|
|
|
@ -376,7 +376,7 @@ public: |
|
|
|
|
}; |
|
|
|
|
enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value.
|
|
|
|
|
}; |
|
|
|
|
/**@brief Creates the HOG descriptor and detector with default params.
|
|
|
|
|
/**@brief Creates the HOG descriptor and detector with default parameters.
|
|
|
|
|
|
|
|
|
|
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9, 1 ) |
|
|
|
|
*/ |
|
|
|
@ -412,6 +412,8 @@ public: |
|
|
|
|
{} |
|
|
|
|
|
|
|
|
|
/** @overload
|
|
|
|
|
|
|
|
|
|
Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file. |
|
|
|
|
@param filename the file name containing HOGDescriptor properties and coefficients of the trained classifier |
|
|
|
|
*/ |
|
|
|
|
CV_WRAP HOGDescriptor(const String& filename) |
|
|
|
@ -450,24 +452,24 @@ public: |
|
|
|
|
*/ |
|
|
|
|
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); |
|
|
|
|
|
|
|
|
|
/** @brief Reads HOGDescriptor parameters from a file node.
|
|
|
|
|
/** @brief Reads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file node.
|
|
|
|
|
@param fn File node |
|
|
|
|
*/ |
|
|
|
|
virtual bool read(FileNode& fn); |
|
|
|
|
|
|
|
|
|
/** @brief Stores HOGDescriptor parameters in a file storage.
|
|
|
|
|
/** @brief Stores HOGDescriptor parameters and coefficients for the linear SVM classifier in a file storage.
|
|
|
|
|
@param fs File storage |
|
|
|
|
@param objname Object name |
|
|
|
|
*/ |
|
|
|
|
virtual void write(FileStorage& fs, const String& objname) const; |
|
|
|
|
|
|
|
|
|
/** @brief loads coefficients for the linear SVM classifier from a file
|
|
|
|
|
/** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
|
|
|
|
|
@param filename Name of the file to read. |
|
|
|
|
@param objname The optional name of the node to read (if empty, the first top-level node will be used). |
|
|
|
|
*/ |
|
|
|
|
CV_WRAP virtual bool load(const String& filename, const String& objname = String()); |
|
|
|
|
|
|
|
|
|
/** @brief saves coefficients for the linear SVM classifier to a file
|
|
|
|
|
/** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
|
|
|
|
|
@param filename File name |
|
|
|
|
@param objname Object name |
|
|
|
|
*/ |
|
|
|
@ -535,13 +537,14 @@ public: |
|
|
|
|
@param winStride Window stride. It must be a multiple of block stride. |
|
|
|
|
@param padding Padding |
|
|
|
|
@param scale Coefficient of the detection window increase. |
|
|
|
|
@param finalThreshold Final threshold |
|
|
|
|
@param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered |
|
|
|
|
by many rectangles. 0 means not to perform grouping. |
|
|
|
|
@param useMeanshiftGrouping indicates grouping algorithm |
|
|
|
|
*/ |
|
|
|
|
CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, |
|
|
|
|
CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, |
|
|
|
|
Size winStride = Size(), Size padding = Size(), double scale = 1.05, |
|
|
|
|
double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; |
|
|
|
|
double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
|
|
|
|
|
|
|
|
|
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
|
|
|
|
|
of rectangles. |
|
|
|
@ -553,13 +556,14 @@ public: |
|
|
|
|
@param winStride Window stride. It must be a multiple of block stride. |
|
|
|
|
@param padding Padding |
|
|
|
|
@param scale Coefficient of the detection window increase. |
|
|
|
|
@param finalThreshold Final threshold |
|
|
|
|
@param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered |
|
|
|
|
by many rectangles. 0 means not to perform grouping. |
|
|
|
|
@param useMeanshiftGrouping indicates grouping algorithm |
|
|
|
|
*/ |
|
|
|
|
virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, |
|
|
|
|
double hitThreshold = 0, Size winStride = Size(), |
|
|
|
|
Size padding = Size(), double scale = 1.05, |
|
|
|
|
double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
|
|
|
|
double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
|
|
|
|
|
|
|
|
|
/** @brief Computes gradients and quantized gradient orientations.
|
|
|
|
|
@param img Matrix contains the image to be computed |
|
|
|
|