Added linear programming based stabilizer (videostab)

pull/2/head
Alexey Spizhevoy 13 years ago
parent c4af85043a
commit 40e7990b6b
  1. 30
      modules/videostab/include/opencv2/videostab/global_motion.hpp
  2. 2
      modules/videostab/include/opencv2/videostab/inpainting.hpp
  3. 46
      modules/videostab/include/opencv2/videostab/motion_stabilizing.hpp
  4. 6
      modules/videostab/src/global_motion.cpp
  5. 4
      modules/videostab/src/inpainting.cpp
  6. 445
      modules/videostab/src/motion_stabilizing.cpp
  7. 4
      modules/videostab/src/stabilizer.cpp
  8. 4
      modules/videostab/src/wobble_suppression.cpp
  9. 70
      samples/cpp/videostab.cpp

@ -57,16 +57,16 @@ namespace videostab
enum MotionModel
{
TRANSLATION = 0,
TRANSLATION_AND_SCALE = 1,
LINEAR_SIMILARITY = 2,
AFFINE = 3,
HOMOGRAPHY = 4,
UNKNOWN = 5
MM_TRANSLATION = 0,
MM_TRANSLATION_AND_SCALE = 1,
MM_LINEAR_SIMILARITY = 2,
MM_AFFINE = 3,
MM_HOMOGRAPHY = 4,
MM_UNKNOWN = 5
};
CV_EXPORTS Mat estimateGlobalMotionLeastSquares(
int npoints, Point2f *points0, Point2f *points1, int model = AFFINE, float *rmse = 0);
int npoints, Point2f *points0, Point2f *points1, int model = MM_AFFINE, float *rmse = 0);
struct CV_EXPORTS RansacParams
{
@ -81,14 +81,14 @@ struct CV_EXPORTS RansacParams
static RansacParams default2dMotion(MotionModel model)
{
CV_Assert(model < UNKNOWN);
if (model == TRANSLATION)
CV_Assert(model < MM_UNKNOWN);
if (model == MM_TRANSLATION)
return RansacParams(1, 0.5f, 0.5f, 0.99f);
if (model == TRANSLATION_AND_SCALE)
if (model == MM_TRANSLATION_AND_SCALE)
return RansacParams(2, 0.5f, 0.5f, 0.99f);
if (model == LINEAR_SIMILARITY)
if (model == MM_LINEAR_SIMILARITY)
return RansacParams(2, 0.5f, 0.5f, 0.99f);
if (model == AFFINE)
if (model == MM_AFFINE)
return RansacParams(3, 0.5f, 0.5f, 0.99f);
return RansacParams(4, 0.5f, 0.5f, 0.99f);
}
@ -96,13 +96,13 @@ struct CV_EXPORTS RansacParams
CV_EXPORTS Mat estimateGlobalMotionRobust(
const std::vector<Point2f> &points0, const std::vector<Point2f> &points1,
int model = AFFINE, const RansacParams &params = RansacParams::default2dMotion(AFFINE),
int model = MM_AFFINE, const RansacParams &params = RansacParams::default2dMotion(MM_AFFINE),
float *rmse = 0, int *ninliers = 0);
class CV_EXPORTS GlobalMotionEstimatorBase
{
public:
GlobalMotionEstimatorBase() : motionModel_(UNKNOWN) {}
GlobalMotionEstimatorBase() : motionModel_(MM_UNKNOWN) {}
virtual ~GlobalMotionEstimatorBase() {}
virtual void setMotionModel(MotionModel val) { motionModel_ = val; }
@ -138,7 +138,7 @@ private:
class CV_EXPORTS PyrLkRobustMotionEstimator : public GlobalMotionEstimatorBase
{
public:
PyrLkRobustMotionEstimator(MotionModel model = AFFINE);
PyrLkRobustMotionEstimator(MotionModel model = MM_AFFINE);
void setDetector(Ptr<FeatureDetector> val) { detector_ = val; }
Ptr<FeatureDetector> detector() const { return detector_; }

@ -59,7 +59,7 @@ class CV_EXPORTS InpainterBase
{
public:
InpainterBase()
: radius_(0), motionModel_(UNKNOWN), frames_(0), motions_(0),
: radius_(0), motionModel_(MM_UNKNOWN), frames_(0), motions_(0),
stabilizedFrames_(0), stabilizationMotions_(0) {}
virtual ~InpainterBase() {}

@ -61,7 +61,7 @@ public:
// assumes that [0, size-1) is in or equals to [range.first, range.second)
virtual void stabilize(
int size, const std::vector<Mat> &motions, std::pair<int,int> range,
Mat *stabilizationMotions) const = 0;
Mat *stabilizationMotions) = 0;
};
class CV_EXPORTS MotionStabilizationPipeline : public IMotionStabilizer
@ -72,7 +72,7 @@ public:
virtual void stabilize(
int size, const std::vector<Mat> &motions, std::pair<int,int> range,
