Refactored SVMSGD class

pull/6096/head
Marina Noskova 9 years ago
parent a2f0963d66
commit 40bf97c6d1
  1. 1
      include/opencv2/opencv.hpp
  2. 120
      modules/ml/include/opencv2/ml.hpp
  3. 134
      modules/ml/include/opencv2/ml/svmsgd.hpp
  4. 2
      modules/ml/src/precomp.hpp
  5. 463
      modules/ml/src/svmsgd.cpp
  6. 31
      modules/ml/test/test_mltests2.cpp
  7. 3
      modules/ml/test/test_precomp.hpp
  8. 17
      modules/ml/test/test_save_load.cpp
  9. 182
      modules/ml/test/test_svmsgd.cpp
  10. 226
      samples/cpp/train_svmsgd.cpp

@ -75,6 +75,7 @@
#endif #endif
#ifdef HAVE_OPENCV_ML #ifdef HAVE_OPENCV_ML
#include "opencv2/ml.hpp" #include "opencv2/ml.hpp"
#include "opencv2/ml/svmsgd.hpp"
#endif #endif
#endif #endif

@ -1513,126 +1513,6 @@ CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, Out
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses, CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
OutputArray samples, OutputArray responses); OutputArray samples, OutputArray responses);
/****************************************************************************************\
* Stochastic Gradient Descent SVM Classifier *
\****************************************************************************************/
/*!
@brief Stochastic Gradient Descent SVM classifier
SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, as presented in @cite bottou2010large.
The gradient descent show amazing performance for large-scale problems, reducing the computing time. This allows a fast and reliable online update of the classifier for each new feature which
is fundamental when dealing with variations of data over time (like weather and illumination changes in videosurveillance, for example).
First, create the SVMSGD object. To enable the online update, a value for updateFrequency should be defined.
Then the SVM model can be trained using the train features and the correspondent labels.
After that, the label of a new feature vector can be predicted using the predict function. If the updateFrequency was defined in the constructor, the predict function will update the weights automatically.
@code
// Initialize object
SVMSGD SvmSgd;
// Train the Stochastic Gradient Descent SVM
SvmSgd.train(trainFeatures, labels);
// Predict label for the new feature vector (1xM)
predictedLabel = SvmSgd.predict(newFeatureVector);
@endcode
*/
class CV_EXPORTS_W SVMSGD {
public:
/** @brief SGDSVM constructor.
@param lambda regularization
@param learnRate learning rate
@param nIterations number of training iterations
*/
SVMSGD(float lambda = 0.000001, float learnRate = 2, uint nIterations = 100000);
/** @brief SGDSVM constructor.
@param updateFrequency online update frequency
@param learnRateDecay learn rate decay over time: learnRate = learnRate * learnDecay
@param lambda regularization
@param learnRate learning rate
@param nIterations number of training iterations
*/
SVMSGD(uint updateFrequency, float learnRateDecay = 1, float lambda = 0.000001, float learnRate = 2, uint nIterations = 100000);
virtual ~SVMSGD();
virtual SVMSGD* clone() const;
/** @brief Train the SGDSVM classifier.
The function trains the SGDSVM classifier using the train features and the correspondent labels (-1 or 1).
@param trainFeatures features used for training. Each row is a new sample.
@param labels mat (size Nx1 with N = number of features) with the label of each training feature.
*/
virtual void train(cv::Mat trainFeatures, cv::Mat labels);
/** @brief Predict the label of a new feature vector.
The function predicts and returns the label of a new feature vector, using the previously trained SVM model.
@param newFeature new feature vector used for prediction
*/
virtual float predict(cv::Mat newFeature);
/** @brief Returns the weights of the trained model.
*/
virtual std::vector<float> getWeights(){ return _weights; };
/** @brief Sets the weights of the trained model.
@param weights weights used to predict the label of a new feature vector.
*/
virtual void setWeights(std::vector<float> weights){ _weights = weights; };
private:
void updateWeights();
void generateRandomIndex();
float calcInnerProduct(float *rowDataPointer);
void updateWeights(float innerProduct, float *rowDataPointer, int label);
// Vector with SVM weights
std::vector<float> _weights;
// Random index generation
long long int _randomNumber;
unsigned int _randomIndex;
// Number of features and samples
unsigned int _nFeatures;
unsigned int _nTrainSamples;
// Parameters for learning
float _lambda; //regularization
float _learnRate; //learning rate
unsigned int _nIterations; //number of training iterations
// Vars to control the features slider matrix
bool _onlineUpdate;
bool _initPredict;
uint _slidingWindowSize;
uint _predictSlidingWindowSize;
float* _labelSlider;
float _learnRateDecay;
// Mat with features slider and correspondent counter
unsigned int _sliderCounter;
cv::Mat _featuresSlider;
};
//! @} ml //! @} ml

@ -0,0 +1,134 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_ML_SVMSGD_HPP__
#define __OPENCV_ML_SVMSGD_HPP__
#ifdef __cplusplus
#include "opencv2/ml.hpp"
namespace cv
{
namespace ml
{
/****************************************************************************************\
* Stochastic Gradient Descent SVM Classifier *
\****************************************************************************************/
/*!
