diff --git a/modules/imgproc/include/opencv2/imgproc.hpp b/modules/imgproc/include/opencv2/imgproc.hpp
index 6d61088724..dd849ef4c2 100644
--- a/modules/imgproc/include/opencv2/imgproc.hpp
+++ b/modules/imgproc/include/opencv2/imgproc.hpp
@@ -191,6 +191,12 @@ enum { HOUGH_STANDARD      = 0,
        HOUGH_GRADIENT      = 3
      };
 
+//! Variants of Line Segment Detector
+enum { LSD_REFINE_NONE = 0,
+       LSD_REFINE_STD  = 1,
+       LSD_REFINE_ADV  = 2
+     };
+
 //! Histogram comparison methods
 enum { HISTCMP_CORREL        = 0,
        HISTCMP_CHISQR        = 1,
@@ -829,7 +835,62 @@ protected:
     Point2f bottomRight;
 };
 
+class LineSegmentDetector : public Algorithm
+{
+public:
+/**
+ * Detect lines in the input image with the specified ROI.
+ *
+ * @param _image    A grayscale(CV_8UC1) input image.
+ *                  If only a roi needs to be selected, use
+ *                  lsd_ptr->detect(image(roi), ..., lines);
+ *                  lines += Scalar(roi.x, roi.y, roi.x, roi.y);
+ * @param _lines    Return: A vector of Vec4i elements specifying the beginning and ending point of a line.
+ *                          Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
+ *                          Returned lines are strictly oriented depending on the gradient.
+ * @param _roi      Return: ROI of the image, where lines are to be found. If specified, the returning
+ *                          lines coordinates are image wise.
+ * @param width     Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
+ * @param prec      Return: Vector of precisions with which the lines are found.
+ * @param nfa       Return: Vector containing number of false alarms in the line region, with precision of 10%.
+ *                          The bigger the value, logarithmically better the detection.
+ *                              * -1 corresponds to 10 mean false alarms
+ *                              * 0 corresponds to 1 mean false alarm
+ *                              * 1 corresponds to 0.1 mean false alarms
+ *                          This vector will be calculated _only_ when the objects type is REFINE_ADV
+ */
+    virtual void detect(const InputArray _image, OutputArray _lines,
+                        OutputArray width = noArray(), OutputArray prec = noArray(),
+                        OutputArray nfa = noArray()) = 0;
+
+/**
+ * Draw lines on the given canvas.
+ *
+ * @param image     The image, where lines will be drawn.
+ *                  Should have the size of the image, where the lines were found
+ * @param lines     The lines that need to be drawn
+ */
+    virtual void drawSegments(InputOutputArray image, const InputArray lines) = 0;
+
+/**
+ * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
+ *
+ * @param image     The image, where lines will be drawn.
+ *                  Should have the size of the image, where the lines were found
+ * @param lines1    The first lines that need to be drawn. Color - Blue.
+ * @param lines2    The second lines that need to be drawn. Color - Red.
+ * @return          The number of mismatching pixels between lines1 and lines2.
+ */
+    virtual int compareSegments(const Size& size, const InputArray lines1, const InputArray lines2, Mat* image = 0) = 0;
+
+    virtual ~LineSegmentDetector() {};
+};
 
+//! Returns a pointer to a LineSegmentDetector class.
+CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetectorPtr(
+    int _refine = LSD_REFINE_STD, double _scale = 0.8,
+    double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
+    double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
 
 //! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
 CV_EXPORTS int getKernelType(InputArray kernel, Point anchor);
diff --git a/modules/imgproc/src/lsd.cpp b/modules/imgproc/src/lsd.cpp
new file mode 100644
index 0000000000..b4f228a382
--- /dev/null
+++ b/modules/imgproc/src/lsd.cpp
@@ -0,0 +1,1249 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistributions of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistributions in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#include "precomp.hpp"
+#include <vector>
+
+/////////////////////////////////////////////////////////////////////////////////////////
+// Default LSD parameters
+// SIGMA_SCALE 0.6    - Sigma for Gaussian filter is computed as sigma = sigma_scale/scale.
+// QUANT       2.0    - Bound to the quantization error on the gradient norm.
+// ANG_TH      22.5   - Gradient angle tolerance in degrees.
+// LOG_EPS     0.0    - Detection threshold: -log10(NFA) > log_eps
+// DENSITY_TH  0.7    - Minimal density of region points in rectangle.
+// N_BINS      1024   - Number of bins in pseudo-ordering of gradient modulus.
+
+#define M_3_2_PI    (3 * CV_PI) / 2   // 3/2 pi
+#define M_2__PI     (2 * CV_PI)         // 2 pi
+
+#ifndef M_LN10
+#define M_LN10      2.30258509299404568402
+#endif
+
+#define NOTDEF      double(-1024.0) // Label for pixels with undefined gradient.
+
+#define NOTUSED     0   // Label for pixels not used in yet.
+#define USED        1   // Label for pixels already used in detection.
+
+#define RELATIVE_ERROR_FACTOR 100.0
+
+const double DEG_TO_RADS = CV_PI / 180;
+
+#define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))
+
+struct edge
+{
+    cv::Point p;
+    bool taken;
+};
+
+/////////////////////////////////////////////////////////////////////////////////////////
+
+inline double distSq(const double x1, const double y1,
+                     const double x2, const double y2)
+{
+    return (x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1);
+}
+
+inline double dist(const double x1, const double y1,
+                   const double x2, const double y2)
+{
+    return sqrt(distSq(x1, y1, x2, y2));
+}
+
+// Signed angle difference
+inline double angle_diff_signed(const double& a, const double& b)
+{
+    double diff = a - b;
+    while(diff <= -CV_PI) diff += M_2__PI;
+    while(diff >   CV_PI) diff -= M_2__PI;
+    return diff;
+}
+
+// Absolute value angle difference
+inline double angle_diff(const double& a, const double& b)
+{
+    return std::fabs(angle_diff_signed(a, b));
+}
+
+// Compare doubles by relative error.
+inline bool double_equal(const double& a, const double& b)
+{
+    // trivial case
+    if(a == b) return true;
+
+    double abs_diff = fabs(a - b);
+    double aa = fabs(a);
+    double bb = fabs(b);
+    double abs_max = (aa > bb)? aa : bb;
+
+    if(abs_max < DBL_MIN) abs_max = DBL_MIN;
+
+    return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
+}
+
+inline bool AsmallerB_XoverY(const edge& a, const edge& b)
+{
+    if (a.p.x == b.p.x) return a.p.y < b.p.y;
+    else return a.p.x < b.p.x;
+}
+
+/**
+ *   Computes the natural logarithm of the absolute value of
+ *   the gamma function of x using Windschitl method.
