parent
9164ccbaaf
commit
41d2a3c832
1 changed files with 109 additions and 0 deletions
@ -0,0 +1,109 @@ |
||||
''' This is a sample for histogram plotting for RGB images and grayscale images for better understanding of colour distribution |
||||
|
||||
Benefit : Learn how to draw histogram of images |
||||
Get familier with cv2.calcHist, cv2.equalizeHist,cv2.normalize and some drawing functions |
||||
|
||||
Level : Beginner or Intermediate |
||||
|
||||
Functions : 1) hist_curve : returns histogram of an image drawn as curves |
||||
2) hist_lines : return histogram of an image drawn as bins ( only for grayscale images ) |
||||
|
||||
Usage : python hist.py <image_file> |
||||
|
||||
Abid Rahman 3/14/12 debug Gary Bradski |
||||
''' |
||||
|
||||
import cv2,sys |
||||
import numpy as np |
||||
|
||||
bins = np.arange(256).reshape(256,1) |
||||
|
||||
def hist_curve(im): |
||||
h = np.zeros((300,256,3)) |
||||
if len(im.shape) == 2: |
||||
color = [(255,255,255)] |
||||
elif im.shape[2] == 3: |
||||
color = [ (255,0,0),(0,255,0),(0,0,255) ] |
||||
for ch, col in enumerate(color): |
||||
hist_item = cv2.calcHist([im],[ch],None,[256],[0,255]) |
||||
cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX) |
||||
hist=np.int32(np.around(hist_item)) |
||||
pts = np.int32(np.column_stack((bins,hist))) |
||||
cv2.polylines(h,[pts],False,col) |
||||
y=np.flipud(h) |
||||
return y |
||||
|
||||
def hist_lines(im): |
||||
h = np.zeros((300,256,3)) |
||||
if len(im.shape)!=2: |
||||
print "hist_lines applicable only for grayscale images" |
||||
#print "so converting image to grayscale for representation" |
||||
im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) |
||||
hist_item = cv2.calcHist([im],[0],None,[256],[0,255]) |
||||
cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX) |
||||
hist=np.int32(np.around(hist_item)) |
||||
for x,y in enumerate(hist): |
||||
cv2.line(h,(x,0),(x,y),(255,255,255)) |
||||
y = np.flipud(h) |
||||
return y |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
|
||||
import urllib2 |
||||
|
||||
if len(sys.argv)>1: |
||||
im = cv2.imread(sys.argv[1]) |
||||
else : |
||||
im = cv2.imread('../cpp/lena.jpg') |
||||
print "usage : python hist.py <image_file>" |
||||
|
||||
|
||||
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) |
||||
|
||||
|
||||
print ''' Histogram plotting \n |
||||
Keymap :\n |
||||
a - show histogram for color image in curve mode \n |
||||
b - show histogram in bin mode \n |
||||
c - show equalized histogram (always in bin mode) \n |
||||
d - show histogram for color image in curve mode \n |
||||
e - show histogram for a normalized image in curve mode \n |
||||
Esc - exit \n |
||||
''' |
||||
|
||||
cv2.imshow('image',im) |
||||
while True: |
||||
k = cv2.waitKey(0)&0xFF |
||||
if k == ord('a'): |
||||
curve = hist_curve(im) |
||||
cv2.imshow('histogram',curve) |
||||
cv2.imshow('image',im) |
||||
print 'a' |
||||
elif k == ord('b'): |
||||
print 'b' |
||||
lines = hist_lines(im) |
||||
cv2.imshow('histogram',lines) |
||||
cv2.imshow('image',gray) |
||||
elif k == ord('c'): |
||||
print 'c' |
||||
equ = cv2.equalizeHist(gray) |
||||
lines = hist_lines(equ) |
||||
cv2.imshow('histogram',lines) |
||||
cv2.imshow('image',equ) |
||||
elif k == ord('d'): |
||||
print 'd' |
||||
curve = hist_curve(gray) |
||||
cv2.imshow('histogram',curve) |
||||
cv2.imshow('image',gray) |
||||
elif k == ord('e'): |
||||
print 'e' |
||||
norm = cv2.normalize(gray,alpha = 0,beta = 255,norm_type = cv2.NORM_MINMAX) |
||||
lines = hist_lines(norm) |
||||
cv2.imshow('histogram',lines) |
||||
cv2.imshow('image',norm) |
||||
elif k == 27: |
||||
print 'ESC' |
||||
cv2.destroyAllWindows() |
||||
break |
||||
|
Loading…
Reference in new issue