Mat *stabilizationMotions) const;
Mat *stabilizationMotions);
private:
std::vector<Ptr<IMotionStabilizer> > stabilizers_;
@ -84,11 +84,11 @@ public:
virtual ~MotionFilterBase() {}
virtual Mat stabilize(
int idx, const std::vector<Mat> &motions, std::pair<int,int> range) const = 0;
int idx, const std::vector<Mat> &motions, std::pair<int,int> range) = 0;
virtual void stabilize(
int size, const std::vector<Mat> &motions, std::pair<int,int> range,
Mat *stabilizationMotions) const;
Mat *stabilizationMotions);
};
class CV_EXPORTS GaussianMotionFilter : public MotionFilterBase
@ -101,7 +101,7 @@ public:
float stdev() const { return stdev_; }
virtual Mat stabilize(
int idx, const std::vector<Mat> &motions, std::pair<int,int> range) const;
int idx, const std::vector<Mat> &motions, std::pair<int,int> range);
private:
int radius_;
@ -112,17 +112,49 @@ private:
class CV_EXPORTS LpMotionStabilizer : public IMotionStabilizer
{
public:
LpMotionStabilizer(MotionModel model = LINEAR_SIMILARITY);
LpMotionStabilizer(MotionModel model = MM_LINEAR_SIMILARITY);
void setMotionModel(MotionModel val) { model_ = val; }
MotionModel motionModel() const { return model_; }
void setFrameSize(Size val) { frameSize_ = val; }
Size frameSize() const { return frameSize_; }
void setTrimRatio(float val) { trimRatio_ = val; }
float trimRatio() const { return trimRatio_; }
void setWeight1(float val) { w1_ = val; }
float weight1() const { return w1_; }
void setWeight2(float val) { w2_ = val; }
float weight2() const { return w2_; }
void setWeight3(float val) { w3_ = val; }
float weight3() const { return w3_; }
void setWeight4(float val) { w4_ = val; }
float weight4() const { return w4_; }
virtual void stabilize(
int size, const std::vector<Mat> &motions, std::pair<int,int> range,
Mat *stabilizationMotions) const;
Mat *stabilizationMotions);
private:
MotionModel model_;
Size frameSize_;
float trimRatio_;
float w1_, w2_, w3_, w4_;
std::vector<double> obj_, collb_, colub_;
std::vector<int> rows_, cols_;
std::vector<double> elems_, rowlb_, rowub_;
void set(int row, int col, double coef)
{
rows_.push_back(row);
cols_.push_back(col);
elems_.push_back(coef);
}
};
CV_EXPORTS Mat ensureInclusionConstraint(const Mat &M, Size size, float trimRatio);

@ -228,7 +228,7 @@ static Mat estimateGlobMotionLeastSquaresAffine(
Mat estimateGlobalMotionLeastSquares(
int npoints, Point2f *points0, Point2f *points1, int model, float *rmse)
{
CV_Assert(model <= AFFINE);
CV_Assert(model <= MM_AFFINE);
typedef Mat (*Impl)(int, Point2f*, Point2f*, float*);
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
@ -244,7 +244,7 @@ Mat estimateGlobalMotionRobust(
const vector<Point2f> &points0, const vector<Point2f> &points1, int model,
const RansacParams &params, float *rmse, int *ninliers)
{
CV_Assert(model <= AFFINE);
CV_Assert(model <= MM_AFFINE);
CV_Assert(points0.size() == points1.size());
const int npoints = static_cast<int>(points0.size());
@ -436,7 +436,7 @@ Mat PyrLkRobustMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, b
int ninliers;
Mat_<float> M;
if (motionModel_ != HOMOGRAPHY)
if (motionModel_ != MM_HOMOGRAPHY)
M = estimateGlobalMotionRobust(
pointsPrevGood_, pointsGood_, motionModel_, ransacParams_, &rmse, &ninliers);
else

@ -375,7 +375,7 @@ void MotionInpainter::inpaint(int idx, Mat &frame, Mat &mask)
frame1_ = at(neighbor, *frames_);
if (motionModel_ != HOMOGRAPHY)
if (motionModel_ != MM_HOMOGRAPHY)
warpAffine(
frame1_, transformedFrame1_, motion1to0(Rect(0,0,3,2)), frame1_.size(),
INTER_LINEAR, borderMode_);
@ -388,7 +388,7 @@ void MotionInpainter::inpaint(int idx, Mat &frame, Mat &mask)