+ *   See http://www.rskey.org/gamma.htm
+ */
+inline double log_gamma_windschitl(const double& x)
+{
+    return 0.918938533204673 + (x-0.5)*log(x) - x
+         + 0.5*x*log(x*sinh(1/x) + 1/(810.0*pow(x, 6.0)));
+}
+
+/**
+ *   Computes the natural logarithm of the absolute value of
+ *   the gamma function of x using the Lanczos approximation.
+ *   See http://www.rskey.org/gamma.htm
+ */
+inline double log_gamma_lanczos(const double& x)
+{
+    static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
+                         8687.24529705, 1168.92649479, 83.8676043424,
+                         2.50662827511 };
+    double a = (x + 0.5) * log(x + 5.5) - (x + 5.5);
+    double b = 0;
+    for(int n = 0; n < 7; ++n)
+    {
+        a -= log(x + double(n));
+        b += q[n] * pow(x, double(n));
+    }
+    return a + log(b);
+}
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+namespace cv{
+
+class LineSegmentDetectorImpl : public LineSegmentDetector
+{
+public:
+
+/**
+ * Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
+ *
+ * @param _refine       How should the lines found be refined?
+ *                      LSD_REFINE_NONE - No refinement applied.
+ *                      LSD_REFINE_STD  - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
+ *                      LSD_REFINE_ADV  - Advanced refinement. Number of false alarms is calculated,
+ *                                    lines are refined through increase of precision, decrement in size, etc.
+ * @param _scale        The scale of the image that will be used to find the lines. Range (0..1].
+ * @param _sigma_scale  Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
+ * @param _quant        Bound to the quantization error on the gradient norm.
+ * @param _ang_th       Gradient angle tolerance in degrees.
+ * @param _log_eps      Detection threshold: -log10(NFA) > _log_eps
+ * @param _density_th   Minimal density of aligned region points in rectangle.
+ * @param _n_bins       Number of bins in pseudo-ordering of gradient modulus.
+ */
+    LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
+        double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
+        double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
+
+/**
+ * Detect lines in the input image with the specified ROI.
+ *
+ * @param _image    A grayscale(CV_8UC1) input image.
+ *                  If only a roi needs to be selected, use
+ *                  lsd_ptr->detect(image(roi), ..., lines);
+ *                  lines += Scalar(roi.x, roi.y, roi.x, roi.y);
+ * @param _lines    Return: A vector of Vec4i elements specifying the beginning and ending point of a line.
+ *                          Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
+ *                          Returned lines are strictly oriented depending on the gradient.
+ * @param _roi      Return: ROI of the image, where lines are to be found. If specified, the returning
+ *                          lines coordinates are image wise.
+ * @param width     Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
+ * @param prec      Return: Vector of precisions with which the lines are found.
+ * @param nfa       Return: Vector containing number of false alarms in the line region, with precision of 10%.
+ *                          The bigger the value, logarithmically better the detection.
+ *                              * -1 corresponds to 10 mean false alarms
+ *                              * 0 corresponds to 1 mean false alarm
+ *                              * 1 corresponds to 0.1 mean false alarms
+ *                          This vector will be calculated _only_ when the objects type is REFINE_ADV
+ */
+    void detect(const InputArray _image, OutputArray _lines,
+                OutputArray width = noArray(), OutputArray prec = noArray(),
+                OutputArray nfa = noArray());
+
+/**
+ * Draw lines on the given canvas.
+ *
+ * @param image     The image, where lines will be drawn.
+ *                  Should have the size of the image, where the lines were found
+ * @param lines     The lines that need to be drawn
+ */
+    void drawSegments(InputOutputArray image, const InputArray lines);
+
+/**
+ * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
+ *
+ * @param image     The image, where lines will be drawn.
+ *                  Should have the size of the image, where the lines were found
+ * @param lines1    The first lines that need to be drawn. Color - Blue.
+ * @param lines2    The second lines that need to be drawn. Color - Red.
+ * @return          The number of mismatching pixels between lines1 and lines2.
+ */
+    int compareSegments(const Size& size, const InputArray lines1, const InputArray lines2, Mat* image = 0);
+
+private:
+    Mat image;
+    Mat_<double> scaled_image;
+    double *scaled_image_data;
+    Mat_<double> angles;     // in rads
+    double *angles_data;
+    Mat_<double> modgrad;
+    double *modgrad_data;
+    Mat_<uchar> used;
+
+    int img_width;
+    int img_height;
+    double LOG_NT;
+
+    bool w_needed;
+    bool p_needed;
+    bool n_needed;
+
+    const double SCALE;
+    const int doRefine;
+    const double SIGMA_SCALE;
+    const double QUANT;
+    const double ANG_TH;
+    const double LOG_EPS;
+    const double DENSITY_TH;
+    const int N_BINS;
+
+    struct RegionPoint {
+        int x;
+        int y;
+        uchar* used;
+        double angle;
+        double modgrad;
+    };
+
+
+    struct coorlist
+    {
+        Point2i p;
+        struct coorlist* next;
+    };
+
+    struct rect
+    {
+        double x1, y1, x2, y2;    // first and second point of the line segment
+        double width;             // rectangle width
+        double x, y;              // center of the rectangle
+        double theta;             // angle
+        double dx,dy;             // (dx,dy) is vector oriented as the line segment
+        double prec;              // tolerance angle
+        double p;                 // probability of a point with angle within 'prec'
+    };
+
+    LineSegmentDetectorImpl& operator= (const LineSegmentDetectorImpl&); // to quiet MSVC
+
+/**
+ * Detect lines in the whole input image.
+ *
+ * @param lines         Return: A vector of Vec4i elements specifying the beginning and ending point of a line.
+ *                              Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
+ *                              Returned lines are strictly oriented depending on the gradient.
+ * @param widths        Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
+ * @param precisions    Return: Vector of precisions with which the lines are found.
+ * @param nfas          Return: Vector containing number of false alarms in the line region, with precision of 10%.
+ *                              The bigger the value, logarithmically better the detection.
+ *                                  * -1 corresponds to 10 mean false alarms
+ *                                  * 0 corresponds to 1 mean false alarm
+ *                                  * 1 corresponds to 0.1 mean false alarms
+ */
+    void flsd(std::vector<Vec4i>& lines,
+              std::vector<double>& widths, std::vector<double>& precisions,
+              std::vector<double>& nfas);
+
+/**
+ * Finds the angles and the gradients of the image. Generates a list of pseudo ordered points.
+ *
+ * @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF
+ * @param n_bins    The number of bins with which gradients are ordered by, using bucket sort.
+ * @param list      Return: Vector of coordinate points that are pseudo ordered by magnitude.
+ *                  Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins.
+ */
+    void ll_angle(const double& threshold, const unsigned int& n_bins, std::vector<coorlist>& list);
+
+/**
+ * Grow a region starting from point s with a defined precision,
+ * returning the containing points size and the angle of the gradients.
+ *
+ * @param s         Starting point for the region.
+ * @param reg       Return: Vector of points, that are part of the region
+ * @param reg_size  Return: The size of the region.
+ * @param reg_angle Return: The mean angle of the region.
