Merge remote-tracking branch 'upstream/master'

pull/1552/head
Tony 11 years ago
commit 41b8ab086b
  1. 10
      modules/calib3d/src/opencl/stereobm.cl
  2. 25
      modules/core/src/system.cpp
  3. 172
      modules/core/test/test_umat.cpp
  4. 12
      modules/features2d/include/opencv2/features2d.hpp
  5. 13
      modules/highgui/include/opencv2/highgui.hpp
  6. 1
      modules/highgui/include/opencv2/highgui/highgui_c.h
  7. 8
      modules/highgui/src/grfmt_jpeg.cpp
  8. 24
      modules/highgui/test/test_grfmt.cpp
  9. 28
      modules/imgproc/perf/opencl/perf_imgproc.cpp
  10. 12
      modules/imgproc/src/filter.cpp
  11. 5
      modules/imgproc/src/opencl/filter2D.cl

@ -147,6 +147,8 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
__local int best_disp[2];
__local int best_cost[2];
best_cost[nthread] = MAX_VAL;
best_disp[nthread] = MAX_VAL;
barrier(CLK_LOCAL_MEM_FENCE);
short costbuf[wsz];
int head = 0;
@ -159,7 +161,7 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
int costIdx = calcLocalIdx(lx, ly, d, sizeY);
cost = costFunc + costIdx;
short tempcost = 0;
int tempcost = 0;
if(x < cols-wsz2-mindisp && y < rows-wsz2)
{
int shift = 1*nthread + cols*(1-nthread);
@ -191,7 +193,7 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
barrier(CLK_LOCAL_MEM_FENCE);
if(best_cost[1] == tempcost)
best_disp[1] = ndisp - d - 1;
atomic_min(best_disp + 1, ndisp - d - 1);
barrier(CLK_LOCAL_MEM_FENCE);
int dispIdx = mad24(gy, disp_step, disp_offset + gx*(int)sizeof(short));
@ -209,6 +211,7 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
y = (ly < sizeY) ? gy + shiftY + ly : rows;
best_cost[nthread] = MAX_VAL;
best_disp[nthread] = MAX_VAL;
barrier(CLK_LOCAL_MEM_FENCE);
costIdx = calcLocalIdx(lx, ly, d, sizeY);
@ -227,12 +230,11 @@ __kernel void stereoBM(__global const uchar * leftptr, __global const uchar * ri
barrier(CLK_LOCAL_MEM_FENCE);
if(best_cost[nthread] == tempcost)
best_disp[nthread] = ndisp - d - 1;
atomic_min(best_disp + nthread, ndisp - d - 1);
barrier(CLK_LOCAL_MEM_FENCE);
int dispIdx = mad24(gy+ly, disp_step, disp_offset + (gx+lx)*(int)sizeof(short));
disp = (__global short *)(dispptr + dispIdx);
calcDisp(cost, disp, uniquenessRatio, mindisp, ndisp, 2*sizeY,
best_disp + nthread, best_cost + nthread, d, x, y, cols, rows, wsz2);
barrier(CLK_LOCAL_MEM_FENCE);

@ -414,24 +414,23 @@ const String& getBuildInformation()
String format( const char* fmt, ... )
{
char buf[1024];
AutoBuffer<char, 1024> buf;
va_list va;
va_start(va, fmt);
int len = vsnprintf(buf, sizeof(buf), fmt, va);
va_end(va);
if (len >= (int)sizeof(buf))
for ( ; ; )
{
String s(len, '\0');
va_list va;
va_start(va, fmt);
len = vsnprintf((char*)s.c_str(), len + 1, fmt, va);
(void)len;
int bsize = static_cast<int>(buf.size()),
len = vsnprintf((char *)buf, bsize, fmt, va);
va_end(va);
return s;
}
return String(buf, len);
if (len < 0 || len >= bsize)
{
buf.resize(std::max(bsize << 1, len + 1));
continue;
}
return String((char *)buf, len);
}
}
String tempfile( const char* suffix )

