mirror of https://github.com/opencv/opencv.git
Merge pull request #12464 from alalek:fix_contrib_1754
commit
40b1dc12de
8 changed files with 918 additions and 922 deletions
@ -0,0 +1,174 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html
|
||||||
|
|
||||||
|
#include "test_invariance_utils.hpp" |
||||||
|
|
||||||
|
namespace opencv_test { namespace { |
||||||
|
|
||||||
|
#define SHOW_DEBUG_LOG 1 |
||||||
|
|
||||||
|
typedef tuple<std::string, Ptr<FeatureDetector>, Ptr<DescriptorExtractor>, float> |
||||||
|
String_FeatureDetector_DescriptorExtractor_Float_t; |
||||||
|
|
||||||
|
|
||||||
|
static |
||||||
|
void rotateKeyPoints(const vector<KeyPoint>& src, const Mat& H, float angle, vector<KeyPoint>& dst) |
||||||
|
{ |
||||||
|
// suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage()
|
||||||
|
vector<Point2f> srcCenters, dstCenters; |
||||||
|
KeyPoint::convert(src, srcCenters); |
||||||
|
|
||||||
|
perspectiveTransform(srcCenters, dstCenters, H); |
||||||
|
|
||||||
|
dst = src; |
||||||
|
for(size_t i = 0; i < dst.size(); i++) |
||||||
|
{ |
||||||
|
dst[i].pt = dstCenters[i]; |
||||||
|
float dstAngle = src[i].angle + angle; |
||||||
|
if(dstAngle >= 360.f) |
||||||
|
dstAngle -= 360.f; |
||||||
|
dst[i].angle = dstAngle; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
class DescriptorInvariance : public TestWithParam<String_FeatureDetector_DescriptorExtractor_Float_t> |
||||||
|
{ |
||||||
|
protected: |
||||||
|
virtual void SetUp() { |
||||||
|
// Read test data
|
||||||
|
const std::string filename = cvtest::TS::ptr()->get_data_path() + get<0>(GetParam()); |
||||||
|
image0 = imread(filename); |
||||||
|
ASSERT_FALSE(image0.empty()) << "couldn't read input image"; |
||||||
|
|
||||||
|
featureDetector = get<1>(GetParam()); |
||||||
|
descriptorExtractor = get<2>(GetParam()); |
||||||
|
minInliersRatio = get<3>(GetParam()); |
||||||
|
} |
||||||
|
|
||||||
|
Ptr<FeatureDetector> featureDetector; |
||||||
|
Ptr<DescriptorExtractor> descriptorExtractor; |
||||||
|
float minInliersRatio; |
||||||
|
Mat image0; |
||||||
|
}; |
||||||
|
|
||||||
|
typedef DescriptorInvariance DescriptorScaleInvariance; |
||||||
|
typedef DescriptorInvariance DescriptorRotationInvariance; |
||||||
|
|
||||||
|
TEST_P(DescriptorRotationInvariance, rotation) |
||||||
|
{ |
||||||
|
Mat image1, mask1; |
||||||
|
const int borderSize = 16; |
||||||
|
Mat mask0(image0.size(), CV_8UC1, Scalar(0)); |
||||||
|
mask0(Rect(borderSize, borderSize, mask0.cols - 2*borderSize, mask0.rows - 2*borderSize)).setTo(Scalar(255)); |
||||||
|
|
||||||
|
vector<KeyPoint> keypoints0; |
||||||
|
Mat descriptors0; |
||||||
|
featureDetector->detect(image0, keypoints0, mask0); |
||||||
|
std::cout << "Keypoints: " << keypoints0.size() << std::endl; |
||||||
|
EXPECT_GE(keypoints0.size(), 15u); |
||||||
|
descriptorExtractor->compute(image0, keypoints0, descriptors0); |
||||||
|
|
||||||
|
BFMatcher bfmatcher(descriptorExtractor->defaultNorm()); |
||||||
|
|
||||||
|
const float minIntersectRatio = 0.5f; |
||||||
|
const int maxAngle = 360, angleStep = 15; |
||||||
|
for(int angle = 0; angle < maxAngle; angle += angleStep) |
||||||
|
{ |
||||||
|
Mat H = rotateImage(image0, mask0, static_cast<float>(angle), image1, mask1); |
||||||
|
|
||||||
|
vector<KeyPoint> keypoints1; |
||||||
|
rotateKeyPoints(keypoints0, H, static_cast<float>(angle), keypoints1); |
||||||
|
Mat descriptors1; |
||||||
|
descriptorExtractor->compute(image1, keypoints1, descriptors1); |
||||||
|
|
||||||
|
vector<DMatch> descMatches; |
||||||
|
bfmatcher.match(descriptors0, descriptors1, descMatches); |
||||||
|
|
||||||
|
int descInliersCount = 0; |
||||||
|
for(size_t m = 0; m < descMatches.size(); m++) |
||||||
|
{ |
||||||
|
const KeyPoint& transformed_p0 = keypoints1[descMatches[m].queryIdx]; |
||||||
|
const KeyPoint& p1 = keypoints1[descMatches[m].trainIdx]; |
||||||
|