+ * @param prec      The precision by which each region angle should be aligned to the mean.
+ */
+    void region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
+                     int& reg_size, double& reg_angle, const double& prec);
+
+/**
+ * Finds the bounding rotated rectangle of a region.
+ *
+ * @param reg       The region of points, from which the rectangle to be constructed from.
+ * @param reg_size  The number of points in the region.
+ * @param reg_angle The mean angle of the region.
+ * @param prec      The precision by which points were found.
+ * @param p         Probability of a point with angle within 'prec'.
+ * @param rec       Return: The generated rectangle.
+ */
+    void region2rect(const std::vector<RegionPoint>& reg, const int reg_size, const double reg_angle,
+                    const double prec, const double p, rect& rec) const;
+
+/**
+ * Compute region's angle as the principal inertia axis of the region.
+ * @return          Regions angle.
+ */
+    double get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
+                     const double& y, const double& reg_angle, const double& prec) const;
+
+/**
+ * An estimation of the angle tolerance is performed by the standard deviation of the angle at points
+ * near the region's starting point. Then, a new region is grown starting from the same point, but using the
+ * estimated angle tolerance. If this fails to produce a rectangle with the right density of region points,
+ * 'reduce_region_radius' is called to try to satisfy this condition.
+ */
+    bool refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
+                const double prec, double p, rect& rec, const double& density_th);
+
+/**
+ * Reduce the region size, by elimination the points far from the starting point, until that leads to
+ * rectangle with the right density of region points or to discard the region if too small.
+ */
+    bool reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
+                const double prec, double p, rect& rec, double density, const double& density_th);
+
+/**
+ * Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps).
+ * @return      The new NFA value.
+ */
+    double rect_improve(rect& rec) const;
+
+/**
+ * Calculates the number of correctly aligned points within the rectangle.
+ * @return      The new NFA value.
+ */
+    double rect_nfa(const rect& rec) const;
+
+/**
+ * Computes the NFA values based on the total number of points, points that agree.
+ * n, k, p are the binomial parameters.
+ * @return      The new NFA value.
+ */
+    double nfa(const int& n, const int& k, const double& p) const;
+
+/**
+ * Is the point at place 'address' aligned to angle theta, up to precision 'prec'?
+ * @return      Whether the point is aligned.
+ */
+    bool isAligned(const int& address, const double& theta, const double& prec) const;
+};
+
+/////////////////////////////////////////////////////////////////////////////////////////
+
+CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetectorPtr(
+        int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
+        double _log_eps, double _density_th, int _n_bins)
+{
+    return Ptr<LineSegmentDetector>(new LineSegmentDetectorImpl(
+            _refine, _scale, _sigma_scale, _quant, _ang_th,
+            _log_eps, _density_th, _n_bins));
+}
+
+/////////////////////////////////////////////////////////////////////////////////////////
+
+LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
+        double _ang_th, double _log_eps, double _density_th, int _n_bins)
+        :SCALE(_scale), doRefine(_refine), SIGMA_SCALE(_sigma_scale), QUANT(_quant),
+        ANG_TH(_ang_th), LOG_EPS(_log_eps), DENSITY_TH(_density_th), N_BINS(_n_bins)
+{
+    CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 &&
+              _ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 &&
+              _n_bins > 0);
+}
+
+void LineSegmentDetectorImpl::detect(const InputArray _image, OutputArray _lines,
+                OutputArray _width, OutputArray _prec, OutputArray _nfa)
+{
+    Mat_<double> img = _image.getMat();
+    CV_Assert(!img.empty() && img.channels() == 1);
+
+    // Convert image to double
+    img.convertTo(image, CV_64FC1);
+
+    std::vector<Vec4i> lines;
+    std::vector<double> w, p, n;
+    w_needed = _width.needed();
+    p_needed = _prec.needed();
+    n_needed = _nfa.needed();
+
+    CV_Assert((!_nfa.needed()) ||                              // NFA InputArray will be filled _only_ when
+              (_nfa.needed() && doRefine >= LSD_REFINE_ADV));  // REFINE_ADV type LineSegmentDetectorImpl object is created.
+
+    flsd(lines, w, p, n);
+
+    Mat(lines).copyTo(_lines);
+    if(w_needed) Mat(w).copyTo(_width);
+    if(p_needed) Mat(p).copyTo(_prec);
+    if(n_needed) Mat(n).copyTo(_nfa);
+}
+
+void LineSegmentDetectorImpl::flsd(std::vector<Vec4i>& lines,
+    std::vector<double>& widths, std::vector<double>& precisions,
+    std::vector<double>& nfas)
+{
+    // Angle tolerance
+    const double prec = CV_PI * ANG_TH / 180;
+    const double p = ANG_TH / 180;
+    const double rho = QUANT / sin(prec);    // gradient magnitude threshold
+
+    std::vector<coorlist> list;
+    if(SCALE != 1)
+    {
+        Mat gaussian_img;
+        const double sigma = (SCALE < 1)?(SIGMA_SCALE / SCALE):(SIGMA_SCALE);
+        const double sprec = 3;
+        const unsigned int h =  (unsigned int)(ceil(sigma * sqrt(2 * sprec * log(10.0))));
+        Size ksize(1 + 2 * h, 1 + 2 * h); // kernel size
+        GaussianBlur(image, gaussian_img, ksize, sigma);
+        // Scale image to needed size
+        resize(gaussian_img, scaled_image, Size(), SCALE, SCALE);
+        ll_angle(rho, N_BINS, list);
+    }
+    else
+    {
+        scaled_image = image;
+        ll_angle(rho, N_BINS, list);
+    }
+
+    LOG_NT = 5 * (log10(double(img_width)) + log10(double(img_height))) / 2 + log10(11.0);
+    const int min_reg_size = int(-LOG_NT/log10(p)); // minimal number of points in region that can give a meaningful event
+
+    // // Initialize region only when needed
+    // Mat region = Mat::zeros(scaled_image.size(), CV_8UC1);
+    used = Mat_<uchar>::zeros(scaled_image.size()); // zeros = NOTUSED
+    std::vector<RegionPoint> reg(img_width * img_height);
+
+    // Search for line segments
+    unsigned int ls_count = 0;
+    unsigned int list_size = list.size();
+    for(unsigned int i = 0; i < list_size; ++i)
+    {
+        unsigned int adx = list[i].p.x + list[i].p.y * img_width;
+        if((used.data[adx] == NOTUSED) && (angles_data[adx] != NOTDEF))
+        {
+            int reg_size;
+            double reg_angle;
+            region_grow(list[i].p, reg, reg_size, reg_angle, prec);
+
+            // Ignore small regions
+            if(reg_size < min_reg_size) { continue; }
+
+            // Construct rectangular approximation for the region
+            rect rec;
+            region2rect(reg, reg_size, reg_angle, prec, p, rec);
+
+            double log_nfa = -1;
+            if(doRefine > LSD_REFINE_NONE)
+            {
+                // At least REFINE_STANDARD lvl.