@ -795,4 +795,176 @@ TEST(UMat, ReadBufferRect)
EXPECT_MAT_NEAR(t, t2, 0);
}
// Use iGPU or OPENCV_OPENCL_DEVICE=:CPU: to catch problem
TEST(UMat, DISABLED_synchronization_map_unmap)
{
class TestParallelLoopBody : public cv::ParallelLoopBody
{
UMat u_;
public:
TestParallelLoopBody(const UMat& u) : u_(u) { }
void operator() (const cv::Range& range) const
{
printf("range: %d, %d -- begin\n", range.start, range.end);
for (int i = 0; i < 10; i++)
{
printf("%d: %d map...\n", range.start, i);
Mat m = u_.getMat(cv::ACCESS_READ);
printf("%d: %d unmap...\n", range.start, i);
m.release();
}
printf("range: %d, %d -- end\n", range.start, range.end);
}
};
try
{
UMat u(1000, 1000, CV_32FC1);
parallel_for_(cv::Range(0, 2), TestParallelLoopBody(u));
}
catch (const cv::Exception& e)
{
FAIL() << "Exception: " << e.what();
ADD_FAILURE();
}
catch (...)
{
FAIL() << "Exception!";
}
}
} } // namespace cvtest::ocl
TEST(UMat, DISABLED_bug_with_unmap)
{
for (int i = 0; i < 20; i++)
{
try
{
Mat m = Mat(1000, 1000, CV_8UC1);
UMat u = m.getUMat(ACCESS_READ);
UMat dst;
add(u, Scalar::all(0), dst); // start async operation
u.release();
m.release();
}
catch (const cv::Exception& e)
{
printf("i = %d... %s\n", i, e.what());
ADD_FAILURE();
}
catch (...)
{
printf("i = %d...\n", i);
ADD_FAILURE();
}
}
}
TEST(UMat, DISABLED_bug_with_unmap_in_class)
{
class Logic
{
public:
Logic() {}
void processData(InputArray input)
{
Mat m = input.getMat();
{
Mat dst;
m.convertTo(dst, CV_32FC1);
// some additional CPU-based per-pixel processing into dst
intermediateResult = dst.getUMat(ACCESS_READ);
std::cout << "data processed..." << std::endl;
} // problem is here: dst::~Mat()
std::cout << "leave ProcessData()" << std::endl;
}
UMat getResult() const { return intermediateResult; }
protected:
UMat intermediateResult;
};
try
{
Mat m = Mat(1000, 1000, CV_8UC1);
Logic l;
l.processData(m);
UMat result = l.getResult();
}
catch (const cv::Exception& e)
{
printf("exception... %s\n", e.what());
ADD_FAILURE();
}
catch (...)
{
printf("exception... \n");
ADD_FAILURE();
}
}
TEST(UMat, Test_same_behaviour_read_and_read)
{
bool exceptionDetected = false;
try
{
UMat u(Size(10, 10), CV_8UC1);
Mat m = u.getMat(ACCESS_READ);
UMat dst;
add(u, Scalar::all(1), dst);
}
catch (...)
{
exceptionDetected = true;
}
ASSERT_FALSE(exceptionDetected); // no data race, 2+ reads are valid
}
// VP: this test (and probably others from same_behaviour series) is not valid in my opinion.
TEST(UMat, DISABLED_Test_same_behaviour_read_and_write)
{
bool exceptionDetected = false;
try
{
UMat u(Size(10, 10), CV_8UC1);
Mat m = u.getMat(ACCESS_READ);
add(u, Scalar::all(1), u);
}
catch (...)
{
exceptionDetected = true;
}
ASSERT_TRUE(exceptionDetected); // data race
}
TEST(UMat, DISABLED_Test_same_behaviour_write_and_read)
{
bool exceptionDetected = false;
try
{
UMat u(Size(10, 10), CV_8UC1);
Mat m = u.getMat(ACCESS_WRITE);
UMat dst;
add(u, Scalar::all(1), dst);
}
catch (...)
{
exceptionDetected = true;
}
ASSERT_TRUE(exceptionDetected); // data race
}
TEST(UMat, DISABLED_Test_same_behaviour_write_and_write)
{
bool exceptionDetected = false;
try
{
UMat u(Size(10, 10), CV_8UC1);
Mat m = u.getMat(ACCESS_WRITE);
add(u, Scalar::all(1), u);
}
catch (...)
{
exceptionDetected = true;
}
ASSERT_TRUE(exceptionDetected); // data race
}