if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size, |
||||||
|
p1.pt, 0.5f * p1.size) >= minIntersectRatio) |
||||||
|
{ |
||||||
|
descInliersCount++; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size(); |
||||||
|
EXPECT_GE(descInliersRatio, minInliersRatio); |
||||||
|
#if SHOW_DEBUG_LOG |
||||||
|
std::cout |
||||||
|
<< "angle = " << angle |
||||||
|
<< ", inliers = " << descInliersCount |
||||||
|
<< ", descInliersRatio = " << static_cast<float>(descInliersCount) / keypoints0.size() |
||||||
|
<< std::endl; |
||||||
|
#endif |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
TEST_P(DescriptorScaleInvariance, scale) |
||||||
|
{ |
||||||
|
vector<KeyPoint> keypoints0; |
||||||
|
featureDetector->detect(image0, keypoints0); |
||||||
|
std::cout << "Keypoints: " << keypoints0.size() << std::endl; |
||||||
|
EXPECT_GE(keypoints0.size(), 15u); |
||||||
|
Mat descriptors0; |
||||||
|
descriptorExtractor->compute(image0, keypoints0, descriptors0); |
||||||
|
|
||||||
|
BFMatcher bfmatcher(descriptorExtractor->defaultNorm()); |
||||||
|
for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++) |
||||||
|
{ |
||||||
|
float scale = 1.f + scaleIdx * 0.5f; |
||||||
|
|
||||||
|
Mat image1; |
||||||
|
resize(image0, image1, Size(), 1./scale, 1./scale, INTER_LINEAR_EXACT); |
||||||
|
|
||||||
|
vector<KeyPoint> keypoints1; |
||||||
|
scaleKeyPoints(keypoints0, keypoints1, 1.0f/scale); |
||||||
|
Mat descriptors1; |
||||||
|
descriptorExtractor->compute(image1, keypoints1, descriptors1); |
||||||
|
|
||||||
|
vector<DMatch> descMatches; |
||||||
|
bfmatcher.match(descriptors0, descriptors1, descMatches); |
||||||
|
|
||||||
|
const float minIntersectRatio = 0.5f; |
||||||
|
int descInliersCount = 0; |
||||||
|
for(size_t m = 0; m < descMatches.size(); m++) |
||||||
|
{ |
||||||
|
const KeyPoint& transformed_p0 = keypoints0[descMatches[m].queryIdx]; |
||||||
|
const KeyPoint& p1 = keypoints0[descMatches[m].trainIdx]; |
||||||
|
if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size, |
||||||
|
p1.pt, 0.5f * p1.size) >= minIntersectRatio) |
||||||
|
{ |
||||||
|
descInliersCount++; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size(); |
||||||
|
EXPECT_GE(descInliersRatio, minInliersRatio); |
||||||
|
#if SHOW_DEBUG_LOG |
||||||
|
std::cout |
||||||
|
<< "scale = " << scale |
||||||
|
<< ", inliers = " << descInliersCount |
||||||
|
<< ", descInliersRatio = " << static_cast<float>(descInliersCount) / keypoints0.size() |
||||||
|
<< std::endl; |
||||||
|
#endif |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
#undef SHOW_DEBUG_LOG |
||||||
|
}} // namespace
|
||||||
|
|
||||||
|
namespace std { |
||||||
|
using namespace opencv_test; |
||||||
|
static inline void PrintTo(const String_FeatureDetector_DescriptorExtractor_Float_t& v, std::ostream* os) |
||||||
|
{ |
||||||
|
*os << "(\"" << get<0>(v) |
||||||
|
<< "\", " << get<3>(v) |
||||||
|
<< ")"; |
||||||
|
} |
||||||
|
} // namespace
|
@ -0,0 +1,298 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html
|
||||||
|
|
||||||
|
namespace opencv_test { namespace { |
||||||
|
|
||||||
|
/****************************************************************************************\
|
||||||
|
* Regression tests for descriptor extractors. * |
||||||
|
\****************************************************************************************/ |
||||||
|
static void writeMatInBin( const Mat& mat, const string& filename ) |
||||||
|
{ |
||||||
|
FILE* f = fopen( filename.c_str(), "wb"); |
||||||
|
if( f ) |
||||||
|
{ |
||||||
|
CV_Assert(4 == sizeof(int)); |
||||||
|
int type = mat.type(); |
||||||
|
fwrite( (void*)&mat.rows, sizeof(int), 1, f ); |
||||||
|
fwrite( (void*)&mat.cols, sizeof(int), 1, f ); |
||||||
|
fwrite( (void*)&type, sizeof(int), 1, f ); |
||||||
|
int dataSize = (int)(mat.step * mat.rows); |
||||||
|
fwrite( (void*)&dataSize, sizeof(int), 1, f ); |