+                if(!refine(reg, reg_size, reg_angle, prec, p, rec, DENSITY_TH)) { continue; }
+
+                if(doRefine >= LSD_REFINE_ADV)
+                {
+                    // Compute NFA
+                    log_nfa = rect_improve(rec);
+                    if(log_nfa <= LOG_EPS) { continue; }
+                }
+            }
+            // Found new line
+            ++ls_count;
+
+            // Add the offset
+            rec.x1 += 0.5; rec.y1 += 0.5;
+            rec.x2 += 0.5; rec.y2 += 0.5;
+
+            // scale the result values if a sub-sampling was performed
+            if(SCALE != 1)
+            {
+                rec.x1 /= SCALE; rec.y1 /= SCALE;
+                rec.x2 /= SCALE; rec.y2 /= SCALE;
+                rec.width /= SCALE;
+            }
+
+            //Store the relevant data
+            lines.push_back(Vec4i(int(rec.x1), int(rec.y1), int(rec.x2), int(rec.y2)));
+            if(w_needed) widths.push_back(rec.width);
+            if(p_needed) precisions.push_back(rec.p);
+            if(n_needed && doRefine >= LSD_REFINE_ADV) nfas.push_back(log_nfa);
+
+
+            // //Add the linesID to the region on the image
+            // for(unsigned int el = 0; el < reg_size; el++)
+            // {
+            //     region.data[reg[i].x + reg[i].y * width] = ls_count;
+            // }
+        }
+    }
+}
+
+void LineSegmentDetectorImpl::ll_angle(const double& threshold,
+                                   const unsigned int& n_bins,
+                                   std::vector<coorlist>& list)
+{
+    //Initialize data
+    angles = Mat_<double>(scaled_image.size());
+    modgrad = Mat_<double>(scaled_image.size());
+
+    angles_data = angles.ptr<double>(0);
+    modgrad_data = modgrad.ptr<double>(0);
+    scaled_image_data = scaled_image.ptr<double>(0);
+
+    img_width = scaled_image.cols;
+    img_height = scaled_image.rows;
+
+    // Undefined the down and right boundaries
+    angles.row(img_height - 1).setTo(NOTDEF);
+    angles.col(img_width - 1).setTo(NOTDEF);
+
+    // Computing gradient for remaining pixels
+    CV_Assert(scaled_image.isContinuous() &&
+              modgrad.isContinuous() &&
+              angles.isContinuous());   // Accessing image data linearly
+
+    double max_grad = -1;
+    for(int y = 0; y < img_height - 1; ++y)
+    {
+        for(int addr = y * img_width, addr_end = addr + img_width - 1; addr < addr_end; ++addr)
+        {
+            double DA = scaled_image_data[addr + img_width + 1] - scaled_image_data[addr];
+            double BC = scaled_image_data[addr + 1] - scaled_image_data[addr + img_width];
+            double gx = DA + BC;    // gradient x component
+            double gy = DA - BC;    // gradient y component
+            double norm = std::sqrt((gx * gx + gy * gy) / 4); // gradient norm
+
+            modgrad_data[addr] = norm;    // store gradient
+
+            if (norm <= threshold)  // norm too small, gradient no defined
+            {
+                angles_data[addr] = NOTDEF;
+            }
+            else
+            {
+                angles_data[addr] = fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS;  // gradient angle computation
+                if (norm > max_grad) { max_grad = norm; }
+            }
+
+        }
+    }
+
+    // Compute histogram of gradient values
+    list = std::vector<coorlist>(img_width * img_height);
+    std::vector<coorlist*> range_s(n_bins);
+    std::vector<coorlist*> range_e(n_bins);
+    unsigned int count = 0;
+    double bin_coef = (max_grad > 0) ? double(n_bins - 1) / max_grad : 0; // If all image is smooth, max_grad <= 0
+
+    for(int y = 0; y < img_height - 1; ++y)
+    {
+        const double* norm = modgrad_data + y * img_width;
+        for(int x = 0; x < img_width - 1; ++x, ++norm)
+        {
+            // Store the point in the right bin according to its norm
+            int i = int((*norm) * bin_coef);
+            if(!range_e[i])
+            {
+                range_e[i] = range_s[i] = &list[count];
+                ++count;
+            }
+            else
+            {
+                range_e[i]->next = &list[count];
+                range_e[i] = &list[count];
+                ++count;
+            }
+            range_e[i]->p = Point(x, y);
+            range_e[i]->next = 0;
+        }
+    }
+
+    // Sort
+    int idx = n_bins - 1;
+    for(;idx > 0 && !range_s[idx]; --idx);
+    coorlist* start = range_s[idx];
+    coorlist* end = range_e[idx];
+    if(start)
+    {
+        while(idx > 0)
+        {
+            --idx;
+            if(range_s[idx])
+            {
+                end->next = range_s[idx];
+                end = range_e[idx];
+            }
+        }
+    }
+}
+
+void LineSegmentDetectorImpl::region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
+                                      int& reg_size, double& reg_angle, const double& prec)
+{
+    // Point to this region
+    reg_size = 1;
+    reg[0].x = s.x;
+    reg[0].y = s.y;
+    int addr = s.x + s.y * img_width;
+    reg[0].used = used.data + addr;
+    reg_angle = angles_data[addr];
+    reg[0].angle = reg_angle;
+    reg[0].modgrad = modgrad_data[addr];
+
+    float sumdx = float(std::cos(reg_angle));
+    float sumdy = float(std::sin(reg_angle));
+    *reg[0].used = USED;
+
+    //Try neighboring regions
+    for(int i = 0; i < reg_size; ++i)
+    {
+        const RegionPoint& rpoint = reg[i];
+        int xx_min = std::max(rpoint.x - 1, 0), xx_max = std::min(rpoint.x + 1, img_width - 1);
+        int yy_min = std::max(rpoint.y - 1, 0), yy_max = std::min(rpoint.y + 1, img_height - 1);
+        for(int yy = yy_min; yy <= yy_max; ++yy)
+        {
+            int c_addr = xx_min + yy * img_width;
+            for(int xx = xx_min; xx <= xx_max; ++xx, ++c_addr)
+            {
+                if((used.data[c_addr] != USED) &&
+                   (isAligned(c_addr, reg_angle, prec)))
+                {
+                    // Add point
+                    used.data[c_addr] = USED;
+                    RegionPoint& region_point = reg[reg_size];
+                    region_point.x = xx;
+                    region_point.y = yy;
+                    region_point.used = &(used.data[c_addr]);
+                    region_point.modgrad = modgrad_data[c_addr];
+                    const double& angle = angles_data[c_addr];
+                    region_point.angle = angle;
+                    ++reg_size;
+
+                    // Update region's angle
+                    sumdx += cos(float(angle));
+                    sumdy += sin(float(angle));
+                    // reg_angle is used in the isAligned, so it needs to be updates?