@brief Stochastic Gradient Descent SVM classifier
SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, as presented in @cite bottou2010large.
The gradient descent show amazing performance for large-scale problems, reducing the computing time. This allows a fast and reliable online update of the classifier for each new feature which
is fundamental when dealing with variations of data over time (like weather and illumination changes in videosurveillance, for example).
First, create the SVMSGD object. To enable the online update, a value for updateFrequency should be defined.
Then the SVM model can be trained using the train features and the correspondent labels.
After that, the label of a new feature vector can be predicted using the predict function. If the updateFrequency was defined in the constructor, the predict function will update the weights automatically.
@code
// Initialize object
SVMSGD SvmSgd;
// Train the Stochastic Gradient Descent SVM
SvmSgd.train(trainFeatures, labels);
// Predict label for the new feature vector (1xM)
predictedLabel = SvmSgd.predict(newFeatureVector);
@endcode
*/
class CV_EXPORTS_W SVMSGD : public cv::ml::StatModel
{
public:
enum SvmsgdType
{
ILLEGAL_VALUE,
SGD, //Stochastic Gradient Descent
ASGD //Average Stochastic Gradient Descent
};
/**
* @return the weights of the trained model.
*/
CV_WRAP virtual Mat getWeights() = 0;
CV_WRAP virtual float getShift() = 0;
CV_WRAP static Ptr<SVMSGD> create();
CV_WRAP virtual void setOptimalParameters(int type = ASGD) = 0;
CV_WRAP virtual int getType() const = 0;
CV_WRAP virtual void setType(int type) = 0;
CV_WRAP virtual float getLambda() const = 0;
CV_WRAP virtual void setLambda(float lambda) = 0;
CV_WRAP virtual float getGamma0() const = 0;
CV_WRAP virtual void setGamma0(float gamma0) = 0;
CV_WRAP virtual float getC() const = 0;
CV_WRAP virtual void setC(float c) = 0;
CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0;
CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
};
} //ml
} //cv
#endif // __clpusplus
#endif // __OPENCV_ML_SVMSGD_HPP

@ -45,7 +45,7 @@
#include "opencv2/ml.hpp" #include "opencv2/ml.hpp"
#include "opencv2/core/core_c.h" #include "opencv2/core/core_c.h"
#include "opencv2/core/utility.hpp" #include "opencv2/core/utility.hpp"
#include "opencv2/ml/svmsgd.hpp"
#include "opencv2/core/private.hpp" #include "opencv2/core/private.hpp"
#include <assert.h> #include <assert.h>

@ -41,161 +41,430 @@
//M*/ //M*/
#include "precomp.hpp" #include "precomp.hpp"
#include "limits"
/****************************************************************************************\ /****************************************************************************************\
* Stochastic Gradient Descent SVM Classifier * * Stochastic Gradient Descent SVM Classifier *
\****************************************************************************************/ \****************************************************************************************/
namespace cv { namespace cv
namespace ml { {
namespace ml
{
SVMSGD::SVMSGD(float lambda, float learnRate, uint nIterations){ class SVMSGDImpl : public SVMSGD
{
// Initialize with random seed public:
_randomNumber = 1; SVMSGDImpl();
// Initialize constants virtual ~SVMSGDImpl() {}
_slidingWindowSize = 0;
_nFeatures = 0;
_predictSlidingWindowSize = 1;
// Initialize sliderCounter at index 0 virtual bool train(const Ptr<TrainData>& data, int);
_sliderCounter = 0;
// Parameters for learning virtual float predict( InputArray samples, OutputArray results=noArray(), int flags = 0 ) const;
_lambda = lambda; // regularization
_learnRate = learnRate; // learning rate (ideally should be large at beginning and decay each iteration)
_nIterations = nIterations; // number of training iterations
// True only in the first predict iteration virtual bool isClassifier() const { return params.svmsgdType == SGD || params.svmsgdType == ASGD; }
_initPredict = true;
// Online update flag virtual bool isTrained() const;
_onlineUpdate = false;
}
SVMSGD::SVMSGD(uint updateFrequency, float learnRateDecay, float lambda, float learnRate, uint nIterations){ virtual void clear();
// Initialize with random seed virtual void write(FileStorage& fs) const;
_randomNumber = 1;
// Initialize constants virtual void read(const FileNode& fn);
_slidingWindowSize = 0;
_nFeatures = 0;
_predictSlidingWindowSize = updateFrequency;
