|
|
|
@ -35,13 +35,13 @@ protected: |
|
|
|
|
Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2); |
|
|
|
|
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list); |
|
|
|
|
bool testBypassRoute(vector<Point2f> hull, int start, int finish); |
|
|
|
|
double getQuadrilateralArea(Point2f a, Point2f b, Point2f c, Point2f d); |
|
|
|
|
double getTriangleArea(Point2f a, Point2f b, Point2f c); |
|
|
|
|
double getPolygonArea(vector<Point2f> points); |
|
|
|
|
double getCosVectors(Point2f a, Point2f b, Point2f c); |
|
|
|
|
|
|
|
|
|
Mat barcode, bin_barcode, straight_barcode; |
|
|
|
|
vector<Point2f> localization_points, transformation_points; |
|
|
|
|
double experimental_area, eps_vertical, eps_horizontal, coeff_expansion; |
|
|
|
|
double eps_vertical, eps_horizontal, coeff_expansion; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -113,8 +113,8 @@ vector<Vec3d> QRDecode::searchVerticalLines() |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < test_lines.size(); i++) |
|
|
|
|
{ |
|
|
|
|
if (i == 2) { weight += abs((test_lines[i] / length) - 3.0/7.0); } |
|
|
|
|
else { weight += abs((test_lines[i] / length) - 1.0/7.0); } |
|
|
|
|
if (i == 2) { weight += fabs((test_lines[i] / length) - 3.0/7.0); } |
|
|
|
|
else { weight += fabs((test_lines[i] / length) - 1.0/7.0); } |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (weight < eps_vertical) |
|
|
|
@ -184,8 +184,8 @@ vector<Point2f> QRDecode::separateHorizontalLines(vector<Vec3d> list_lines) |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < test_lines.size(); i++) |
|
|
|
|
{ |
|
|
|
|
if (i % 3 == 0) { weight += abs((test_lines[i] / length) - 3.0/14.0); } |
|
|
|
|
else { weight += abs((test_lines[i] / length) - 1.0/ 7.0); } |
|
|
|
|
if (i % 3 == 0) { weight += fabs((test_lines[i] / length) - 3.0/14.0); } |
|
|
|
|
else { weight += fabs((test_lines[i] / length) - 1.0/ 7.0); } |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(weight < eps_horizontal) |
|
|
|
@ -245,6 +245,7 @@ bool QRDecode::localization() |
|
|
|
|
|
|
|
|
|
vector<Point2f> centers; |
|
|
|
|
Mat labels; |
|
|
|
|
if (list_lines_y.size() < 3) { return false; } |
|
|
|
|
kmeans(list_lines_y, 3, labels, |
|
|
|
|
TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0), |
|
|
|
|
3, KMEANS_PP_CENTERS, localization_points); |
|
|
|
@ -390,13 +391,6 @@ bool QRDecode::computeTransformationPoints() |
|
|
|
|
intersectionLines(down_left_edge_point, down_max_delta_point, |
|
|
|
|
up_right_edge_point, up_max_delta_point)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
experimental_area = getQuadrilateralArea(transformation_points[0], |
|
|
|
|
transformation_points[1], |
|
|
|
|
transformation_points[2], |
|
|
|
|
transformation_points[3]); |
|
|
|
|
|
|
|
|
|
vector<Point2f> quadrilateral = getQuadrilateral(transformation_points); |
|
|
|
|
transformation_points = quadrilateral; |
|
|
|
|
|
|
|
|
@ -489,6 +483,8 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list) |
|
|
|
|
hull[i] = Point2f(x, y); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const double experimental_area = getPolygonArea(hull); |
|
|
|
|
|
|
|
|
|
vector<Point2f> result_hull_point(angle_size); |
|
|
|
|
double min_norm; |
|
|
|
|
for (size_t i = 0; i < angle_size; i++) |
