformation that maps one 2D point set to another or one image to another.
|
|
|
|
|
CV_EXPORTS Mat estimateRigidTransform( const Mat& A, const Mat& B, |
|
|
|
|
bool fullAffine ); |
|
|
|
|
|
|
|
|
|
//! computes the best-fit affine transformation that maps one 3D point set to another (RANSAC algorithm is used)
|
|
|
|
|
CV_EXPORTS int estimateAffine3D(const Mat& from, const Mat& to, Mat& out, |
|
|
|
|
vector<uchar>& outliers, |
|
|
|
|
double param1 = 3.0, double param2 = 0.99); |
|
|
|
|