// warp mask
if (motionModel_ != HOMOGRAPHY)
if (motionModel_ != MM_HOMOGRAPHY)
warpAffine(
mask1_, transformedMask1_, motion1to0(Rect(0,0,3,2)), mask1_.size(),
INTER_NEAREST);

@ -47,8 +47,13 @@
#ifdef HAVE_CLP
#include "coin/ClpSimplex.hpp"
#include "coin/ClpPresolve.hpp"
#include "coin/ClpPrimalColumnSteepest.hpp"
#include "coin/ClpDualRowSteepest.hpp"
#endif
#define INF 1e10
using namespace std;
namespace cv
@ -58,7 +63,7 @@ namespace videostab
void MotionStabilizationPipeline::stabilize(
int size, const vector<Mat> &motions, pair<int,int> range,
Mat *stabilizationMotions) const
Mat *stabilizationMotions)
{
vector<Mat> updatedMotions(motions.size());
for (size_t i = 0; i < motions.size(); ++i)
@ -87,7 +92,7 @@ void MotionStabilizationPipeline::stabilize(
void MotionFilterBase::stabilize(
int size, const vector<Mat> &motions, pair<int,int> range, Mat *stabilizationMotions) const
int size, const vector<Mat> &motions, pair<int,int> range, Mat *stabilizationMotions)
{
for (int i = 0; i < size; ++i)
stabilizationMotions[i] = stabilize(i, motions, range);
@ -108,7 +113,7 @@ void GaussianMotionFilter::setParams(int radius, float stdev)
}
Mat GaussianMotionFilter::stabilize(int idx, const vector<Mat> &motions, pair<int,int> range) const
Mat GaussianMotionFilter::stabilize(int idx, const vector<Mat> &motions, pair<int,int> range)
{
const Mat &cur = at(idx, motions);
Mat res = Mat::zeros(cur.size(), cur.type());
@ -260,23 +265,449 @@ float estimateOptimalTrimRatio(const Mat &M, Size size)
LpMotionStabilizer::LpMotionStabilizer(MotionModel model)
{
setMotionModel(model);
setFrameSize(Size(0,0));
setTrimRatio(0.1);
setWeight1(1);
setWeight2(10);
setWeight3(100);
setWeight4(100);
}
#ifndef HAVE_CLP
void LpMotionStabilizer::stabilize(int, const vector<Mat>&, pair<int,int>, Mat*) const
{
CV_Error(CV_StsError, "The library is built without Clp support");
}
#else
void LpMotionStabilizer::stabilize(
int size, const vector<Mat> &motions, pair<int,int> range,
Mat *stabilizationMotions) const
Mat *stabilizationMotions)
{
// TODO implement
CV_Error(CV_StsNotImplemented, "LpMotionStabilizer::stabilize");
CV_Assert(model_ == MM_LINEAR_SIMILARITY);
int N = size;
const vector<Mat> &M = motions;
Mat *S = stabilizationMotions;
double w = frameSize_.width, h = frameSize_.height;
double tw = w * trimRatio_, th = h * trimRatio_;
int ncols = 4*N + 6*(N-1) + 6*(N-2) + 6*(N-3);
int nrows = 8*N + 2*6*(N-1) + 2*6*(N-2) + 2*6*(N-3);
obj_.assign(ncols, 0);
collb_.assign(ncols, -INF);
colub_.assign(ncols, INF);
int c = 4*N;
// for each slack variable e[t] (error bound)
for (int t = 0; t < N-1; ++t, c += 6)
{
// e[t](0,0)
obj_[c] = w4_*w1_;
collb_[c] = 0;
// e[t](0,1)
obj_[c+1] = w4_*w1_;
collb_[c+1] = 0;
// e[t](0,2)
obj_[c+2] = w1_;
collb_[c+2] = 0;
// e[t](1,0)
obj_[c+3] = w4_*w1_;
collb_[c+3] = 0;
// e[t](1,1)
obj_[c+4] = w4_*w1_;
collb_[c+4] = 0;
// e[t](1,2)
obj_[c+5] = w1_;
collb_[c+5] = 0;
}
for (int t = 0; t < N-2; ++t, c += 6)
{
// e[t](0,0)
obj_[c] = w4_*w2_;
collb_[c] = 0;
// e[t](0,1)
obj_[c+1] = w4_*w2_;
collb_[c+1] = 0;
// e[t](0,2)
obj_[c+2] = w2_;
collb_[c+2] = 0;
// e[t](1,0)
obj_[c+3] = w4_*w2_;
collb_[c+3] = 0;
// e[t](1,1)
obj_[c+4] = w4_*w2_;
collb_[c+4] = 0;
// e[t](1,2)
obj_[c+5] = w2_;
collb_[c+5] = 0;
}
for (int t = 0; t < N-3; ++t, c += 6)
{
// e[t](0,0)
obj_[c] = w4_*w3_;
collb_[c] = 0;
// e[t](0,1)
obj_[c+1] = w4_*w3_;
collb_[c+1] = 0;
// e[t](0,2)
obj_[c+2] = w3_;
collb_[c+2] = 0;
// e[t](1,0)
obj_[c+3] = w4_*w3_;
collb_[c+3] = 0;
// e[t](1,1)
obj_[c+4] = w4_*w3_;
collb_[c+4] = 0;
// e[t](1,2)
obj_[c+5] = w3_;
collb_[c+5] = 0;