+                    reg_angle = fastAtan2(sumdy, sumdx) * DEG_TO_RADS;
+                }
+            }
+        }
+    }
+}
+
+void LineSegmentDetectorImpl::region2rect(const std::vector<RegionPoint>& reg, const int reg_size,
+                                      const double reg_angle, const double prec, const double p, rect& rec) const
+{
+    double x = 0, y = 0, sum = 0;
+    for(int i = 0; i < reg_size; ++i)
+    {
+        const RegionPoint& pnt = reg[i];
+        const double& weight = pnt.modgrad;
+        x += double(pnt.x) * weight;
+        y += double(pnt.y) * weight;
+        sum += weight;
+    }
+
+    // Weighted sum must differ from 0
+    CV_Assert(sum > 0);
+
+    x /= sum;
+    y /= sum;
+
+    double theta = get_theta(reg, reg_size, x, y, reg_angle, prec);
+
+    // Find length and width
+    double dx = cos(theta);
+    double dy = sin(theta);
+    double l_min = 0, l_max = 0, w_min = 0, w_max = 0;
+
+    for(int i = 0; i < reg_size; ++i)
+    {
+        double regdx = double(reg[i].x) - x;
+        double regdy = double(reg[i].y) - y;
+
+        double l = regdx * dx + regdy * dy;
+        double w = -regdx * dy + regdy * dx;
+
+        if(l > l_max) l_max = l;
+        else if(l < l_min) l_min = l;
+        if(w > w_max) w_max = w;
+        else if(w < w_min) w_min = w;
+    }
+
+    // Store values
+    rec.x1 = x + l_min * dx;
+    rec.y1 = y + l_min * dy;
+    rec.x2 = x + l_max * dx;
+    rec.y2 = y + l_max * dy;
+    rec.width = w_max - w_min;
+    rec.x = x;
+    rec.y = y;
+    rec.theta = theta;
+    rec.dx = dx;
+    rec.dy = dy;
+    rec.prec = prec;
+    rec.p = p;
+
+    // Min width of 1 pixel
+    if(rec.width < 1.0) rec.width = 1.0;
+}
+
+double LineSegmentDetectorImpl::get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
+                                      const double& y, const double& reg_angle, const double& prec) const
+{
+    double Ixx = 0.0;
+    double Iyy = 0.0;
+    double Ixy = 0.0;
+
+    // Compute inertia matrix
+    for(int i = 0; i < reg_size; ++i)
+    {
+        const double& regx = reg[i].x;
+        const double& regy = reg[i].y;
+        const double& weight = reg[i].modgrad;
+        double dx = regx - x;
+        double dy = regy - y;
+        Ixx += dy * dy * weight;
+        Iyy += dx * dx * weight;
+        Ixy -= dx * dy * weight;
+    }
+
+    // Check if inertia matrix is null
+    CV_Assert(!(double_equal(Ixx, 0) && double_equal(Iyy, 0) && double_equal(Ixy, 0)));
+
+    // Compute smallest eigenvalue
+    double lambda = 0.5 * (Ixx + Iyy - sqrt((Ixx - Iyy) * (Ixx - Iyy) + 4.0 * Ixy * Ixy));
+
+    // Compute angle
+    double theta = (fabs(Ixx)>fabs(Iyy))?
+                    double(fastAtan2(float(lambda - Ixx), float(Ixy))):
+                    double(fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
+    theta *= DEG_TO_RADS;
+
+    // Correct angle by 180 deg if necessary
+    if(angle_diff(theta, reg_angle) > prec) { theta += CV_PI; }
+
+    return theta;
+}
+
+bool LineSegmentDetectorImpl::refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
+                                 const double prec, double p, rect& rec, const double& density_th)
+{
+    double density = double(reg_size) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
+
+    if (density >= density_th) { return true; }
+
+    // Try to reduce angle tolerance
+    double xc = double(reg[0].x);
+    double yc = double(reg[0].y);
+    const double& ang_c = reg[0].angle;
+    double sum = 0, s_sum = 0;
+    int n = 0;
+
+    for (int i = 0; i < reg_size; ++i)
+    {
+        *(reg[i].used) = NOTUSED;
+        if (dist(xc, yc, reg[i].x, reg[i].y) < rec.width)
+        {
+            const double& angle = reg[i].angle;
+            double ang_d = angle_diff_signed(angle, ang_c);
+            sum += ang_d;
+            s_sum += ang_d * ang_d;
+            ++n;
+        }
+    }
+    double mean_angle = sum / double(n);
+    // 2 * standard deviation
+    double tau = 2.0 * sqrt((s_sum - 2.0 * mean_angle * sum) / double(n) + mean_angle * mean_angle);
+
+    // Try new region
+    region_grow(Point(reg[0].x, reg[0].y), reg, reg_size, reg_angle, tau);
+
+    if (reg_size < 2) { return false; }
+
+    region2rect(reg, reg_size, reg_angle, prec, p, rec);
+    density = double(reg_size) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
+
+    if (density < density_th)
+    {
+        return reduce_region_radius(reg, reg_size, reg_angle, prec, p, rec, density, density_th);
+    }
+    else
+    {
+        return true;
+    }
+}
+
+bool LineSegmentDetectorImpl::reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
+                const double prec, double p, rect& rec, double density, const double& density_th)
+{
+    // Compute region's radius
+    double xc = double(reg[0].x);
+    double yc = double(reg[0].y);
+    double radSq1 = distSq(xc, yc, rec.x1, rec.y1);
+    double radSq2 = distSq(xc, yc, rec.x2, rec.y2);
+    double radSq = radSq1 > radSq2 ? radSq1 : radSq2;
+
+    while(density < density_th)
+    {
+        radSq *= 0.75*0.75; // Reduce region's radius to 75% of its value
+        // Remove points from the region and update 'used' map
+        for(int i = 0; i < reg_size; ++i)
+        {
+            if(distSq(xc, yc, double(reg[i].x), double(reg[i].y)) > radSq)
+            {
+                // Remove point from the region
+                *(reg[i].used) = NOTUSED;
+                std::swap(reg[i], reg[reg_size - 1]);
+                --reg_size;
+                --i; // To avoid skipping one point
+            }
+        }
+
+        if(reg_size < 2) { return false; }
+
+        // Re-compute rectangle
+        region2rect(reg, reg_size ,reg_angle, prec, p, rec);
+
+        // Re-compute region points density
+        density = double(reg_size) /
+                  (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
+    }
+
+    return true;
+}
+