// Initialize sliderCounter at index 0 virtual Mat getWeights(){ return weights_; }
_sliderCounter = 0;
// Parameters for learning virtual float getShift(){ return shift_; }
_lambda = lambda; // regularization
_learnRate = learnRate; // learning rate (ideally should be large at beginning and decay each iteration)
_nIterations = nIterations; // number of training iterations
// True only in the first predict iteration virtual int getVarCount() const { return weights_.cols; }
_initPredict = true;
// Online update flag virtual String getDefaultName() const {return "opencv_ml_svmsgd";}
_onlineUpdate = true;
// Learn rate decay: _learnRate = _learnRate * _learnDecay virtual void setOptimalParameters(int type = ASGD);
_learnRateDecay = learnRateDecay;
}
SVMSGD::~SVMSGD(){ virtual int getType() const;
} virtual void setType(int type);
CV_IMPL_PROPERTY(float, Lambda, params.lambda)
CV_IMPL_PROPERTY(float, Gamma0, params.gamma0)
CV_IMPL_PROPERTY(float, C, params.c)
CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit)
SVMSGD* SVMSGD::clone() const{ private:
return new SVMSGD(*this); void updateWeights(InputArray sample, bool is_first_class, float gamma);
float calcShift(InputArray trainSamples, InputArray trainResponses) const;
std::pair<bool,bool> areClassesEmpty(Mat responses);
void writeParams( FileStorage& fs ) const;
void readParams( const FileNode& fn );
static inline bool isFirstClass(float val) { return val > 0; }
// Vector with SVM weights
Mat weights_;
float shift_;
// Random index generation
RNG rng_;
// Parameters for learning
struct SVMSGDParams
{
float lambda; //regularization
float gamma0; //learning rate
float c;
TermCriteria termCrit;
SvmsgdType svmsgdType;
};
SVMSGDParams params;
};
Ptr<SVMSGD> SVMSGD::create()
{
return makePtr<SVMSGDImpl>();
} }
void SVMSGD::train(cv::Mat trainFeatures, cv::Mat labels){
// Initialize _nFeatures bool SVMSGDImpl::train(const Ptr<TrainData>& data, int)
_slidingWindowSize = trainFeatures.rows; {
_nFeatures = trainFeatures.cols; clear();
Mat trainSamples = data->getTrainSamples();
// Initialize varCount
int trainSamplesCount_ = trainSamples.rows;
int varCount = trainSamples.cols;
float innerProduct;
// Initialize weights vector with zeros // Initialize weights vector with zeros
if (_weights.size()==0){ weights_ = Mat::zeros(1, varCount, CV_32F);
_weights.reserve(_nFeatures);
for (uint feat = 0; feat < _nFeatures; ++feat){ Mat trainResponses = data->getTrainResponses(); // (trainSamplesCount x 1) matrix
_weights.push_back(0.0);
std::pair<bool,bool> are_empty = areClassesEmpty(trainResponses);
if ( are_empty.first && are_empty.second )
{
weights_.release();
return false;
} }
if ( are_empty.first || are_empty.second )
{
shift_ = are_empty.first ? -1 : 1;
return true;
}
Mat currentSample;
float gamma = 0;
Mat lastWeights = Mat::zeros(1, varCount, CV_32F); //weights vector for calculating terminal criterion
Mat averageWeights; //average weights vector for ASGD model
double err = DBL_MAX;
if (params.svmsgdType == ASGD)
{
averageWeights = Mat::zeros(1, varCount, CV_32F);
} }
// Stochastic gradient descent SVM // Stochastic gradient descent SVM
for (uint iter = 0; iter < _nIterations; ++iter){ for (int iter = 0; (iter < params.termCrit.maxCount)&&(err > params.termCrit.epsilon); iter++)
generateRandomIndex(); {
innerProduct = calcInnerProduct(trainFeatures.ptr<float>(_randomIndex)); //generate sample number
int label = (labels.at<int>(_randomIndex,0) > 0) ? 1 : -1; // ensure that labels are -1 or 1 int randomNumber = rng_.uniform(0, trainSamplesCount_);
updateWeights(innerProduct, trainFeatures.ptr<float>(_randomIndex), label );
currentSample = trainSamples.row(randomNumber);
//update gamma
gamma = params.gamma0 * std::pow((1 + params.lambda * params.gamma0 * (float)iter), (-params.c));
bool is_first_class = isFirstClass(trainResponses.at<float>(randomNumber));
updateWeights( currentSample, is_first_class, gamma );
//average weights (only for ASGD model)
if (params.svmsgdType == ASGD)
{
averageWeights = ((float)iter/ (1 + (float)iter)) * averageWeights + weights_ / (1 + (float) iter);
} }
err = norm(weights_ - lastWeights);
weights_.copyTo(lastWeights);
}
if (params.svmsgdType == ASGD)
{
weights_ = averageWeights;
} }
float SVMSGD::predict(cv::Mat newFeature){ shift_ = calcShift(trainSamples, trainResponses);
float innerProduct;
if (_initPredict){ return true;