@ -616,14 +616,14 @@ protected:
};
class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
class CV_EXPORTS_W DenseFeatureDetector : public FeatureDetector
{
public:
explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
float featureScaleMul=0.1f,
int initXyStep=6, int initImgBound=0,
bool varyXyStepWithScale=true,
bool varyImgBoundWithScale=false );
CV_WRAP explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
float featureScaleMul=0.1f,
int initXyStep=6, int initImgBound=0,
bool varyXyStepWithScale=true,
bool varyImgBoundWithScale=false );
AlgorithmInfo* info() const;
protected:

@ -215,12 +215,13 @@ enum { IMREAD_UNCHANGED = -1, // 8bit, color or not
IMREAD_ANYCOLOR = 4 // ?, any color
};
enum { IMWRITE_JPEG_QUALITY = 1,
IMWRITE_PNG_COMPRESSION = 16,
IMWRITE_PNG_STRATEGY = 17,
IMWRITE_PNG_BILEVEL = 18,
IMWRITE_PXM_BINARY = 32,
IMWRITE_WEBP_QUALITY = 64
enum { IMWRITE_JPEG_QUALITY = 1,
IMWRITE_JPEG_PROGRESSIVE = 2,
IMWRITE_PNG_COMPRESSION = 16,
IMWRITE_PNG_STRATEGY = 17,
IMWRITE_PNG_BILEVEL = 18,
IMWRITE_PXM_BINARY = 32,
IMWRITE_WEBP_QUALITY = 64
};
enum { IMWRITE_PNG_STRATEGY_DEFAULT = 0,

@ -220,6 +220,7 @@ CVAPI(CvMat*) cvLoadImageM( const char* filename, int iscolor CV_DEFAULT(CV_LOAD
enum
{
CV_IMWRITE_JPEG_QUALITY =1,
CV_IMWRITE_JPEG_PROGRESSIVE =2,
CV_IMWRITE_PNG_COMPRESSION =16,
CV_IMWRITE_PNG_STRATEGY =17,
CV_IMWRITE_PNG_BILEVEL =18,

@ -598,6 +598,7 @@ bool JpegEncoder::write( const Mat& img, const std::vector<int>& params )
cinfo.in_color_space = channels > 1 ? JCS_RGB : JCS_GRAYSCALE;
int quality = 95;
int progressive = 0;
for( size_t i = 0; i < params.size(); i += 2 )
{
@ -606,11 +607,18 @@ bool JpegEncoder::write( const Mat& img, const std::vector<int>& params )
quality = params[i+1];
quality = MIN(MAX(quality, 0), 100);
}
if( params[i] == CV_IMWRITE_JPEG_PROGRESSIVE )
{
progressive = params[i+1];
}
}
jpeg_set_defaults( &cinfo );
jpeg_set_quality( &cinfo, quality,
TRUE /* limit to baseline-JPEG values */ );
if( progressive )
jpeg_simple_progression( &cinfo );
jpeg_start_compress( &cinfo, TRUE );
if( channels > 1 )

@ -386,6 +386,30 @@ TEST(Highgui_Jpeg, encode_empty)
ASSERT_THROW(cv::imencode(".jpg", img, jpegImg), cv::Exception);
}
TEST(Highgui_Jpeg, encode_decode_progressive_jpeg)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<int> params;
params.push_back(IMWRITE_JPEG_PROGRESSIVE);
params.push_back(1);
string output_progressive = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_progressive, img, params));
cv::Mat img_jpg_progressive = cv::imread(output_progressive);
string output_normal = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
cv::Mat img_jpg_normal = cv::imread(output_normal);
EXPECT_EQ(0, cv::norm(img_jpg_progressive, img_jpg_normal, NORM_INF));
remove(output_progressive.c_str());
}
#endif

