added to FeatureDetector test the check of detect() on empty data

pull/13383/head
Maria Dimashova 15 years ago
parent 27690e3b6e
commit 43716f31b9
  1. 148
      tests/cv/src/afeatures2d.cpp

@ -60,45 +60,67 @@ public:
CvTest( testName, "cv::FeatureDetector::detect"), fdetector(_fdetector) {}
protected:
virtual void run( int /*start_from*/ )
{
const float maxPtDif = 1.f;
const float maxSizeDif = 1.f;
const float maxAngleDif = 2.f;
const float maxResponseDif = 0.1f;
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
void emptyDataTest();
void regressionTest(); // TODO test of detect() with mask
if( fdetector.empty() )
virtual void run( int );
Ptr<FeatureDetector> fdetector;
};
void CV_FeatureDetectorTest::emptyDataTest()
{
ts->printf( CvTS::LOG, "Feature detector is empty" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
Mat image;
vector<KeyPoint> keypoints;
try
{
fdetector->detect( image, keypoints );
}
catch(...)
{
ts->printf( CvTS::LOG, "emptyDataTest: Detect() on empty image must not generate exeption\n" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
return;
}
Mat image = imread( imgFilename, 0 );
if( image.empty() )
if( !keypoints.empty() )
{
ts->printf( CvTS::LOG, "image %s can not be read \n", imgFilename.c_str() );
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
ts->printf( CvTS::LOG, "emptyDataTest: Detect() on empty image must return empty keypoints vector\n" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_OUTPUT );
return;
}
}
FileStorage fs( resFilename, FileStorage::READ );
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
{
const float maxPtDif = 1.f;
const float maxSizeDif = 1.f;
const float maxAngleDif = 2.f;
const float maxResponseDif = 0.1f;
vector<KeyPoint> calcKeypoints;
fdetector->detect( image, calcKeypoints );
float dist = (float)norm( p1.pt - p2.pt );
return (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id );
}
if( fs.isOpened() ) // compare computed and valid keypoints
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
{
// TODO compare saved feature detector params with current ones
vector<KeyPoint> validKeypoints;
read( fs["keypoints"], validKeypoints );
if( validKeypoints.empty() )
const float maxCountRatioDif = 0.01f;
// Compare counts of validation and calculated keypoints.
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
{
ts->printf( CvTS::LOG, "Keypoints can nod be read\n" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
ts->printf( CvTS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d)!\n",
validKeypoints.size(), calcKeypoints.size() );
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
return;
}
@ -120,29 +142,59 @@ protected:
}
}
if( minDist > maxPtDif ||
fabs(calcKeypoints[nearestIdx].size - validKeypoints[v].size) > maxSizeDif ||
abs(calcKeypoints[nearestIdx].angle - validKeypoints[v].angle) > maxAngleDif ||
abs(calcKeypoints[nearestIdx].response - validKeypoints[v].response) > maxResponseDif ||
calcKeypoints[nearestIdx].octave != validKeypoints[v].octave
// TODO !!!!!!!
/*||
calcKeypoints[nearestIdx].class_id != validKeypoints[v].class_id*/ )
{
assert( minDist >= 0 );
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
badPointCount++;
}
}
ts->printf( CvTS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
ts->printf( CvTS::LOG, "regressionTest: badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
badPointCount, validKeypoints.size(), calcKeypoints.size() );
if( badPointCount > 0.9 * commonPointCount )
{
ts->printf( CvTS::LOG, "Bad accuracy!\n" );
ts->printf( CvTS::LOG, " - Bad accuracy!\n" );
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY );
return;
}
ts->printf( CvTS::LOG, " - OK\n" );
}
else // write
void CV_FeatureDetectorTest::regressionTest()
{
assert( !fdetector.empty() );
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
// Read the test image.
Mat image = imread( imgFilename, 0 );
if( image.empty() )
{
ts->printf( CvTS::LOG, "image %s can not be read \n", imgFilename.c_str() );
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
return;
}
FileStorage fs( resFilename, FileStorage::READ );
// Compute keypoints.
vector<KeyPoint> calcKeypoints;
fdetector->detect( image, calcKeypoints );
if( fs.isOpened() ) // Compare computed and valid keypoints.
{
// TODO compare saved feature detector params with current ones
// Read validation keypoints set.
vector<KeyPoint> validKeypoints;
read( fs["keypoints"], validKeypoints );
if( validKeypoints.empty() )
{
ts->printf( CvTS::LOG, "Keypoints can nod be read\n" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
return;
}
compareKeypointSets( validKeypoints, calcKeypoints );
}
else // Write detector parameters and computed keypoints as validation data.
{
fs.open( resFilename, FileStorage::WRITE );
if( !fs.isOpened() )
@ -160,11 +212,22 @@ protected:
write( fs, "keypoints", calcKeypoints );
}
}
ts->set_failed_test_info( CvTS::OK );
}
Ptr<FeatureDetector> fdetector;
};
void CV_FeatureDetectorTest::run( int /*start_from*/ )
{
if( fdetector.empty() )
{
ts->printf( CvTS::LOG, "Feature detector is empty" );
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA );
return;
}
emptyDataTest();
regressionTest();
ts->set_failed_test_info( CvTS::OK );
}
/****************************************************************************************\
* Regression tests for descriptor extractors. *
@ -707,6 +770,7 @@ void CV_DescriptorMatcherTest::run( int )
/*
* Detectors
* "detector-fast, detector-gftt, detector-harris, detector-mser, detector-sift, detector-star, detector-surf"
*/
CV_FeatureDetectorTest fastTest( "detector-fast", createFeatureDetector("FAST") );
CV_FeatureDetectorTest gfttTest( "detector-gftt", createFeatureDetector("GFTT") );

Loading…
Cancel
Save