_nFeatures = newFeature.cols;
_slidingWindowSize = _predictSlidingWindowSize;
_featuresSlider = cv::Mat::zeros(_slidingWindowSize, _nFeatures, CV_32F);
_initPredict = false;
_labelSlider = new float[_predictSlidingWindowSize]();
_learnRate = _learnRate * _learnRateDecay;
} }
innerProduct = calcInnerProduct(newFeature.ptr<float>(0)); std::pair<bool,bool> SVMSGDImpl::areClassesEmpty(Mat responses)
{
std::pair<bool,bool> are_classes_empty(true, true);
int limit_index = responses.rows;
// Resultant label (-1 or 1) for(int index = 0; index < limit_index; index++)
int label = (innerProduct>=0) ? 1 : -1; {
if (isFirstClass(responses.at<float>(index,0)))
are_classes_empty.first = false;
else
are_classes_empty.second = false;
if (_onlineUpdate){ if (!are_classes_empty.first && ! are_classes_empty.second)
// Update the featuresSlider with newFeature and _labelSlider with label break;
newFeature.row(0).copyTo(_featuresSlider.row(_sliderCounter)); }
_labelSlider[_sliderCounter] = float(label);
// Update weights with a random index return are_classes_empty;
if (_sliderCounter == _slidingWindowSize-1){
generateRandomIndex();
updateWeights(innerProduct, _featuresSlider.ptr<float>(_randomIndex), int(_labelSlider[_randomIndex]) );
} }
// _sliderCounter++ if < _slidingWindowSize float SVMSGDImpl::calcShift(InputArray _samples, InputArray _responses) const
_sliderCounter = (_sliderCounter == _slidingWindowSize-1) ? 0 : (_sliderCounter+1); {
float distance_to_classes[2] = { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() };
Mat trainSamples = _samples.getMat();
int trainSamplesCount = trainSamples.rows;
Mat trainResponses = _responses.getMat();
for (int samplesIndex = 0; samplesIndex < trainSamplesCount; samplesIndex++)
{
Mat currentSample = trainSamples.row(samplesIndex);
float scalar_product = currentSample.dot(weights_);
bool is_first_class = isFirstClass(trainResponses.at<float>(samplesIndex));
int index = is_first_class ? 0:1;
float sign_to_mul = is_first_class ? 1 : -1;
float cur_distance = scalar_product * sign_to_mul ;
if (cur_distance < distance_to_classes[index])
{
distance_to_classes[index] = cur_distance;
}
} }
return float(label); //todo: areClassesEmpty(); make const;
return -(distance_to_classes[0] - distance_to_classes[1]) / 2.f;
} }
void SVMSGD::generateRandomIndex(){ float SVMSGDImpl::predict( InputArray _samples, OutputArray _results, int ) const
// Choose random sample, using Mikolov's fast almost-uniform random number {
_randomNumber = _randomNumber * (unsigned long long) 25214903917 + 11; float result = 0;
_randomIndex = uint(_randomNumber % (unsigned long long) _slidingWindowSize); cv::Mat samples = _samples.getMat();
int nSamples = samples.rows;
cv::Mat results;
CV_Assert( samples.cols == weights_.cols && samples.type() == CV_32F );
if( _results.needed() )
{
_results.create( nSamples, 1, samples.type() );
results = _results.getMat();
}
else
{
CV_Assert( nSamples == 1 );
results = Mat(1, 1, CV_32F, &result);
} }
float SVMSGD::calcInnerProduct(float *rowDataPointer){ Mat currentSample;
float innerProduct = 0; float criterion = 0;
for (uint feat = 0; feat < _nFeatures; ++feat){
innerProduct += _weights[feat] * rowDataPointer[feat]; for (int sampleIndex = 0; sampleIndex < nSamples; sampleIndex++)
{
currentSample = samples.row(sampleIndex);
criterion = currentSample.dot(weights_) + shift_;
results.at<float>(sampleIndex) = (criterion >= 0) ? 1 : -1;
} }
return innerProduct;
return result;
} }
void SVMSGD::updateWeights(float innerProduct, float *rowDataPointer, int label){ void SVMSGDImpl::updateWeights(InputArray _sample, bool is_first_class, float gamma)
if (label * innerProduct > 1) { {
Mat sample = _sample.getMat();
int responce = is_first_class ? 1 : -1; // ensure that trainResponses are -1 or 1
if ( sample.dot(weights_) * responce > 1)
{
// Not a support vector, only apply weight decay // Not a support vector, only apply weight decay
for (uint feat = 0; feat < _nFeatures; feat++) { weights_ *= (1.f - gamma * params.lambda);
_weights[feat] -= _learnRate * _lambda * _weights[feat];
} }
} else { else
{
// It's a support vector, add it to the weights // It's a support vector, add it to the weights
for (uint feat = 0; feat < _nFeatures; feat++) { weights_ -= (gamma * params.lambda) * weights_ - gamma * responce * sample;