+double LineSegmentDetectorImpl::rect_improve(rect& rec) const
+{
+    double delta = 0.5;
+    double delta_2 = delta / 2.0;
+
+    double log_nfa = rect_nfa(rec);
+
+    if(log_nfa > LOG_EPS) return log_nfa; // Good rectangle
+
+    // Try to improve
+    // Finer precision
+    rect r = rect(rec); // Copy
+    for(int n = 0; n < 5; ++n)
+    {
+        r.p /= 2;
+        r.prec = r.p * CV_PI;
+        double log_nfa_new = rect_nfa(r);
+        if(log_nfa_new > log_nfa)
+        {
+            log_nfa = log_nfa_new;
+            rec = rect(r);
+        }
+    }
+    if(log_nfa > LOG_EPS) return log_nfa;
+
+    // Try to reduce width
+    r = rect(rec);
+    for(unsigned int n = 0; n < 5; ++n)
+    {
+        if((r.width - delta) >= 0.5)
+        {
+            r.width -= delta;
+            double log_nfa_new = rect_nfa(r);
+            if(log_nfa_new > log_nfa)
+            {
+                rec = rect(r);
+                log_nfa = log_nfa_new;
+            }
+        }
+    }
+    if(log_nfa > LOG_EPS) return log_nfa;
+
+    // Try to reduce one side of rectangle
+    r = rect(rec);
+    for(unsigned int n = 0; n < 5; ++n)
+    {
+        if((r.width - delta) >= 0.5)
+        {
+            r.x1 += -r.dy * delta_2;
+            r.y1 +=  r.dx * delta_2;
+            r.x2 += -r.dy * delta_2;
+            r.y2 +=  r.dx * delta_2;
+            r.width -= delta;
+            double log_nfa_new = rect_nfa(r);
+            if(log_nfa_new > log_nfa)
+            {
+                rec = rect(r);
+                log_nfa = log_nfa_new;
+            }
+        }
+    }
+    if(log_nfa > LOG_EPS) return log_nfa;
+
+    // Try to reduce other side of rectangle
+    r = rect(rec);
+    for(unsigned int n = 0; n < 5; ++n)
+    {
+        if((r.width - delta) >= 0.5)
+        {
+            r.x1 -= -r.dy * delta_2;
+            r.y1 -=  r.dx * delta_2;
+            r.x2 -= -r.dy * delta_2;
+            r.y2 -=  r.dx * delta_2;
+            r.width -= delta;
+            double log_nfa_new = rect_nfa(r);
+            if(log_nfa_new > log_nfa)
+            {
+                rec = rect(r);
+                log_nfa = log_nfa_new;
+            }
+        }
+    }
+    if(log_nfa > LOG_EPS) return log_nfa;
+
+    // Try finer precision
+    r = rect(rec);
+    for(unsigned int n = 0; n < 5; ++n)
+    {
+        if((r.width - delta) >= 0.5)
+        {
+            r.p /= 2;
+            r.prec = r.p * CV_PI;
+            double log_nfa_new = rect_nfa(r);
+            if(log_nfa_new > log_nfa)
+            {
+                rec = rect(r);
+                log_nfa = log_nfa_new;
+            }
+        }
+    }
+
+    return log_nfa;
+}
+
+double LineSegmentDetectorImpl::rect_nfa(const rect& rec) const
+{
+    int total_pts = 0, alg_pts = 0;
+    double half_width = rec.width / 2.0;
+    double dyhw = rec.dy * half_width;
+    double dxhw = rec.dx * half_width;
+
+    std::vector<edge> ordered_x(4);
+    edge* min_y = &ordered_x[0];
+    edge* max_y = &ordered_x[0]; // Will be used for loop range
+
+    ordered_x[0].p.x = int(rec.x1 - dyhw); ordered_x[0].p.y = int(rec.y1 + dxhw); ordered_x[0].taken = false;
+    ordered_x[1].p.x = int(rec.x2 - dyhw); ordered_x[1].p.y = int(rec.y2 + dxhw); ordered_x[1].taken = false;
+    ordered_x[2].p.x = int(rec.x2 + dyhw); ordered_x[2].p.y = int(rec.y2 - dxhw); ordered_x[2].taken = false;
+    ordered_x[3].p.x = int(rec.x1 + dyhw); ordered_x[3].p.y = int(rec.y1 - dxhw); ordered_x[3].taken = false;
+
+    std::sort(ordered_x.begin(), ordered_x.end(), AsmallerB_XoverY);
+
+    // Find min y. And mark as taken. find max y.
+    for(unsigned int i = 1; i < 4; ++i)
+    {
+        if(min_y->p.y > ordered_x[i].p.y) {min_y = &ordered_x[i]; }
+        if(max_y->p.y < ordered_x[i].p.y) {max_y = &ordered_x[i]; }
+    }
+    min_y->taken = true;
+
+    // Find leftmost untaken point;
+    edge* leftmost = 0;
+    for(unsigned int i = 0; i < 4; ++i)
+    {
+        if(!ordered_x[i].taken)
+        {
+            if(!leftmost) // if uninitialized
+            {
+                leftmost = &ordered_x[i];
+            }
+            else if (leftmost->p.x > ordered_x[i].p.x)
+            {
+                leftmost = &ordered_x[i];
+            }
+        }
+    }
+    leftmost->taken = true;
+
+    // Find rightmost untaken point;
+    edge* rightmost = 0;
+    for(unsigned int i = 0; i < 4; ++i)
+    {
+        if(!ordered_x[i].taken)
+        {
+            if(!rightmost) // if uninitialized
+            {
+                rightmost = &ordered_x[i];
+            }
+            else if (rightmost->p.x < ordered_x[i].p.x)
+            {
+                rightmost = &ordered_x[i];
+            }
+        }
+    }
+    rightmost->taken = true;
+
+    // Find last untaken point;
+    edge* tailp = 0;
+    for(unsigned int i = 0; i < 4; ++i)
+    {
+        if(!ordered_x[i].taken)
+        {
+            if(!tailp) // if uninitialized
+            {
+                tailp = &ordered_x[i];
+            }
+            else if (tailp->p.x > ordered_x[i].p.x)
+            {
+                tailp = &ordered_x[i];
+            }
+        }
+    }
+    tailp->taken = true;
+
+    double flstep = (min_y->p.y != leftmost->p.y) ?
+                    (min_y->p.x - leftmost->p.x) / (min_y->p.y - leftmost->p.y) : 0; //first left step
+    double slstep = (leftmost->p.y != tailp->p.x) ?
+                    (leftmost->p.x - tailp->p.x) / (leftmost->p.y - tailp->p.x) : 0; //second left step
+
+    double frstep = (min_y->p.y != rightmost->p.y) ?
+                    (min_y->p.x - rightmost->p.x) / (min_y->p.y - rightmost->p.y) : 0; //first right step
+    double srstep = (rightmost->p.y != tailp->p.x) ?
+                    (rightmost->p.x - tailp->p.x) / (rightmost->p.y - tailp->p.x) : 0; //second right step
+
+    double lstep = flstep, rstep = frstep;
+
+    double left_x = min_y->p.x, right_x = min_y->p.x;
+
+    // Loop around all points in the region and count those that are aligned.