}
elems_.clear();
rowlb_.assign(nrows, -INF);
rowub_.assign(nrows, INF);
vector<CoinShallowPackedVector> packedRows;
packedRows.reserve(nrows);
int r = 0;
// frame corners
const Point2d pt[] = {Point2d(0,0), Point2d(w,0), Point2d(w,h), Point2d(0,h)};
// for each frame
for (int t = 0; t < N; ++t)
{
c = 4*t;
// for each frame corner
for (int i = 0; i < 4; ++i, r += 2)
{
set(r, c, pt[i].x); set(r, c+1, pt[i].y); set(r, c+2, 1);
set(r+1, c, pt[i].y); set(r+1, c+1, -pt[i].x); set(r+1, c+3, 1);
rowlb_[r] = pt[i].x-tw; rowub_[r] = pt[i].x+tw;
rowlb_[r+1] = pt[i].y-th; rowub_[r+1] = pt[i].y+th;
}
}
// for each S[t+1]M[t] - S[t] - e[t] <= 0 condition
for (int t = 0; t < N-1; ++t, r += 6)
{
Mat_<float> M0 = at(t,M);
c = 4*t;
set(r, c, -1);
set(r+1, c+1, -1);
set(r+2, c+2, -1);
set(r+3, c+1, 1);
set(r+4, c, -1);
set(r+5, c+3, -1);
c = 4*(t+1);
set(r, c, M0(0,0)); set(r, c+1, M0(1,0));
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1));
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1);
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0));
set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1));
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, -1);
rowub_[r] = 0;
rowub_[r+1] = 0;
rowub_[r+2] = 0;
rowub_[r+3] = 0;
rowub_[r+4] = 0;
rowub_[r+5] = 0;
}
// for each 0 <= S[t+1]M[t] - S[t] + e[t] condition
for (int t = 0; t < N-1; ++t, r += 6)
{
Mat_<float> M0 = at(t,M);
c = 4*t;
set(r, c, -1);
set(r+1, c+1, -1);
set(r+2, c+2, -1);
set(r+3, c+1, 1);
set(r+4, c, -1);
set(r+5, c+3, -1);
c = 4*(t+1);
set(r, c, M0(0,0)); set(r, c+1, M0(1,0));
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1));
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1);
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0));
set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1));
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, 1);
rowlb_[r] = 0;
rowlb_[r+1] = 0;
rowlb_[r+2] = 0;
rowlb_[r+3] = 0;
rowlb_[r+4] = 0;
rowlb_[r+5] = 0;
}
// for each S[t+2]M[t+1] - S[t+1]*(I+M[t]) + S[t] - e[t] <= 0 condition
for (int t = 0; t < N-2; ++t, r += 6)
{
Mat_<float> M0 = at(t,M), M1 = at(t+1,M);
c = 4*t;
set(r, c, 1);
set(r+1, c+1, 1);
set(r+2, c+2, 1);
set(r+3, c+1, -1);
set(r+4, c, 1);
set(r+5, c+3, 1);
c = 4*(t+1);
set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0));
set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1);
set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2);
set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1);
set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1));
set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2);
c = 4*(t+2);
set(r, c, M1(0,0)); set(r, c+1, M1(1,0));
set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1));
set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1);
set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0));
set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1));
set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*(N-1) + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, -1);
rowub_[r] = 0;
rowub_[r+1] = 0;
rowub_[r+2] = 0;
rowub_[r+3] = 0;
rowub_[r+4] = 0;
rowub_[r+5] = 0;
}
// for each 0 <= S[t+2]M[t+1]] - S[t+1]*(I+M[t]) + S[t] + e[t] condition
for (int t = 0; t < N-2; ++t, r += 6)
{
Mat_<float> M0 = at(t,M), M1 = at(t+1,M);
c = 4*t;
set(r, c, 1);
set(r+1, c+1, 1);
set(r+2, c+2, 1);
set(r+3, c+1, -1);
set(r+4, c, 1);
set(r+5, c+3, 1);
c = 4*(t+1);
set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0));
set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1);
set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2);