@ -95,6 +95,34 @@ OCL_PERF_TEST_P(CalcHistFixture, CalcHist, OCL_TEST_SIZES)
SANITY_CHECK(hist);
}
///////////// calcHist ////////////////////////
typedef TestBaseWithParam<Size> CalcBackProjFixture;
OCL_PERF_TEST_P(CalcBackProjFixture, CalcBackProj, OCL_TEST_SIZES)
{
const Size srcSize = GetParam();
const std::vector<int> channels(1, 0);
std::vector<float> ranges(2);
std::vector<int> histSize(1, 256);
ranges[0] = 0;
ranges[1] = 256;
checkDeviceMaxMemoryAllocSize(srcSize, CV_8UC1);
UMat src(srcSize, CV_8UC1), hist(256, 1, CV_32FC1), dst(srcSize, CV_8UC1);
declare.in(src, WARMUP_RNG).out(hist);
cv::calcHist(std::vector<UMat>(1, src), channels, noArray(), hist, histSize, ranges, false);
declare.in(src, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::calcBackProject(std::vector<UMat>(1,src), channels, hist, dst, ranges, 1);
SANITY_CHECK_NOTHING();
}
/////////// CopyMakeBorder //////////////////////
CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101)

@ -42,7 +42,6 @@
#include "precomp.hpp"
#include "opencl_kernels.hpp"
#include <sstream>
/****************************************************************************************\
Base Image Filter
@ -3197,6 +3196,8 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
size_t tryWorkItems = maxWorkItemSizes[0];
char cvt[2][40];
String kerStr = ocl::kernelToStr(kernelMatDataFloat, CV_32F);
for ( ; ; )
{
size_t BLOCK_SIZE = tryWorkItems;
@ -3226,14 +3227,14 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
String opts = format("-D LOCAL_SIZE=%d -D BLOCK_SIZE_Y=%d -D cn=%d "
"-D ANCHOR_X=%d -D ANCHOR_Y=%d -D KERNEL_SIZE_X=%d -D KERNEL_SIZE_Y=%d "
"-D KERNEL_SIZE_Y2_ALIGNED=%d -D %s -D %s -D %s%s "
"-D KERNEL_SIZE_Y2_ALIGNED=%d -D %s -D %s -D %s%s%s "
"-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D WT=%s -D WT1=%s "
"-D convertToWT=%s -D convertToDstT=%s",
(int)BLOCK_SIZE, (int)BLOCK_SIZE_Y, cn, anchor.x, anchor.y,
ksize.width, ksize.height, kernel_size_y2_aligned, borderMap[borderType],
extra_extrapolation ? "EXTRA_EXTRAPOLATION" : "NO_EXTRA_EXTRAPOLATION",
isolated ? "BORDER_ISOLATED" : "NO_BORDER_ISOLATED",
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
doubleSupport ? " -D DOUBLE_SUPPORT" : "", kerStr.c_str(),
ocl::typeToStr(type), ocl::typeToStr(sdepth), ocl::typeToStr(dtype),
ocl::typeToStr(ddepth), ocl::typeToStr(wtype), ocl::typeToStr(wdepth),
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]),
@ -3255,7 +3256,7 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
}
_dst.create(sz, dtype);
UMat dst = _dst.getUMat(), kernalDataUMat(kernelMatDataFloat, true);
UMat dst = _dst.getUMat();
int srcOffsetX = (int)((src.offset % src.step) / src.elemSize());
int srcOffsetY = (int)(src.offset / src.step);
@ -3263,8 +3264,7 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
int srcEndY = (isolated ? (srcOffsetY + sz.height) : wholeSize.height);
k.args(ocl::KernelArg::PtrReadOnly(src), (int)src.step, srcOffsetX, srcOffsetY,
srcEndX, srcEndY, ocl::KernelArg::WriteOnly(dst),
ocl::KernelArg::PtrReadOnly(kernalDataUMat), (float)delta);
srcEndX, srcEndY, ocl::KernelArg::WriteOnly(dst), (float)delta);
return k.run(2, globalsize, localsize, false);
}

@ -200,8 +200,11 @@ inline WT readSrcPixel(int2 pos, __global const uchar * srcptr, int src_step, co
}
}
#define DIG(a) a,
__constant WT1 kernelData[] = { COEFF };
__kernel void filter2D(__global const uchar * srcptr, int src_step, int srcOffsetX, int srcOffsetY, int srcEndX, int srcEndY,
__global uchar * dstptr, int dst_step, int dst_offset, int rows, int cols, __constant WT1 * kernelData, float delta)
__global uchar * dstptr, int dst_step, int dst_offset, int rows, int cols, float delta)
{
const struct RectCoords srcCoords = { srcOffsetX, srcOffsetY, srcEndX, srcEndY }; // for non-isolated border: offsetX, offsetY, wholeX, wholeY

Loading…
Cancel
Save