Added perf test

pull/11/head
Daniil Osokin 12 years ago
parent 0609f4e9b4
commit 45c49a9088
  1. 40
      modules/calib3d/perf/perf_pnp.cpp
  2. 96
      modules/core/perf/perf_mat.cpp
  3. 175
      modules/features2d/perf/perf_batchDistance.cpp
  4. 55
      modules/stitching/perf/perf_stich.cpp

@ -11,6 +11,8 @@ CV_ENUM(pnpAlgo, CV_ITERATIVE, CV_EPNP /*, CV_P3P*/)
typedef std::tr1::tuple<int, pnpAlgo> PointsNum_Algo_t;
typedef perf::TestBaseWithParam<PointsNum_Algo_t> PointsNum_Algo;
typedef perf::TestBaseWithParam<int> PointsNum;
PERF_TEST_P(PointsNum_Algo, solvePnP,
testing::Combine(
testing::Values(4, 3*9, 7*13),
@ -86,3 +88,41 @@ PERF_TEST(PointsNum_Algo, solveP3P)
SANITY_CHECK(rvec, 1e-6);
SANITY_CHECK(tvec, 1e-6);
}
PERF_TEST_P(PointsNum, SolvePnPRansac, testing::Values(4, 3*9, 7*13))
{
int count = GetParam();
Mat object(1, count, CV_32FC3);
randu(object, -100, 100);
Mat camera_mat(3, 3, CV_32FC1);
randu(camera_mat, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
vector<cv::Point2f> image_vec;
Mat rvec_gold(1, 3, CV_32FC1);
randu(rvec_gold, 0, 1);
Mat tvec_gold(1, 3, CV_32FC1);
randu(tvec_gold, 0, 1);
projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
Mat image(1, count, CV_32FC2, &image_vec[0]);
Mat rvec;
Mat tvec;
solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
declare.time(3.0);
TEST_CYCLE()
{
solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
}
}

@ -0,0 +1,96 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
PERF_TEST_P(Size_MatType, Mat_Eye,
testing::Combine(testing::Values(TYPICAL_MAT_SIZES),
testing::Values(TYPICAL_MAT_TYPES))
)
{
Size size = get<0>(GetParam());
int type = get<1>(GetParam());
Mat diagonalMatrix(size.height, size.width, type);
declare.out(diagonalMatrix);
TEST_CYCLE()
{
diagonalMatrix = Mat::eye(size, type);
}
SANITY_CHECK(diagonalMatrix, 1);
}
PERF_TEST_P(Size_MatType, Mat_Zeros,
testing::Combine(testing::Values(TYPICAL_MAT_SIZES),
testing::Values(TYPICAL_MAT_TYPES, CV_32FC3))
)
{
Size size = get<0>(GetParam());
int type = get<1>(GetParam());
Mat zeroMatrix(size.height, size.width, type);
declare.out(zeroMatrix);
TEST_CYCLE()
{
zeroMatrix = Mat::zeros(size, type);
}
SANITY_CHECK(zeroMatrix, 1);
}
PERF_TEST_P(Size_MatType, Mat_Clone,
testing::Combine(testing::Values(TYPICAL_MAT_SIZES),
testing::Values(TYPICAL_MAT_TYPES))
)
{
Size size = get<0>(GetParam());
int type = get<1>(GetParam());
Mat source(size.height, size.width, type);
Mat destination(size.height, size.width, type);;
declare.in(source, WARMUP_RNG).out(destination);
TEST_CYCLE()
{
source.clone();
}
destination = source.clone();
SANITY_CHECK(destination, 1);
}
PERF_TEST_P(Size_MatType, Mat_Clone_Roi,
testing::Combine(testing::Values(TYPICAL_MAT_SIZES),
testing::Values(TYPICAL_MAT_TYPES))
)
{
Size size = get<0>(GetParam());
int type = get<1>(GetParam());
unsigned int width = size.width;
unsigned int height = size.height;
Mat source(height, width, type);
Mat destination(size.height/2, size.width/2, type);
declare.in(source, WARMUP_RNG).out(destination);
Mat roi(source, Rect(width/4, height/4, 3*width/4, 3*height/4));
TEST_CYCLE()
{
roi.clone();
}
destination = roi.clone();
SANITY_CHECK(destination, 1);
}