+    int min_iter = std::max(min_y->p.y, 0);
+    int max_iter = std::min(max_y->p.y, img_height - 1);
+    for(int y = min_iter; y <= max_iter; ++y)
+    {
+        int adx = y * img_width + int(left_x);
+        for(int x = int(left_x); x <= int(right_x); ++x, ++adx)
+        {
+            ++total_pts;
+            if(isAligned(adx, rec.theta, rec.prec))
+            {
+                ++alg_pts;
+            }
+        }
+
+        if(y >= leftmost->p.y) { lstep = slstep; }
+        if(y >= rightmost->p.y) { rstep = srstep; }
+
+        left_x += lstep;
+        right_x += rstep;
+    }
+
+    return nfa(total_pts, alg_pts, rec.p);
+}
+
+double LineSegmentDetectorImpl::nfa(const int& n, const int& k, const double& p) const
+{
+    // Trivial cases
+    if(n == 0 || k == 0) { return -LOG_NT; }
+    if(n == k) { return -LOG_NT - double(n) * log10(p); }
+
+    double p_term = p / (1 - p);
+
+    double log1term = (double(n) + 1) - log_gamma(double(k) + 1)
+                - log_gamma(double(n-k) + 1)
+                + double(k) * log(p) + double(n-k) * log(1.0 - p);
+    double term = exp(log1term);
+
+    if(double_equal(term, 0))
+    {
+        if(k > n * p) return -log1term / M_LN10 - LOG_NT;
+        else return -LOG_NT;
+    }
+
+    // Compute more terms if needed
+    double bin_tail = term;
+    double tolerance = 0.1; // an error of 10% in the result is accepted
+    for(int i = k + 1; i <= n; ++i)
+    {
+        double bin_term = double(n - i + 1) / double(i);
+        double mult_term = bin_term * p_term;
+        term *= mult_term;
+        bin_tail += term;
+        if(bin_term < 1)
+        {
+            double err = term * ((1 - pow(mult_term, double(n-i+1))) / (1 - mult_term) - 1);
+            if(err < tolerance * fabs(-log10(bin_tail) - LOG_NT) * bin_tail) break;
+        }
+
+    }
+    return -log10(bin_tail) - LOG_NT;
+}
+
+inline bool LineSegmentDetectorImpl::isAligned(const int& address, const double& theta, const double& prec) const
+{
+    if(address < 0) { return false; }
+    const double& a = angles_data[address];
+    if(a == NOTDEF) { return false; }
+
+    // It is assumed that 'theta' and 'a' are in the range [-pi,pi]
+    double n_theta = theta - a;
+    if(n_theta < 0) { n_theta = -n_theta; }
+    if(n_theta > M_3_2_PI)
+    {
+        n_theta -= M_2__PI;
+        if(n_theta < 0) n_theta = -n_theta;
+    }
+
+    return n_theta <= prec;
+}
+
+
+void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, const InputArray lines)
+{
+    CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));
+
+    Mat gray;
+    if (_image.channels() == 1)
+    {
+        gray = _image.getMatRef();
+    }
+    else if (_image.channels() == 3)
+    {
+        cvtColor(_image, gray, CV_BGR2GRAY);
+    }
+
+    // Create a 3 channel image in order to draw colored lines
+    std::vector<Mat> planes;
+    planes.push_back(gray);
+    planes.push_back(gray);
+    planes.push_back(gray);
+
+    merge(planes, _image);
+
+    Mat _lines;
+    _lines = lines.getMat();
+
+    // Draw segments
+    for(int i = 0; i < _lines.size().width; ++i)
+    {
+        const Vec4i& v = _lines.at<Vec4i>(i);
+        Point b(v[0], v[1]);
+        Point e(v[2], v[3]);
+        line(_image.getMatRef(), b, e, Scalar(0, 0, 255), 1);
+    }
+}
+
+
+int LineSegmentDetectorImpl::compareSegments(const Size& size, const InputArray lines1, const InputArray lines2, Mat* _image)
+{
+    Size sz = size;
+    if (_image && _image->size() != size) sz = _image->size();
+    CV_Assert(sz.area());
+
+    Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
+    Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);
+
+    Mat _lines1;
+    Mat _lines2;
+    _lines1 = lines1.getMat();
+    _lines2 = lines2.getMat();
+    // Draw segments
+    std::vector<Mat> _lines;
+    for(int i = 0; i < _lines1.size().width; ++i)
+    {
+        Point b(_lines1.at<Vec4i>(i)[0], _lines1.at<Vec4i>(i)[1]);
+        Point e(_lines1.at<Vec4i>(i)[2], _lines1.at<Vec4i>(i)[3]);
+        line(I1, b, e, Scalar::all(255), 1);
+    }
+    for(int i = 0; i < _lines2.size().width; ++i)
+    {
+        Point b(_lines2.at<Vec4i>(i)[0], _lines2.at<Vec4i>(i)[1]);
+        Point e(_lines2.at<Vec4i>(i)[2], _lines2.at<Vec4i>(i)[3]);
+        line(I2, b, e, Scalar::all(255), 1);
+    }
+
+    // Count the pixels that don't agree
+    Mat Ixor;
+    bitwise_xor(I1, I2, Ixor);
+    int N = countNonZero(Ixor);
+
+    if (_image)
+    {
+        Mat Ig;
+        if (_image->channels() == 1)
+        {
+            cvtColor(*_image, *_image, CV_GRAY2BGR);
+        }
+        CV_Assert(_image->isContinuous() && I1.isContinuous() && I2.isContinuous());
+
+        for (unsigned int i = 0; i < I1.total(); ++i)
+        {
+            uchar i1 = I1.data[i];
+            uchar i2 = I2.data[i];
+            if (i1 || i2)
+            {
+                _image->data[3*i + 1] = 0;
+                if (i1) _image->data[3*i] = 255;
+                else _image->data[3*i] = 0;
+                if (i2) _image->data[3*i + 2] = 255;
+                else _image->data[3*i + 2] = 0;
+            }
+        }
+    }
+
+    return N;
+}
+
+} // namespace cv
diff --git a/modules/imgproc/test/test_lsd.cpp b/modules/imgproc/test/test_lsd.cpp
new file mode 100644
index 0000000000..e18f32fa82
--- /dev/null
+++ b/modules/imgproc/test/test_lsd.cpp
@@ -0,0 +1,265 @@
+#include "test_precomp.hpp"
+
+#include <vector>
+
+using namespace cv;
+using namespace std;
+
+const Size img_size(640, 480);
+const int LSD_TEST_SEED = 0x134679;
+const int EPOCHS = 20;
+
+class LSDBase : public testing::Test
+{
+public:
+    LSDBase() {};
+
+protected:
+    Mat test_image;
+    vector<Vec4i> lines;
+    RNG rng;
+    int passedtests;
+
+    void GenerateWhiteNoise(Mat& image);
+    void GenerateConstColor(Mat& image);
+    void GenerateLines(Mat& image, const unsigned int numLines);
+    void GenerateRotatedRect(Mat& image);
+    virtual void SetUp();
+};
+
+class Imgproc_LSD_ADV: public LSDBase
+{
+public:
+    Imgproc_LSD_ADV() {};
+protected:
+
+};
+
+class Imgproc_LSD_STD: public LSDBase
+{
+public:
+    Imgproc_LSD_STD() {};
+protected:
+
+};
+
+class Imgproc_LSD_NONE: public LSDBase
+{
+public:
+    Imgproc_LSD_NONE() {};
+protected:
+
+};
+
+void LSDBase::GenerateWhiteNoise(Mat& image)
+{
+    image = Mat(img_size, CV_8UC1);
+    rng.fill(image, RNG::UNIFORM, 0, 256);
+}
+
+void LSDBase::GenerateConstColor(Mat& image)
+{
+    image = Mat(img_size, CV_8UC1, Scalar::all(rng.uniform(0, 256)));
+}
+