set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1);
set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1));
set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2);
c = 4*(t+2);
set(r, c, M1(0,0)); set(r, c+1, M1(1,0));
set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1));
set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1);
set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0));
set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1));
set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*(N-1) + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, 1);
rowlb_[r] = 0;
rowlb_[r+1] = 0;
rowlb_[r+2] = 0;
rowlb_[r+3] = 0;
rowlb_[r+4] = 0;
rowlb_[r+5] = 0;
}
// for each S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) - S[t] - e[t] <= 0 condition
for (int t = 0; t < N-3; ++t, r += 6)
{
Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M);
c = 4*t;
set(r, c, -1);
set(r+1, c+1, -1);
set(r+2, c+2, -1);
set(r+3, c+1, 1);
set(r+4, c, -1);
set(r+5, c+3, -1);
c = 4*(t+1);
set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0));
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2);
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3);
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2);
set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1));
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3);
c = 4*(t+2);
set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0));
set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1);
set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3);
set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1);
set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1));
set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3);
c = 4*(t+3);
set(r, c, M2(0,0)); set(r, c+1, M2(1,0));
set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1));
set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1);
set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0));
set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1));
set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*(N-1) + 6*(N-2) + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, -1);
rowub_[r] = 0;
rowub_[r+1] = 0;
rowub_[r+2] = 0;
rowub_[r+3] = 0;
rowub_[r+4] = 0;
rowub_[r+5] = 0;
}
// for each 0 <= S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) + e[t] condition
for (int t = 0; t < N-3; ++t, r += 6)
{
Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M);
c = 4*t;
set(r, c, -1);
set(r+1, c+1, -1);
set(r+2, c+2, -1);
set(r+3, c+1, 1);
set(r+4, c, -1);
set(r+5, c+3, -1);
c = 4*(t+1);
set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0));
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2);
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3);
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2);
set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1));
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3);
c = 4*(t+2);
set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0));
set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1);
set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3);
set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1);
set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1));
set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3);
c = 4*(t+3);
set(r, c, M2(0,0)); set(r, c+1, M2(1,0));
set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1));
set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1);
set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0));
set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1));