_weights[feat] -= _learnRate * (_lambda * _weights[feat] - label * rowDataPointer[feat]); //std::cout << "sample " << sample << std::endl;
//std::cout << "weights_ " << weights_ << std::endl;
}
} }
bool SVMSGDImpl::isTrained() const
{
return !weights_.empty();
} }
void SVMSGDImpl::write(FileStorage& fs) const
{
if( !isTrained() )
CV_Error( CV_StsParseError, "SVMSGD model data is invalid, it hasn't been trained" );
writeParams( fs );
fs << "shift" << shift_;
fs << "weights" << weights_;
} }
void SVMSGDImpl::writeParams( FileStorage& fs ) const
{
String SvmsgdTypeStr;
switch (params.svmsgdType)
{
case SGD:
SvmsgdTypeStr = "SGD";
break;
case ASGD:
SvmsgdTypeStr = "ASGD";
break;
case ILLEGAL_VALUE:
SvmsgdTypeStr = format("Uknown_%d", params.svmsgdType);
default:
std::cout << "params.svmsgdType isn't initialized" << std::endl;
} }
fs << "svmsgdType" << SvmsgdTypeStr;
fs << "lambda" << params.lambda;
fs << "gamma0" << params.gamma0;
fs << "c" << params.c;
fs << "term_criteria" << "{:";
if( params.termCrit.type & TermCriteria::EPS )
fs << "epsilon" << params.termCrit.epsilon;
if( params.termCrit.type & TermCriteria::COUNT )
fs << "iterations" << params.termCrit.maxCount;
fs << "}";
}
void SVMSGDImpl::read(const FileNode& fn)
{
clear();
readParams(fn);
shift_ = (float) fn["shift"];
fn["weights"] >> weights_;
}
void SVMSGDImpl::readParams( const FileNode& fn )
{
String svmsgdTypeStr = (String)fn["svmsgdType"];
SvmsgdType svmsgdType =
svmsgdTypeStr == "SGD" ? SGD :
svmsgdTypeStr == "ASGD" ? ASGD : ILLEGAL_VALUE;
if( svmsgdType == ILLEGAL_VALUE )
CV_Error( CV_StsParseError, "Missing or invalid SVMSGD type" );
params.svmsgdType = svmsgdType;
CV_Assert ( fn["lambda"].isReal() );
params.lambda = (float)fn["lambda"];
CV_Assert ( fn["gamma0"].isReal() );
params.gamma0 = (float)fn["gamma0"];
CV_Assert ( fn["c"].isReal() );
params.c = (float)fn["c"];
FileNode tcnode = fn["term_criteria"];
if( !tcnode.empty() )
{
params.termCrit.epsilon = (double)tcnode["epsilon"];
params.termCrit.maxCount = (int)tcnode["iterations"];
params.termCrit.type = (params.termCrit.epsilon > 0 ? TermCriteria::EPS : 0) +
(params.termCrit.maxCount > 0 ? TermCriteria::COUNT : 0);
}
else
params.termCrit = TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 1000, FLT_EPSILON );
}
void SVMSGDImpl::clear()
{
weights_.release();
shift_ = 0;
}
SVMSGDImpl::SVMSGDImpl()
{
clear();
rng_(0);
params.svmsgdType = ILLEGAL_VALUE;
// Parameters for learning
params.lambda = 0; // regularization
params.gamma0 = 0; // learning rate (ideally should be large at beginning and decay each iteration)
params.c = 0;
TermCriteria _termCrit(TermCriteria::COUNT + TermCriteria::EPS, 0, 0);
params.termCrit = _termCrit;
}
void SVMSGDImpl::setOptimalParameters(int type)
{
switch (type)
{
case SGD:
params.svmsgdType = SGD;
params.lambda = 0.00001;
params.gamma0 = 0.05;
params.c = 1;
params.termCrit.maxCount = 50000;
params.termCrit.epsilon = 0.00000001;
break;
case ASGD:
params.svmsgdType = ASGD;
params.lambda = 0.00001;
params.gamma0 = 0.5;
params.c = 0.75;
params.termCrit.maxCount = 100000;
params.termCrit.epsilon = 0.000001;
break;
default:
CV_Error( CV_StsParseError, "SVMSGD model data is invalid" );
}
}
void SVMSGDImpl::setType(int type)
{
switch (type)
{
case SGD:
params.svmsgdType = SGD;
break;
case ASGD:
params.svmsgdType = ASGD;
break;
default:
params.svmsgdType = ILLEGAL_VALUE;
}
}
int SVMSGDImpl::getType() const
{
return params.svmsgdType;
} }
} //ml
} //cv

@ -193,6 +193,16 @@ int str_to_boost_type( String& str )
// 8. rtrees // 8. rtrees
// 9. ertrees // 9. ertrees
int str_to_svmsgd_type( String& str )
{
if ( !str.compare("SGD") )
return SVMSGD::SGD;
if ( !str.compare("ASGD") )
return SVMSGD::ASGD;
CV_Error( CV_StsBadArg, "incorrect boost type string" );
return -1;
}
// ---------------------------------- MLBaseTest --------------------------------------------------- // ---------------------------------- MLBaseTest ---------------------------------------------------
CV_MLBaseTest::CV_MLBaseTest(const char* _modelName) CV_MLBaseTest::CV_MLBaseTest(const char* _modelName)
@ -248,7 +258,9 @@ void CV_MLBaseTest::run( int )
{ {
string filename = ts->get_data_path(); string filename = ts->get_data_path();
filename += get_validation_filename(); filename += get_validation_filename();
validationFS.open( filename, FileStorage::READ ); validationFS.open( filename, FileStorage::READ );
read_params( *validationFS ); read_params( *validationFS );