||||||
|
fwrite( (void*)mat.ptr(), 1, dataSize, f ); |
||||||
|
fclose(f); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
static Mat readMatFromBin( const string& filename ) |
||||||
|
{ |
||||||
|
FILE* f = fopen( filename.c_str(), "rb" ); |
||||||
|
if( f ) |
||||||
|
{ |
||||||
|
CV_Assert(4 == sizeof(int)); |
||||||
|
int rows, cols, type, dataSize; |
||||||
|
size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f ); |
||||||
|
size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f ); |
||||||
|
size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f ); |
||||||
|
size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f ); |
||||||
|
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); |
||||||
|
|
||||||
|
int step = dataSize / rows / CV_ELEM_SIZE(type); |
||||||
|
CV_Assert(step >= cols); |
||||||
|
|
||||||
|
Mat returnMat = Mat(rows, step, type).colRange(0, cols); |
||||||
|
|
||||||
|
size_t elements_read = fread( returnMat.ptr(), 1, dataSize, f ); |
||||||
|
CV_Assert(elements_read == (size_t)(dataSize)); |
||||||
|
|
||||||
|
fclose(f); |
||||||
|
|
||||||
|
return returnMat; |
||||||
|
} |
||||||
|
return Mat(); |
||||||
|
} |
||||||
|
|
||||||
|
template<class Distance> |
||||||
|
class CV_DescriptorExtractorTest : public cvtest::BaseTest |
||||||
|
{ |
||||||
|
public: |
||||||
|
typedef typename Distance::ValueType ValueType; |
||||||
|
typedef typename Distance::ResultType DistanceType; |
||||||
|
|
||||||
|
CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor, |
||||||
|
Distance d = Distance(), Ptr<FeatureDetector> _detector = Ptr<FeatureDetector>()): |
||||||
|
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) , detector(_detector) {} |
||||||
|
|
||||||
|
~CV_DescriptorExtractorTest() |
||||||
|
{ |
||||||
|
} |
||||||
|
protected: |
||||||
|
virtual void createDescriptorExtractor() {} |
||||||
|
|
||||||
|
void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) |
||||||
|
{ |
||||||
|
if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) |
||||||
|
{ |
||||||
|
ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n"); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
CV_Assert( DataType<ValueType>::type == validDescriptors.type() ); |
||||||
|
|
||||||
|
int dimension = validDescriptors.cols; |
||||||
|
DistanceType curMaxDist = 0; |
||||||
|
size_t exact_count = 0, failed_count = 0; |
||||||
|
for( int y = 0; y < validDescriptors.rows; y++ ) |
||||||
|
{ |
||||||
|
DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension ); |
||||||
|
if (dist == 0) |
||||||
|
exact_count++; |
||||||
|
if( dist > curMaxDist ) |
||||||
|
{ |
||||||
|
if (dist > maxDist) |
||||||
|
failed_count++; |
||||||
|
curMaxDist = dist; |
||||||
|
} |
||||||
|
#if 0 |
||||||
|
if (dist > 0) |
||||||
|
{ |
||||||
|
std::cout << "i=" << y << " fail_count=" << failed_count << " dist=" << dist << std::endl; |
||||||
|
std::cout << "valid: " << validDescriptors.row(y) << std::endl; |
||||||
|
std::cout << " calc: " << calcDescriptors.row(y) << std::endl; |
||||||
|
} |
||||||
|
#endif |
||||||
|
} |
||||||
|
|
||||||
|
float exact_percents = (100 * (float)exact_count / validDescriptors.rows); |
||||||
|
float failed_percents = (100 * (float)failed_count / validDescriptors.rows); |
||||||
|
std::stringstream ss; |
||||||
|
ss << "Exact count (dist == 0): " << exact_count << " (" << (int)exact_percents << "%)" << std::endl |
||||||
|
<< "Failed count (dist > " << maxDist << "): " << failed_count << " (" << (int)failed_percents << "%)" << std::endl |
||||||
|
<< "Max distance between valid and computed descriptors (" << validDescriptors.size() << "): " << curMaxDist; |
||||||
|
EXPECT_LE(failed_percents, 20.0f); |
||||||
|
std::cout << ss.str() << std::endl; |
||||||
|
} |
||||||
|
|
||||||
|
void emptyDataTest() |
||||||
|
{ |
||||||
|
assert( dextractor ); |
||||||
|
|
||||||
|
// One image.