set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1);
c = 4*N + 6*(N-1) + 6*(N-2) + 6*t;
for (int i = 0; i < 6; ++i)
set(r+i, c+i, 1);
rowlb_[r] = 0;
rowlb_[r+1] = 0;
rowlb_[r+2] = 0;
rowlb_[r+3] = 0;
rowlb_[r+4] = 0;
rowlb_[r+5] = 0;
}
// solve
CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size());
A.setDimensions(nrows, ncols);
ClpSimplex model;
model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]);
ClpDualRowSteepest dualSteep(1);
model.setDualRowPivotAlgorithm(dualSteep);
ClpPrimalColumnSteepest primalSteep(1);
model.setPrimalColumnPivotAlgorithm(primalSteep);
model.scaling(1);
ClpPresolve presolveInfo;
Ptr<ClpSimplex> presolvedModel = presolveInfo.presolvedModel(model);
if (!presolvedModel.empty())
{
presolvedModel->dual();
presolveInfo.postsolve(true);
model.checkSolution();
model.primal(1);
}
else
{
model.dual();
model.checkSolution();
model.primal(1);
}
// save results
const double *sol = model.getColSolution();
c = 0;
for (int t = 0; t < N; ++t, c += 4)
{
Mat_<float> S0 = Mat::eye(3, 3, CV_32F);
S0(1,1) = S0(0,0) = sol[c];
S0(0,1) = sol[c+1];
S0(1,0) = -sol[c+1];
S0(0,2) = sol[c+2];
S0(1,2) = sol[c+3];
S[t] = S0;
}
}
#endif
#endif // #ifndef HAVE_CLP
} // namespace videostab
} // namespace cv

@ -194,7 +194,7 @@ void StabilizerBase::stabilizeFrame()
// apply stabilization transformation
if (motionEstimator_->motionModel() != HOMOGRAPHY)
if (motionEstimator_->motionModel() != MM_HOMOGRAPHY)
warpAffine(
preProcessedFrame_, at(curStabilizedPos_, stabilizedFrames_),
stabilizationMotion(Rect(0,0,3,2)), frameSize_, INTER_LINEAR, borderMode_);
@ -205,7 +205,7 @@ void StabilizerBase::stabilizeFrame()
if (doInpainting_)
{
if (motionEstimator_->motionModel() != HOMOGRAPHY)
if (motionEstimator_->motionModel() != MM_HOMOGRAPHY)
warpAffine(
frameMask_, at(curStabilizedPos_, stabilizedMasks_),
stabilizationMotion(Rect(0,0,3,2)), frameSize_, INTER_NEAREST);

@ -54,8 +54,8 @@ namespace videostab
WobbleSuppressorBase::WobbleSuppressorBase() : motions_(0), stabilizationMotions_(0)
{
PyrLkRobustMotionEstimator *est = new PyrLkRobustMotionEstimator();
est->setMotionModel(HOMOGRAPHY);
est->setRansacParams(RansacParams::default2dMotion(HOMOGRAPHY));
est->setMotionModel(MM_HOMOGRAPHY);
est->setRansacParams(RansacParams::default2dMotion(MM_HOMOGRAPHY));
setMotionEstimator(est);
}

@ -86,6 +86,18 @@ void printHelp()
" --stdev=(<float_number>|auto)\n"
" Set smoothing weights standard deviation. The default is auto\n"
" (i.e. sqrt(radius)).\n"
" -lp, --lp-stab=(yes|no)\n"
" Turn on/off linear programming based stabilization method.\n"
" --lp-trim-ratio=(<float_number>|auto)\n"
" Trimming ratio used in linear programming based method.\n"
" --lp-w1=(<float_number>|1)\n"
" 1st derivative weight. The default is 1.\n"
" --lp-w2=(<float_number>|10)\n"
" 2nd derivative weight. The default is 10.\n"
" --lp-w3=(<float_number>|100)\n"
" 3rd derivative weight. The default is 100.\n"
" --lp-w4=(<float_number>|100)\n"
" Non-translation motion components weight. The default is 100.\n\n"
" --deblur=(yes|no)\n"
" Do deblurring.\n"
" --deblur-sens=<float_number>\n"
@ -160,6 +172,12 @@ int main(int argc, const char **argv)
"{ lm | load-motions | no | }"
"{ r | radius | 15 | }"
"{ | stdev | auto | }"
"{ lp | lp-stab | no | }"
"{ | lp-trim-ratio | auto | }"
"{ | lp-w1 | 1 | }"
"{ | lp-w2 | 10 | }"
"{ | lp-w3 | 100 | }"
"{ | lp-w4 | 100 | }"
"{ | deblur | no | }"
"{ | deblur-sens | 0.1 | }"
"{ et | est-trim | yes | }"
@ -194,19 +212,37 @@ int main(int argc, const char **argv)
{
printHelp();
return 0;
}
}
string inputPath = arg("1");