@ -0,0 +1,175 @@
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
CV_FLAGS(NormType, NORM_L1, NORM_L2, NORM_L2SQR, NORM_HAMMING, NORM_HAMMING2)
CV_ENUM(SourceType, CV_32F, CV_8U)
CV_ENUM(DestinationType, CV_32F, CV_32S)
typedef std::tr1::tuple<NormType, DestinationType, bool> Norm_Destination_CrossCheck_t;
typedef perf::TestBaseWithParam<Norm_Destination_CrossCheck_t> Norm_Destination_CrossCheck;
typedef std::tr1::tuple<NormType, bool> Norm_CrossCheck_t;
typedef perf::TestBaseWithParam<Norm_CrossCheck_t> Norm_CrossCheck;
typedef std::tr1::tuple<SourceType, bool> Source_CrossCheck_t;
typedef perf::TestBaseWithParam<Source_CrossCheck_t> Source_CrossCheck;
void generateData( Mat& query, Mat& train, const int sourceType );
PERF_TEST_P(Norm_Destination_CrossCheck, batchDistance_8U,
testing::Combine(testing::Values((int)NORM_L1, (int)NORM_L2SQR),
testing::Values(CV_32S, CV_32F),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
DestinationType destinationType = get<1>(GetParam());
bool isCrossCheck = get<2>(GetParam());
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
int knn = 1;
generateData(queryDescriptors, trainDescriptors, CV_8U);
if(!isCrossCheck)
{
knn = 0;
}
declare.time(30);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, destinationType, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
}
PERF_TEST_P(Norm_CrossCheck, batchDistance_Dest_32S,
testing::Combine(testing::Values((int)NORM_HAMMING, (int)NORM_HAMMING2),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
int knn = 1;
generateData(queryDescriptors, trainDescriptors, CV_8U);
if(!isCrossCheck)
{
knn = 0;
}
declare.time(30);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32S, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
}
PERF_TEST_P(Source_CrossCheck, batchDistance_L2,
testing::Combine(testing::Values(CV_8U, CV_32F),
testing::Bool()
)
)
{
SourceType sourceType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
int knn = 1;
generateData(queryDescriptors, trainDescriptors, sourceType);
if(!isCrossCheck)
{
knn = 0;
}
declare.time(30);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32F, (isCrossCheck) ? ndix : noArray(),
NORM_L2, knn, Mat(), 0, isCrossCheck);
}
}
PERF_TEST_P(Norm_CrossCheck, batchDistance_32F,
testing::Combine(testing::Values((int)NORM_L1, (int)NORM_L2SQR),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
int knn = 1;
generateData(queryDescriptors, trainDescriptors, CV_32F);
if(!isCrossCheck)
{
knn = 0;
}
declare.time(30);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32F, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
}
void generateData( Mat& query, Mat& train, const int sourceType )
{
const int dim = 500;
const int queryDescCount = 300; // must be even number because we split train data in some cases in two
const int countFactor = 4; // do not change it
RNG& rng = theRNG();
// Generate query descriptors randomly.
// Descriptor vector elements are integer values.
Mat buf( queryDescCount, dim, CV_32SC1 );
rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
buf.convertTo( query, sourceType );
// Generate train decriptors as follows:
// copy each query descriptor to train set countFactor times
// and perturb some one element of the copied descriptors in
// in ascending order. General boundaries of the perturbation
// are (0.f, 1.f).
train.create( query.rows*countFactor, query.cols, sourceType );
float step = 1.f / countFactor;
for( int qIdx = 0; qIdx < query.rows; qIdx++ )
{
Mat queryDescriptor = query.row(qIdx);
for( int c = 0; c < countFactor; c++ )
{
int tIdx = qIdx * countFactor + c;
Mat trainDescriptor = train.row(tIdx);
queryDescriptor.copyTo( trainDescriptor );
int elem = rng(dim);
float diff = rng.uniform( step*c, step*(c+1) );
trainDescriptor.at<float>(0, elem) += diff;
}
}
}

@ -16,6 +16,8 @@ using std::tr1::get;
typedef TestBaseWithParam<String> stitch;
typedef TestBaseWithParam<String> match;
typedef std::tr1::tuple<String, int> matchVector_t;
typedef TestBaseWithParam<matchVector_t> matchVector;
#ifdef HAVE_OPENCV_NONFREE
#define TEST_DETECTORS testing::Values("surf", "orb")
@ -132,3 +134,56 @@ PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
matcher->collectGarbage();
}
}
PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
TEST_DETECTORS,
testing::Values(2, 4, 6, 8))
)
{
Mat img1, img1_full = imread( getDataPath("stitching/b1.jpg") );
Mat img2, img2_full = imread( getDataPath("stitching/b2.jpg") );
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
resize(img1_full, img1, Size(), scale1, scale1);
resize(img2_full, img2, Size(), scale2, scale2);
Ptr<detail::FeaturesFinder> finder;
Ptr<detail::FeaturesMatcher> matcher;
String detectorName = get<0>(GetParam());
int featuresVectorSize = get<1>(GetParam());
if (detectorName == "surf")
{
finder = new detail::SurfFeaturesFinder();
matcher = new detail::BestOf2NearestMatcher(false, SURF_MATCH_CONFIDENCE);
}
else if (detectorName == "orb")
{
finder = new detail::OrbFeaturesFinder();
matcher = new detail::BestOf2NearestMatcher(false, ORB_MATCH_CONFIDENCE);
}
else
{
FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
}
detail::ImageFeatures features1, features2;
(*finder)(img1, features1);
(*finder)(img2, features2);
vector<detail::ImageFeatures> features;
vector<detail::MatchesInfo> pairwise_matches;
for(int i = 0; i < featuresVectorSize/2; i++)
{
features.push_back(features1);
features.push_back(features2);
}
declare.time(200);
while(next())
{
cvflann::seed_random(42);//for predictive FlannBasedMatcher
startTimer();
(*matcher)(features, pairwise_matches);
stopTimer();
matcher->collectGarbage();
}
}

Loading…
Cancel
Save