mirror of https://github.com/opencv/opencv.git
use a batch_norm ocl kernel to do the work Signed-off-by: Li Peng <peng.li@intel.com>pull/10602/head
parent
be1207e5e4
commit
4189214d04
2 changed files with 99 additions and 41 deletions
@ -1,26 +1,84 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
||||
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
//M*/ |
||||
|
||||
__kernel void batchnorm(__global const T *src, int src_offset, |
||||
__global const float *meanMat, |
||||
float varMeanScale, |
||||
__global const float *invStdMat, |
||||
__global const float *weight, |
||||
__global const float *bias, |
||||
int hasWeight, int hasBias, |
||||
int width, int height, int channel, |
||||
__global T *dst, int dst_offset) |
||||
#define Dtype float |
||||
#define Dtype4 float4 |
||||
#define Dtype8 float8 |
||||
|
||||
#if NUM == 8 |
||||
#define load(src, index) vload8(0, src + index) |
||||
#define store(vec, dst, index) vstore8(vec, 0, dst + index) |
||||
#define vec_type Dtype8 |
||||
#define BATCH_NORM batch_norm8 |
||||
#elif NUM == 4 |
||||
#define load(src, index) vload4(0, src + index) |
||||
#define store(vec, dst, index) vstore4(vec, 0, dst + index) |
||||
#define vec_type Dtype4 |
||||
#define BATCH_NORM batch_norm4 |
||||
#elif NUM == 1 |
||||
#define load(src, index) src[index] |
||||
#define store(vec, dst, index) dst[index] = vec |
||||
#define vec_type Dtype |
||||
#define BATCH_NORM batch_norm1 |
||||
#endif |
||||
|
||||
__kernel void BATCH_NORM(__global const Dtype* src, |
||||
const int rows, |
||||
const int cols, |
||||
const int channels, |
||||
__global const Dtype* weight, |
||||
__global const Dtype* bias, |
||||
__global Dtype* dst) |
||||
{ |
||||
int x = get_global_id(0); |
||||
int y = get_global_id(1); |
||||
int c = get_global_id(2); |
||||
int y = get_global_id(1) * NUM; |
||||
int index = x * cols + y; |
||||
|
||||
if (x >= width || y >= height || c >= channel) |
||||
if (x >= rows || y >= cols) |
||||
return; |
||||
|
||||
float mean = meanMat[c] * varMeanScale; |
||||
float invstd = invStdMat[c]; |
||||
float w = hasWeight ? weight[c] : 1; |
||||
float b = hasBias ? bias[c] : 0; |
||||
int index = y * width + x + c * width * height; |
||||
T val = (src[index + src_offset] - mean) * w * invstd + b; |
||||
dst[index + dst_offset] = val; |
||||
Dtype w = weight[x % channels]; |
||||
Dtype b = bias[x % channels]; |
||||
vec_type src_vec = load(src, index); |
||||
vec_type dst_vec = src_vec * w + (vec_type)b; |
||||
store(dst_vec, dst, index); |
||||
} |
||||
|
Loading…
Reference in new issue