|
|
|
@ -600,8 +596,11 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list) |
|
|
|
|
extra_bypass_orientation = testBypassRoute(hull, finish_line[1], unstable_pnt); |
|
|
|
|
|
|
|
|
|
vector<Point2f> result_angle_list(4), test_result_angle_list(4); |
|
|
|
|
double min_area = std::numeric_limits<double>::max(), test_area; |
|
|
|
|
double min_diff_area = std::numeric_limits<double>::max(), test_diff_area; |
|
|
|
|
index_hull = start_line[0]; |
|
|
|
|
double standart_norm = std::max( |
|
|
|
|
norm(result_side_begin[0] - result_side_end[0]), |
|
|
|
|
norm(result_side_begin[1] - result_side_end[1])); |
|
|
|
|
do |
|
|
|
|
{ |
|
|
|
|
if (bypass_orientation) { next_index_hull = index_hull + 1; } |
|
|
|
@ -610,6 +609,9 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list) |
|
|
|
|
if (next_index_hull == hull_size) { next_index_hull = 0; } |
|
|
|
|
if (next_index_hull == -1) { next_index_hull = hull_size - 1; } |
|
|
|
|
|
|
|
|
|
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm / 10.0) |
|
|
|
|
{ index_hull = next_index_hull; continue; } |
|
|
|
|
|
|
|
|
|
extra_index_hull = finish_line[1]; |
|
|
|
|
do |
|
|
|
|
{ |
|
|
|
@ -619,6 +621,9 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list) |
|
|
|
|
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; } |
|
|
|
|
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; } |
|
|
|
|
|
|
|
|
|
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm / 10.0) |
|
|
|
|
{ extra_index_hull = extra_next_index_hull; continue; } |
|
|
|
|
|
|
|
|
|
test_result_angle_list[0] |
|
|
|
|
= intersectionLines(result_side_begin[0], result_side_end[0], |
|
|
|
|
result_side_begin[1], result_side_end[1]); |
|
|
|
@ -632,13 +637,10 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list) |
|
|
|
|
= intersectionLines(hull[index_hull], hull[next_index_hull], |
|
|
|
|
result_side_begin[0], result_side_end[0]); |
|
|
|
|
|
|
|
|
|
test_area = getQuadrilateralArea(test_result_angle_list[0], |
|
|
|
|
test_result_angle_list[1], |
|
|
|
|
test_result_angle_list[2], |
|
|
|
|
test_result_angle_list[3]); |
|
|
|
|
if (min_area > test_area) |
|
|
|
|
test_diff_area = fabs(getPolygonArea(test_result_angle_list) - experimental_area); |
|
|
|
|
if (min_diff_area > test_diff_area) |
|
|
|
|
{ |
|
|
|
|
min_area = test_area; |
|
|
|
|
min_diff_area = test_diff_area; |
|
|
|
|
for (size_t i = 0; i < test_result_angle_list.size(); i++) |
|
|
|
|
{ |
|
|
|
|
result_angle_list[i] = test_result_angle_list[i]; |
|
|
|
@ -652,48 +654,9 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list) |
|
|
|
|
index_hull = next_index_hull; |
|
|
|
|
} |
|
|
|
|
while(index_hull != unstable_pnt); |
|
|
|
|
|
|
|
|
|
if (norm(result_angle_list[0] - angle_list[2]) > |
|
|
|
|
norm(angle_list[2] - angle_list[1]) / 3) { result_angle_list[0] = angle_list[2]; } |
|
|
|
|
|
|
|
|
|
if (norm(result_angle_list[1] - angle_list[1]) > |
|
|
|
|
norm(angle_list[1] - angle_list[0]) / 3) { result_angle_list[1] = angle_list[1]; } |
|
|
|
|
|
|
|
|
|
if (norm(result_angle_list[2] - angle_list[0]) > |
|
|
|
|
norm(angle_list[0] - angle_list[3]) / 3) { result_angle_list[2] = angle_list[0]; } |
|
|
|
|
|
|
|
|
|
if (norm(result_angle_list[3] - angle_list[3]) > |
|
|
|