int code = cvtest::TS::OK; int code = cvtest::TS::OK;
@ -436,6 +448,21 @@ int CV_MLBaseTest::train( int testCaseIdx )
model = m; model = m;
} }
else if( modelName == CV_SVMSGD )
{
String svmsgdTypeStr;
modelParamsNode["svmsgdType"] >> svmsgdTypeStr;
Ptr<SVMSGD> m = SVMSGD::create();
int type = str_to_svmsgd_type( svmsgdTypeStr );
m->setType(type);
//m->setType(str_to_svmsgd_type( svmsgdTypeStr ));
m->setLambda(modelParamsNode["lambda"]);
m->setGamma0(modelParamsNode["gamma0"]);
m->setC(modelParamsNode["c"]);
m->setTermCriteria(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10000, 0.00001));
model = m;
}
if( !model.empty() ) if( !model.empty() )
is_trained = model->train(data, 0); is_trained = model->train(data, 0);
@ -457,7 +484,7 @@ float CV_MLBaseTest::get_test_error( int /*testCaseIdx*/, vector<float> *resp )
else if( modelName == CV_ANN ) else if( modelName == CV_ANN )
err = ann_calc_error( model, data, cls_map, type, resp ); err = ann_calc_error( model, data, cls_map, type, resp );
else if( modelName == CV_DTREE || modelName == CV_BOOST || modelName == CV_RTREES || else if( modelName == CV_DTREE || modelName == CV_BOOST || modelName == CV_RTREES ||
modelName == CV_SVM || modelName == CV_NBAYES || modelName == CV_KNEAREST ) modelName == CV_SVM || modelName == CV_NBAYES || modelName == CV_KNEAREST || modelName == CV_SVMSGD )
err = model->calcError( data, true, _resp ); err = model->calcError( data, true, _resp );
if( !_resp.empty() && resp ) if( !_resp.empty() && resp )
_resp.convertTo(*resp, CV_32F); _resp.convertTo(*resp, CV_32F);
@ -485,6 +512,8 @@ void CV_MLBaseTest::load( const char* filename )
model = Algorithm::load<Boost>( filename ); model = Algorithm::load<Boost>( filename );
else if( modelName == CV_RTREES ) else if( modelName == CV_RTREES )
model = Algorithm::load<RTrees>( filename ); model = Algorithm::load<RTrees>( filename );
else if( modelName == CV_SVMSGD )
model = Algorithm::load<SVMSGD>( filename );
else else
CV_Error( CV_StsNotImplemented, "invalid stat model name"); CV_Error( CV_StsNotImplemented, "invalid stat model name");
} }

@ -13,6 +13,7 @@
#include <map> #include <map>
#include "opencv2/ts.hpp" #include "opencv2/ts.hpp"
#include "opencv2/ml.hpp" #include "opencv2/ml.hpp"
#include "opencv2/ml/svmsgd.hpp"
#include "opencv2/core/core_c.h" #include "opencv2/core/core_c.h"
#define CV_NBAYES "nbayes" #define CV_NBAYES "nbayes"
@ -24,6 +25,7 @@
#define CV_BOOST "boost" #define CV_BOOST "boost"
#define CV_RTREES "rtrees" #define CV_RTREES "rtrees"
#define CV_ERTREES "ertrees" #define CV_ERTREES "ertrees"
#define CV_SVMSGD "svmsgd"
enum { CV_TRAIN_ERROR=0, CV_TEST_ERROR=1 }; enum { CV_TRAIN_ERROR=0, CV_TEST_ERROR=1 };
@ -38,6 +40,7 @@ using cv::ml::ANN_MLP;
using cv::ml::DTrees; using cv::ml::DTrees;
using cv::ml::Boost; using cv::ml::Boost;
using cv::ml::RTrees; using cv::ml::RTrees;
using cv::ml::SVMSGD;
class CV_MLBaseTest : public cvtest::BaseTest class CV_MLBaseTest : public cvtest::BaseTest
{ {

@ -150,12 +150,20 @@ int CV_SLMLTest::validate_test_results( int testCaseIdx )
TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); } TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); }
TEST(ML_KNearest, save_load) { CV_SLMLTest test( CV_KNEAREST ); test.safe_run(); } TEST(ML_KNearest, save_load) { CV_SLMLTest test( CV_KNEAREST ); test.safe_run(); }
TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); } TEST(ML_SVM, save_load)
{
CV_SLMLTest test( CV_SVM );
test.safe_run();
}
TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); } TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); }
TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); } TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); } TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); } TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); } TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
TEST(MV_SVMSGD, save_load){
CV_SLMLTest test( CV_SVMSGD );
test.safe_run();
}
class CV_LegacyTest : public cvtest::BaseTest class CV_LegacyTest : public cvtest::BaseTest
{ {
@ -201,6 +209,8 @@ protected:
model = Algorithm::load<SVM>(filename); model = Algorithm::load<SVM>(filename);
else if (modelName == CV_RTREES) else if (modelName == CV_RTREES)
model = Algorithm::load<RTrees>(filename); model = Algorithm::load<RTrees>(filename);
else if (modelName == CV_SVMSGD)