+void LSDBase::GenerateLines(Mat& image, const unsigned int numLines)
+{
+    image = Mat(img_size, CV_8UC1, Scalar::all(rng.uniform(0, 128)));
+
+    for(unsigned int i = 0; i < numLines; ++i)
+    {
+        int y = rng.uniform(10, img_size.width - 10);
+        Point p1(y, 10);
+        Point p2(y, img_size.height - 10);
+        line(image, p1, p2, Scalar(255), 3);
+    }
+}
+
+void LSDBase::GenerateRotatedRect(Mat& image)
+{
+    image = Mat::zeros(img_size, CV_8UC1);
+
+    Point center(rng.uniform(img_size.width/4, img_size.width*3/4),
+                 rng.uniform(img_size.height/4, img_size.height*3/4));
+    Size rect_size(rng.uniform(img_size.width/8, img_size.width/6),
+                   rng.uniform(img_size.height/8, img_size.height/6));
+    float angle = rng.uniform(0.f, 360.f);
+
+    Point2f vertices[4];
+
+    RotatedRect rRect = RotatedRect(center, rect_size, angle);
+
+    rRect.points(vertices);
+    for (int i = 0; i < 4; i++)
+    {
+        line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255), 3);
+    }
+}
+
+void LSDBase::SetUp()
+{
+    lines.clear();
+    test_image = Mat();
+    rng = RNG(LSD_TEST_SEED);
+    passedtests = 0;
+}
+
+
+TEST_F(Imgproc_LSD_ADV, whiteNoise)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateWhiteNoise(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_ADV);
+        detector->detect(test_image, lines);
+
+        if(uint(40) >= lines.size()) ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_ADV, constColor)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateConstColor(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_ADV);
+        detector->detect(test_image, lines);
+
+        if(uint(0) == lines.size()) ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_ADV, lines)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        const unsigned int numOfLines = 1;
+        GenerateLines(test_image, numOfLines);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_ADV);
+        detector->detect(test_image, lines);
+
+        if(numOfLines * 2 == lines.size()) ++passedtests;  // * 2 because of Gibbs effect
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_ADV, rotatedRect)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateRotatedRect(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_ADV);
+        detector->detect(test_image, lines);
+
+        if(uint(2) <= lines.size())  ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_STD, whiteNoise)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateWhiteNoise(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
+        detector->detect(test_image, lines);
+
+        if(uint(50) >= lines.size()) ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_STD, constColor)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateConstColor(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
+        detector->detect(test_image, lines);
+
+        if(uint(0) == lines.size()) ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_STD, lines)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        const unsigned int numOfLines = 1;
+        GenerateLines(test_image, numOfLines);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
+        detector->detect(test_image, lines);
+
+        if(numOfLines * 2 == lines.size()) ++passedtests;  // * 2 because of Gibbs effect
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_STD, rotatedRect)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateRotatedRect(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
+        detector->detect(test_image, lines);
+
+        if(uint(4) <= lines.size()) ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_NONE, whiteNoise)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateWhiteNoise(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
+        detector->detect(test_image, lines);
+
+        if(uint(50) >= lines.size()) ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_NONE, constColor)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateConstColor(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_NONE);
+        detector->detect(test_image, lines);
+
+        if(uint(0) == lines.size()) ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_NONE, lines)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        const unsigned int numOfLines = 1;
+        GenerateLines(test_image, numOfLines);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_NONE);
+        detector->detect(test_image, lines);
+
+        if(numOfLines * 2 == lines.size()) ++passedtests;  // * 2 because of Gibbs effect
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
+
+TEST_F(Imgproc_LSD_NONE, rotatedRect)
+{
+    for (int i = 0; i < EPOCHS; ++i)
+    {
+        GenerateRotatedRect(test_image);
+        Ptr<LineSegmentDetector> detector = createLineSegmentDetectorPtr(LSD_REFINE_NONE);
+        detector->detect(test_image, lines);
+
+        if(uint(8) <= lines.size()) ++passedtests;
+    }
+    ASSERT_EQ(EPOCHS, passedtests);
+}
diff --git a/samples/cpp/lsd_lines.cpp b/samples/cpp/lsd_lines.cpp
new file mode 100644
index 0000000000..62692f70bd
--- /dev/null
+++ b/samples/cpp/lsd_lines.cpp
@@ -0,0 +1,54 @@
+#include <iostream>
+#include <string>
+
+#include "opencv2/core/core.hpp"
+#include "opencv2/core/utility.hpp"
+#include "opencv2/imgproc/imgproc.hpp"
+#include "opencv2/highgui/highgui.hpp"
+
+using namespace std;
+using namespace cv;
+
+int main(int argc, char** argv)
+{
+    std::string in;
+    if (argc != 2)
+    {
+        std::cout << "Usage: lsd_lines [input image]. Now loading building.jpg" << std::endl;
+        in = "building.jpg";
+    }
+    else
+    {
+        in = argv[1];
+    }
+
+    Mat image = imread(in, IMREAD_GRAYSCALE);
+
+#if 0
+    Canny(image, image, 50, 200, 3); // Apply canny edge
+#endif
+
+    // Create and LSD detector with standard or no refinement.
+#if 1
+    Ptr<LineSegmentDetector> ls = createLineSegmentDetectorPtr(LSD_REFINE_STD);
+#else
+    Ptr<LineSegmentDetector> ls = createLineSegmentDetectorPtr(LSD_REFINE_NONE);
+#endif
+
+    double start = double(getTickCount());
+    vector<Vec4i> lines_std;
+
+    // Detect the lines
+    ls->detect(image, lines_std);
+
+    double duration_ms = (double(getTickCount()) - start) * 1000 / getTickFrequency();
+    std::cout << "It took " << duration_ms << " ms." << std::endl;
+
+    // Show found lines
+    Mat drawnLines(image);
+    ls->drawSegments(drawnLines, lines_std);
+    imshow("Standard refinement", drawnLines);
+
+    waitKey();
+    return 0;
+}