if (inputPath.empty()) throw runtime_error("specify video file path");
VideoFileSource *source = new VideoFileSource(inputPath);
cout << "frame count (rough): " << source->count() << endl;
if (arg("fps") == "auto") outputFps = source->fps(); else outputFps = argd("fps");
StabilizerBase *stabilizer;
bool isTwoPass =
arg("est-trim") == "yes" || arg("wobble-suppress") == "yes";
arg("est-trim") == "yes" || arg("wobble-suppress") == "yes" || arg("lp-stab") == "yes";
if (isTwoPass)
{
TwoPassStabilizer *twoPassStabilizer = new TwoPassStabilizer();
stabilizer = twoPassStabilizer;
twoPassStabilizer->setEstimateTrimRatio(arg("est-trim") == "yes");
if (arg("stdev") == "auto")
if (arg("lp-stab") == "yes")
{
LpMotionStabilizer *stab = new LpMotionStabilizer();
stab->setFrameSize(Size(source->width(), source->height()));
stab->setTrimRatio(arg("lp-trim-ratio") == "auto" ? argf("trim-ratio") : argf("lp-trim-ratio"));
stab->setWeight1(argf("lp-w1"));
stab->setWeight2(argf("lp-w2"));
stab->setWeight3(argf("lp-w3"));
stab->setWeight4(argf("lp-w4"));
twoPassStabilizer->setMotionStabilizer(stab);
}
else if (arg("stdev") == "auto")
twoPassStabilizer->setMotionStabilizer(new GaussianMotionFilter(argi("radius")));
else
twoPassStabilizer->setMotionStabilizer(new GaussianMotionFilter(argi("radius"), argf("stdev")));
@ -219,15 +255,15 @@ int main(int argc, const char **argv)
PyrLkRobustMotionEstimator *est = 0;
if (arg("ws-model") == "transl")
est = new PyrLkRobustMotionEstimator(TRANSLATION);
est = new PyrLkRobustMotionEstimator(MM_TRANSLATION);
else if (arg("ws-model") == "transl_and_scale")
est = new PyrLkRobustMotionEstimator(TRANSLATION_AND_SCALE);
est = new PyrLkRobustMotionEstimator(MM_TRANSLATION_AND_SCALE);
else if (arg("ws-model") == "linear_sim")
est = new PyrLkRobustMotionEstimator(LINEAR_SIMILARITY);
est = new PyrLkRobustMotionEstimator(MM_LINEAR_SIMILARITY);
else if (arg("ws-model") == "affine")
est = new PyrLkRobustMotionEstimator(AFFINE);
est = new PyrLkRobustMotionEstimator(MM_AFFINE);
else if (arg("ws-model") == "homography")
est = new PyrLkRobustMotionEstimator(HOMOGRAPHY);
est = new PyrLkRobustMotionEstimator(MM_HOMOGRAPHY);
else
{
delete est;
@ -266,28 +302,22 @@ int main(int argc, const char **argv)
else
onePassStabilizer->setMotionFilter(new GaussianMotionFilter(argi("radius"), argf("stdev")));
}
stabilizedFrames = dynamic_cast<IFrameSource*>(stabilizer);
string inputPath = arg("1");
if (inputPath.empty()) throw runtime_error("specify video file path");
VideoFileSource *source = new VideoFileSource(inputPath);
cout << "frame count (rough): " << source->count() << endl;
if (arg("fps") == "auto") outputFps = source->fps(); else outputFps = argd("fps");
stabilizer->setFrameSource(source);
stabilizedFrames = dynamic_cast<IFrameSource*>(stabilizer);
PyrLkRobustMotionEstimator *est = 0;
if (arg("model") == "transl")
est = new PyrLkRobustMotionEstimator(TRANSLATION);
est = new PyrLkRobustMotionEstimator(MM_TRANSLATION);
else if (arg("model") == "transl_and_scale")
est = new PyrLkRobustMotionEstimator(TRANSLATION_AND_SCALE);
est = new PyrLkRobustMotionEstimator(MM_TRANSLATION_AND_SCALE);
else if (arg("model") == "linear_sim")
est = new PyrLkRobustMotionEstimator(LINEAR_SIMILARITY);
est = new PyrLkRobustMotionEstimator(MM_LINEAR_SIMILARITY);
else if (arg("model") == "affine")
est = new PyrLkRobustMotionEstimator(AFFINE);
est = new PyrLkRobustMotionEstimator(MM_AFFINE);
else if (arg("model") == "homography")
est = new PyrLkRobustMotionEstimator(HOMOGRAPHY);
est = new PyrLkRobustMotionEstimator(MM_HOMOGRAPHY);
else
{
delete est;

Loading…
Cancel
Save