model = Algorithm::load<SVMSGD>(filename);
if (!model) if (!model)
{ {
code = cvtest::TS::FAIL_INVALID_TEST_DATA; code = cvtest::TS::FAIL_INVALID_TEST_DATA;
@ -260,6 +270,11 @@ TEST(ML_DTree, legacy_load) { CV_LegacyTest test(CV_DTREE, "_abalone.xml;_mushro
TEST(ML_NBayes, legacy_load) { CV_LegacyTest test(CV_NBAYES, "_waveform.xml"); test.safe_run(); } TEST(ML_NBayes, legacy_load) { CV_LegacyTest test(CV_NBAYES, "_waveform.xml"); test.safe_run(); }
TEST(ML_SVM, legacy_load) { CV_LegacyTest test(CV_SVM, "_poletelecomm.xml;_waveform.xml"); test.safe_run(); } TEST(ML_SVM, legacy_load) { CV_LegacyTest test(CV_SVM, "_poletelecomm.xml;_waveform.xml"); test.safe_run(); }
TEST(ML_RTrees, legacy_load) { CV_LegacyTest test(CV_RTREES, "_waveform.xml"); test.safe_run(); } TEST(ML_RTrees, legacy_load) { CV_LegacyTest test(CV_RTREES, "_waveform.xml"); test.safe_run(); }
TEST(ML_SVMSGD, legacy_load)
{
CV_LegacyTest test(CV_SVMSGD, "_waveform.xml");
test.safe_run();
}
/*TEST(ML_SVM, throw_exception_when_save_untrained_model) /*TEST(ML_SVM, throw_exception_when_save_untrained_model)
{ {

@ -0,0 +1,182 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;
using namespace cv::ml;
using cv::ml::SVMSGD;
using cv::ml::TrainData;
class CV_SVMSGDTrainTest : public cvtest::BaseTest
{
public:
CV_SVMSGDTrainTest(Mat _weights, float _shift);
private:
virtual void run( int start_from );
float decisionFunction(Mat sample, Mat weights, float shift);
cv::Ptr<TrainData> data;
cv::Mat testSamples;
cv::Mat testResponses;
static const int TEST_VALUE_LIMIT = 50;
};
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(Mat weights, float shift)
{
int datasize = 100000;
int varCount = weights.cols;
cv::Mat samples = cv::Mat::zeros( datasize, varCount, CV_32FC1 );
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32FC1 );
cv::RNG rng(0);
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
rng.fill(samples, RNG::UNIFORM, lowerLimit, upperLimit);
for (int sampleIndex = 0; sampleIndex < datasize; sampleIndex++)
{
responses.at<float>( sampleIndex ) = decisionFunction(samples.row(sampleIndex), weights, shift) > 0 ? 1 : -1;
}
data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
int testSamplesCount = 100000;
testSamples.create(testSamplesCount, varCount, CV_32FC1);
rng.fill(testSamples, RNG::UNIFORM, lowerLimit, upperLimit);
testResponses.create(testSamplesCount, 1, CV_32FC1);
for (int i = 0 ; i < testSamplesCount; i++)
{
testResponses.at<float>(i) = decisionFunction(testSamples.row(i), weights, shift) > 0 ? 1 : -1;
}
}
void CV_SVMSGDTrainTest::run( int /*start_from*/ )
{
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
svmsgd->setOptimalParameters(SVMSGD::ASGD);
svmsgd->train( data );
Mat responses;
svmsgd->predict(testSamples, responses);
int errCount = 0;
int testSamplesCount = testSamples.rows;
for (int i = 0; i < testSamplesCount; i++)
{
if (responses.at<float>(i) * testResponses.at<float>(i) < 0 )
errCount++;
}
float err = (float)errCount / testSamplesCount;
std::cout << "err " << err << std::endl;
if ( err > 0.01 )
{
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
}
}
float CV_SVMSGDTrainTest::decisionFunction(Mat sample, Mat weights, float shift)
{
return sample.dot(weights) + shift;
}
TEST(ML_SVMSGD, train0)
{
int varCount = 2;
Mat weights;
weights.create(1, varCount, CV_32FC1);
weights.at<float>(0) = 1;
weights.at<float>(1) = 0;
float shift = 5;
CV_SVMSGDTrainTest test(weights, shift);
test.safe_run();
}
TEST(ML_SVMSGD, train1)
{
int varCount = 5;
Mat weights;
weights.create(1, varCount, CV_32FC1);
float lowerLimit = -1;
float upperLimit = 1;
cv::RNG rng(0);
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit);
float shift = rng.uniform(-5.f, 5.f);
CV_SVMSGDTrainTest test(weights, shift);
test.safe_run();
}
TEST(ML_SVMSGD, train2)
{
int varCount = 100;
Mat weights;
weights.create(1, varCount, CV_32FC1);
float lowerLimit = -1;
float upperLimit = 1;
cv::RNG rng(0);
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit);
float shift = rng.uniform(-1000.f, 1000.f);
CV_SVMSGDTrainTest test(weights, shift);
test.safe_run();
}

@ -0,0 +1,226 @@
#include <opencv2/opencv.hpp>
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
using namespace cv::ml;
#define WIDTH 841
#define HEIGHT 594
struct Data
{
Mat img;
Mat samples;
Mat responses;
RNG rng;
//Point points[2];
Data()
{
img = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
