mirror of https://github.com/opencv/opencv.git
commit
421ba8730a
5 changed files with 187 additions and 0 deletions
@ -0,0 +1,97 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
|
||||||
|
#include "../precomp.hpp" |
||||||
|
#include "layers_common.hpp" |
||||||
|
|
||||||
|
#include <opencv2/dnn/shape_utils.hpp> |
||||||
|
|
||||||
|
namespace cv { namespace dnn { |
||||||
|
|
||||||
|
class TileLayerImpl CV_FINAL : public TileLayer |
||||||
|
{ |
||||||
|
public: |
||||||
|
TileLayerImpl(const LayerParams& params) |
||||||
|
{ |
||||||
|
setParamsFrom(params); |
||||||
|
if (params.has("repeats")) |
||||||
|
{ |
||||||
|
DictValue param_repeats = params.get("repeats"); |
||||||
|
int n_repeats = param_repeats.size(); |
||||||
|
|
||||||
|
CV_Assert(n_repeats > 0); |
||||||
|
repeats.resize(n_repeats); |
||||||
|
for (int i = 0; i < n_repeats; i++) |
||||||
|
repeats[i] = param_repeats.get<int>(i); |
||||||
|
} |
||||||
|
else |
||||||
|
CV_Error(Error::StsNotImplemented, "Tile: repeats needs to be treated as parameter but it is missing."); |
||||||
|
} |
||||||
|
|
||||||
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
||||||
|
{ |
||||||
|
return backendId == DNN_BACKEND_OPENCV; |
||||||
|
} |
||||||
|
|
||||||
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||||
|
const int requiredOutputs, |
||||||
|
std::vector<MatShape> &outputs, |
||||||
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
||||||
|
{ |
||||||
|
CV_CheckEQ(inputs.size(), 1ull, "Tile: one input is expected"); |
||||||
|
|
||||||
|
// repeats must have the same length as input's dimension number
|
||||||
|
// FIXIT: it breaks when the input is 1d tensor (represented as 2d mat with size=2 in opencv dnn)
|
||||||
|
CV_CheckEQ(inputs[0].size(), repeats.size(), "Tile: repeats must be a 1D tensor of the same length as input's dimension number"); |
||||||
|
|
||||||
|
outputs.assign(1, inputs[0]); |
||||||
|
for (int i = 0; i < repeats.size(); i++) |
||||||
|
{ |
||||||
|
outputs[0][i] *= repeats[i]; |
||||||
|
} |
||||||
|
return false; |
||||||
|
} |
||||||
|
|
||||||
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
||||||
|
{ |
||||||
|
CV_TRACE_FUNCTION(); |
||||||
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||||
|
|
||||||
|
std::vector<Mat> inputs, outputs; |
||||||
|
inputs_arr.getMatVector(inputs); |
||||||
|
outputs_arr.getMatVector(outputs); |
||||||
|
|
||||||
|
const Mat& data = inputs[0]; |
||||||
|
Mat& out = outputs[0]; |
||||||
|
|
||||||
|
Mat tmp = data.clone(); |
||||||
|
MatShape tmp_shape = shape(tmp); |
||||||
|
MatShape out_shape = shape(out); |
||||||
|
int rep_i, ndims = data.dims; |
||||||
|
int dims = 1; |
||||||
|
for (int i = 0; i < ndims; i++) |
||||||
|
{ |
||||||
|
rep_i = repeats[i]; |
||||||
|
if (rep_i != 1) |
||||||
|
{ |
||||||
|
tmp = tmp.reshape(0, dims); |
||||||
|
tmp = cv::repeat(tmp, 1, rep_i); |
||||||
|
dims *= out_shape[i]; |
||||||
|
} |
||||||
|
} |
||||||
|
tmp = tmp.reshape(0, out_shape); |
||||||
|
|
||||||
|
tmp.copyTo(out); |
||||||
|
} |
||||||
|
|
||||||
|
private: |
||||||
|
std::vector<int> repeats; |
||||||
|
}; |
||||||
|
|
||||||
|
Ptr<TileLayer> TileLayer::create(const LayerParams& params) |
||||||
|
{ |
||||||
|
return makePtr<TileLayerImpl>(params); |
||||||
|
} |
||||||
|
|
||||||
|
}} // namespace cv::dnn
|
Loading…
Reference in new issue