Fixed test samples for tests with different borders

Added new test (separating two points)
pull/6096/head
Marina Noskova 9 years ago
parent bfdca05f25
commit 41c0a38344
  1. 2
      modules/ml/src/svmsgd.cpp
  2. 5
      modules/ml/test/test_save_load.cpp
  3. 111
      modules/ml/test/test_svmsgd.cpp
  4. 4
      samples/cpp/train_svmsgd.cpp

@ -146,7 +146,7 @@ Ptr<SVMSGD> SVMSGD::create()
std::pair<bool,bool> SVMSGDImpl::areClassesEmpty(Mat responses)
{
CV_Assert(responses.cols == 1);
CV_Assert(responses.cols == 1 || responses.rows == 1);
std::pair<bool,bool> emptyInClasses(true, true);
int limit_index = responses.rows;

@ -160,10 +160,7 @@ TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
TEST(MV_SVMSGD, save_load){
CV_SLMLTest test( CV_SVMSGD );
test.safe_run();
}
TEST(MV_SVMSGD, save_load){ CV_SLMLTest test( CV_SVMSGD ); test.safe_run(); }
class CV_LegacyTest : public cvtest::BaseTest
{

@ -58,39 +58,40 @@ public:
UNIFORM_DIFFERENT_SCALES
};
CV_SVMSGDTrainTest(Mat _weights, float shift, TrainDataType type, double precision = 0.01);
CV_SVMSGDTrainTest(const Mat &_weights, float shift, TrainDataType type, double precision = 0.01);
private:
virtual void run( int start_from );
static float decisionFunction(const Mat &sample, const Mat &weights, float shift);
void makeTrainData(Mat weights, float shift);
void makeTestData(Mat weights, float shift);
void generateSameScaleData(Mat &samples);
void generateDifferentScalesData(Mat &samples, float shift);
void generateSameBorders(int featureCount);
void generateDifferentBorders(int featureCount);
TrainDataType type;
double precision;
std::vector<std::pair<float,float> > borders;
cv::Ptr<TrainData> data;
cv::Mat testSamples;
cv::Mat testResponses;
static const int TEST_VALUE_LIMIT = 500;
};
void CV_SVMSGDTrainTest::generateSameScaleData(Mat &samples)
void CV_SVMSGDTrainTest::generateSameBorders(int featureCount)
{
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
cv::RNG rng(0);
rng.fill(samples, RNG::UNIFORM, lowerLimit, upperLimit);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
}
}
void CV_SVMSGDTrainTest::generateDifferentScalesData(Mat &samples, float shift)
void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount)
{
int featureCount = samples.cols;
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
cv::RNG rng(10);
cv::RNG rng(0);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
@ -98,11 +99,11 @@ void CV_SVMSGDTrainTest::generateDifferentScalesData(Mat &samples, float shift)
if (crit > 0)
{
rng.fill(samples.col(featureIndex), RNG::UNIFORM, lowerLimit - shift, upperLimit - shift);
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
}
else
{
rng.fill(samples.col(featureIndex), RNG::UNIFORM, lowerLimit/10, upperLimit/10);
borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000));
}
}
}
@ -111,21 +112,16 @@ void CV_SVMSGDTrainTest::makeTrainData(Mat weights, float shift)
{
int datasize = 100000;
int featureCount = weights.cols;
RNG rng(0);
cv::Mat samples = cv::Mat::zeros(datasize, featureCount, CV_32FC1);
cv::Mat responses = cv::Mat::zeros(datasize, 1, CV_32FC1);
switch(type)
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
case UNIFORM_SAME_SCALE:
generateSameScaleData(samples);
break;
case UNIFORM_DIFFERENT_SCALES:
generateDifferentScalesData(samples, shift);
break;
default:
CV_Error(CV_StsBadArg, "Unknown train data type");
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
}
cv::Mat responses = cv::Mat::zeros(datasize, 1, CV_32FC1);
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++)
{
responses.at<float>(sampleIndex) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1 : -1;
@ -138,14 +134,14 @@ void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
{
int testSamplesCount = 100000;
int featureCount = weights.cols;
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
cv::RNG rng(0);
testSamples.create(testSamplesCount, featureCount, CV_32FC1);
rng.fill(testSamples, RNG::UNIFORM, lowerLimit, upperLimit);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
rng.fill(testSamples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
}
testResponses.create(testSamplesCount, 1, CV_32FC1);
for (int i = 0 ; i < testSamplesCount; i++)
@ -154,10 +150,25 @@ void CV_SVMSGDTrainTest::makeTestData(Mat weights, float shift)
}
}
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(Mat weights, float shift, TrainDataType _type, double _precision)
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision)
{
type = _type;
precision = _precision;
int featureCount = weights.cols;
switch(type)
{
case UNIFORM_SAME_SCALE:
generateSameBorders(featureCount);
break;
case UNIFORM_DIFFERENT_SCALES:
generateDifferentBorders(featureCount);
break;
default:
CV_Error(CV_StsBadArg, "Unknown train data type");
}
makeTrainData(weights, shift);
makeTestData(weights, shift);
}
@ -271,7 +282,7 @@ TEST(ML_SVMSGD, trainDifferentScales5)
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.05);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
test.safe_run();
}
@ -284,6 +295,44 @@ TEST(ML_SVMSGD, trainDifferentScales100)
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.10);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
test.safe_run();
}
TEST(ML_SVMSGD, twoPoints)
{
Mat samples(2, 2, CV_32FC1);
samples.at<float>(0,0) = 0;
samples.at<float>(0,1) = 0;
samples.at<float>(1,0) = 1000;
samples.at<float>(1,1) = 1;
Mat responses(2, 1, CV_32FC1);
responses.at<float>(0) = -1;
responses.at<float>(1) = 1;
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
Mat realWeights(1, 2, CV_32FC1);
realWeights.at<float>(0) = 1000;
realWeights.at<float>(1) = 1;
float realShift = -500000.5;
float normRealWeights = norm(realWeights);
realWeights /= normRealWeights;
realShift /= normRealWeights;
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
svmsgd->setOptimalParameters();
svmsgd->train( trainData );
Mat foundWeights = svmsgd->getWeights();
float foundShift = svmsgd->getShift();
float normFoundWeights = norm(foundWeights);
foundWeights /= normFoundWeights;
foundShift /= normFoundWeights;
CV_Assert((norm(foundWeights - realWeights) < 0.001) && (abs((foundShift - realShift) / realShift) < 0.05));
}

@ -48,8 +48,8 @@ bool doTrain( const Mat samples, const Mat responses, Mat &weights, float &shift
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
svmsgd->setOptimalParameters();
cv::Ptr<TrainData> train_data = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
svmsgd->train( train_data );
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
svmsgd->train( trainData );
if (svmsgd->isTrained())
{

Loading…
Cancel
Save