|
norm(angle_list[3] - angle_list[2]) / 3) { result_angle_list[3] = angle_list[3]; } |
|
|
|
|
|
|
|
|
|
return result_angle_list; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// b __________ c
|
|
|
|
|
// / |
|
|
|
|
|
// / |
|
|
|
|
|
// / S |
|
|
|
|
|
// / |
|
|
|
|
|
// a --------------- d
|
|
|
|
|
|
|
|
|
|
double QRDecode::getQuadrilateralArea(Point2f a, Point2f b, Point2f c, Point2f d) |
|
|
|
|
{ |
|
|
|
|
double length_sides[4], perimeter = 0.0, result_area = 1.0; |
|
|
|
|
length_sides[0] = norm(a - b); length_sides[1] = norm(b - c); |
|
|
|
|
length_sides[2] = norm(c - d); length_sides[3] = norm(d - a); |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < 4; i++) { perimeter += length_sides[i]; } |
|
|
|
|
perimeter /= 2; |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < 4; i++) |
|
|
|
|
{ |
|
|
|
|
result_area *= (perimeter - length_sides[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
result_area = sqrt(result_area); |
|
|
|
|
|
|
|
|
|
return result_area; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// b
|
|
|
|
|
// / |
|
|
|
|
|
// / |
|
|
|
|
@ -704,19 +667,29 @@ double QRDecode::getQuadrilateralArea(Point2f a, Point2f b, Point2f c, Point2f d |
|
|
|
|
|
|
|
|
|
double QRDecode::getTriangleArea(Point2f a, Point2f b, Point2f c) |
|
|
|
|
{ |
|
|
|
|
double length_sides[3], perimeter = 0.0, triangle_area = 1.0; |
|
|
|
|
length_sides[0] = norm(a - b); |
|
|
|
|
length_sides[1] = norm(b - c); |
|
|
|
|
length_sides[2] = norm(c - a); |
|
|
|
|
for (size_t i = 0; i < 3; i++) { perimeter += length_sides[i]; } |
|
|
|
|
perimeter /= 2; |
|
|
|
|
for (size_t i = 0; i < 3; i++) |
|
|
|
|
double norm_sides[] = { norm(a - b), norm(b - c), norm(c - a) }; |
|
|
|
|
double half_perimeter = (norm_sides[0] + norm_sides[1] + norm_sides[2]) / 2.0; |
|
|
|
|
double triangle_area = sqrt(half_perimeter * |
|
|
|
|
(half_perimeter - norm_sides[0]) * |
|
|
|
|
(half_perimeter - norm_sides[1]) * |
|
|
|
|
(half_perimeter - norm_sides[2])); |
|
|
|
|
return triangle_area; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
double QRDecode::getPolygonArea(vector<Point2f> points) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(points.size() >= 3); |
|
|
|
|
if (points.size() == 3) |
|
|
|
|
{ return getTriangleArea(points[0], points[1], points[2]); } |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
triangle_area *= (perimeter - length_sides[i]); |
|
|
|
|
double result_area = 0.0; |
|
|
|
|
for (size_t i = 1; i < points.size() - 1; i++) |
|
|
|
|
{ |
|
|
|
|
result_area += getTriangleArea(points[0], points[i], points[i + 1]); |
|
|
|
|
} |
|
|
|
|
return result_area; |
|
|
|
|
} |
|
|
|
|
triangle_area += sqrt(triangle_area); |
|
|
|
|
|
|
|
|
|
return triangle_area; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// / | b
|
|
|
|
@ -739,7 +712,7 @@ bool QRDecode::transformation() |
|
|
|
|
for (size_t i = 0; i < transform_size; i++) |
|
|
|
|
{ |
|
|
|
|
double len_norm = norm(transformation_points[i % transform_size] - |
|
|
|
|
transformation_points[(i + 1) % transform_size]); |
|
|
|
|
transformation_points[(i + 1) % transform_size]); |
|
|
|
|
max_length_norm = std::max(max_length_norm, len_norm); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|