imshow("Train svmsgd", img);
}
};
bool doTrain(const Mat samples,const Mat responses, Mat &weights, float &shift);
bool findPointsForLine(const Mat &weights, float shift, Point (&points)[2]);
bool findCrossPoint(const Mat &weights, float shift, const std::pair<Point,Point> &segment, Point &crossPoint);
void fillSegments(std::vector<std::pair<Point,Point> > &segments);
void redraw(Data data, const Point points[2]);
void addPointsRetrainAndRedraw(Data &data, int x, int y);
bool doTrain( const Mat samples, const Mat responses, Mat &weights, float &shift)
{
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
svmsgd->setOptimalParameters(SVMSGD::ASGD);
svmsgd->setTermCriteria(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 50000, 0.0000001));
svmsgd->setLambda(0.01);
svmsgd->setGamma0(1);
// svmsgd->setC(5);
cv::Ptr<TrainData> train_data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
svmsgd->train( train_data );
if (svmsgd->isTrained())
{
weights = svmsgd->getWeights();
shift = svmsgd->getShift();
std::cout << weights << std::endl;
std::cout << shift << std::endl;
return true;
}
return false;
}
bool findCrossPoint(const Mat &weights, float shift, const std::pair<Point,Point> &segment, Point &crossPoint)
{
int x = 0;
int y = 0;
//с (0,0) всё плохо
if (segment.first.x == segment.second.x && weights.at<float>(1) != 0)
{
x = segment.first.x;
y = -(weights.at<float>(0) * x + shift) / weights.at<float>(1);
if (y >= 0 && y <= HEIGHT)
{
crossPoint.x = x;
crossPoint.y = y;
return true;
}
}
else if (segment.first.y == segment.second.y && weights.at<float>(0) != 0)
{
y = segment.first.y;
x = - (weights.at<float>(1) * y + shift) / weights.at<float>(0);
if (x >= 0 && x <= WIDTH)
{
crossPoint.x = x;
crossPoint.y = y;
return true;
}
}
return false;
}
bool findPointsForLine(const Mat &weights, float shift, Point (&points)[2])
{
if (weights.empty())
{
return false;
}
int foundPointsCount = 0;
std::vector<std::pair<Point,Point> > segments;
fillSegments(segments);
for (int i = 0; i < 4; i++)
{
if (findCrossPoint(weights, shift, segments[i], points[foundPointsCount]))
foundPointsCount++;
if (foundPointsCount > 2)
break;
}
return true;
}
void fillSegments(std::vector<std::pair<Point,Point> > &segments)
{
std::pair<Point,Point> curSegment;
curSegment.first = Point(0,0);
curSegment.second = Point(0,HEIGHT);
segments.push_back(curSegment);
curSegment.first = Point(0,0);
curSegment.second = Point(WIDTH,0);
segments.push_back(curSegment);
curSegment.first = Point(WIDTH,0);
curSegment.second = Point(WIDTH,HEIGHT);
segments.push_back(curSegment);
curSegment.first = Point(0,HEIGHT);
curSegment.second = Point(WIDTH,HEIGHT);
segments.push_back(curSegment);
}
void redraw(Data data, const Point points[2])
{
data.img = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
Point center;
int radius = 3;
Scalar color;
for (int i = 0; i < data.samples.rows; i++)
{
center.x = data.samples.at<float>(i,0);
center.y = data.samples.at<float>(i,1);
color = (data.responses.at<float>(i) > 0) ? Scalar(128,128,0) : Scalar(0,128,128);
circle(data.img, center, radius, color, 5);
}
line(data.img, points[0],points[1],cv::Scalar(1,255,1));
imshow("Train svmsgd", data.img);
}
void addPointsRetrainAndRedraw(Data &data, int x, int y)
{
Mat currentSample(1, 2, CV_32F);
//start
/*
Mat _weights;
_weights.create(1, 2, CV_32FC1);
_weights.at<float>(0) = 1;
_weights.at<float>(1) = -1;
int _x, _y;
for (int i=0;i<199;i++)
{
_x = data.rng.uniform(0,800);
_y = data.rng.uniform(0,500);*/
currentSample.at<float>(0,0) = x;
currentSample.at<float>(0,1) = y;
//if (currentSample.dot(_weights) > 0)
//data.responses.push_back(1);
// else data.responses.push_back(-1);
//finish
data.samples.push_back(currentSample);
Mat weights(1, 2, CV_32F);
float shift = 0;
if (doTrain(data.samples, data.responses, weights, shift))
{
Point points[2];
shift = 0;
findPointsForLine(weights, shift, points);
redraw(data, points);
}
}
static void onMouse( int event, int x, int y, int, void* pData)
{
Data &data = *(Data*)pData;
switch( event )
{
case CV_EVENT_LBUTTONUP:
data.responses.push_back(1);
addPointsRetrainAndRedraw(data, x, y);
break;
case CV_EVENT_RBUTTONDOWN:
data.responses.push_back(-1);
addPointsRetrainAndRedraw(data, x, y);
break;
}
}
int main()
{
Data data;
setMouseCallback( "Train svmsgd", onMouse, &data );
waitKey();
return 0;
}
Loading…
Cancel
Save