|
||||||
|
Mat image; |
||||||
|
vector<KeyPoint> keypoints; |
||||||
|
Mat descriptors; |
||||||
|
|
||||||
|
try |
||||||
|
{ |
||||||
|
dextractor->compute( image, keypoints, descriptors ); |
||||||
|
} |
||||||
|
catch(...) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n"); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
} |
||||||
|
|
||||||
|
RNG rng; |
||||||
|
image = cvtest::randomMat(rng, Size(50, 50), CV_8UC3, 0, 255, false); |
||||||
|
try |
||||||
|
{ |
||||||
|
dextractor->compute( image, keypoints, descriptors ); |
||||||
|
} |
||||||
|
catch(...) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n"); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
} |
||||||
|
|
||||||
|
// Several images.
|
||||||
|
vector<Mat> images; |
||||||
|
vector<vector<KeyPoint> > keypointsCollection; |
||||||
|
vector<Mat> descriptorsCollection; |
||||||
|
try |
||||||
|
{ |
||||||
|
dextractor->compute( images, keypointsCollection, descriptorsCollection ); |
||||||
|
} |
||||||
|
catch(...) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n"); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
void regressionTest() |
||||||
|
{ |
||||||
|
assert( dextractor ); |
||||||
|
|
||||||
|
// Read the test image.
|
||||||
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
||||||
|
Mat img = imread( imgFilename ); |
||||||
|
if( img.empty() ) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
return; |
||||||
|
} |
||||||
|
const std::string keypoints_filename = string(ts->get_data_path()) + |
||||||
|
(detector.empty() |
||||||
|
? (FEATURES2D_DIR + "/" + std::string("keypoints.xml.gz")) |
||||||
|
: (DESCRIPTOR_DIR + "/" + name + "_keypoints.xml.gz")); |
||||||
|
FileStorage fs(keypoints_filename, FileStorage::READ); |
||||||
|
|
||||||
|
vector<KeyPoint> keypoints; |
||||||
|
EXPECT_TRUE(fs.isOpened()) << "Keypoint testdata is missing. Re-computing and re-writing keypoints testdata..."; |
||||||
|
if (!fs.isOpened()) |
||||||
|
{ |
||||||
|
fs.open(keypoints_filename, FileStorage::WRITE); |
||||||
|
ASSERT_TRUE(fs.isOpened()) << "File for writing keypoints can not be opened."; |
||||||
|
if (detector.empty()) |
||||||
|
{ |
||||||
|
Ptr<ORB> fd = ORB::create(); |
||||||
|
fd->detect(img, keypoints); |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
detector->detect(img, keypoints); |
||||||
|
} |
||||||
|
write(fs, "keypoints", keypoints); |
||||||
|
fs.release(); |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
read(fs.getFirstTopLevelNode(), keypoints); |
||||||
|
fs.release(); |
||||||
|
} |
||||||
|
|
||||||
|
if(!detector.empty()) |
||||||
|
{ |
||||||
|
vector<KeyPoint> calcKeypoints; |
||||||
|
detector->detect(img, calcKeypoints); |
||||||
|
// TODO validate received keypoints
|
||||||
|
int diff = abs((int)calcKeypoints.size() - (int)keypoints.size()); |
||||||
|
if (diff > 0) |
||||||
|
{ |
||||||
|
std::cout << "Keypoints difference: " << diff << std::endl; |
||||||
|
EXPECT_LE(diff, (int)(keypoints.size() * 0.03f)); |
||||||
|
} |
||||||
|
} |
||||||
|
ASSERT_FALSE(keypoints.empty()); |
||||||
|
{ |
||||||
|
Mat calcDescriptors; |
||||||
|
double t = (double)getTickCount(); |
||||||
|
dextractor->compute(img, keypoints, calcDescriptors); |
||||||
|
t = getTickCount() - t; |
||||||
|
ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)getTickFrequency()*1000.)/calcDescriptors.rows); |
||||||
|
|
||||||
|
if (calcDescriptors.rows != (int)keypoints.size()) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" ); |
||||||
|
ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); |
||||||
|
ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
if (calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType()) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); |
||||||
|
ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() ); |
||||||
|
ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); |
||||||
|
ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() ); |
||||||
|
ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
// TODO read and write descriptor extractor parameters and check them
|
||||||
|
Mat validDescriptors = readDescriptors(); |
||||||
|
EXPECT_FALSE(validDescriptors.empty()) << "Descriptors testdata is missing. Re-writing descriptors testdata..."; |
||||||
|
if (!validDescriptors.empty()) |
||||||
|
{ |
||||||
|
compareDescriptors(validDescriptors, calcDescriptors); |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
ASSERT_TRUE(writeDescriptors(calcDescriptors)) << "Descriptors can not be written."; |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
void run(int) |
||||||
|
{ |
||||||
|
createDescriptorExtractor(); |
||||||
|
if( !dextractor ) |
||||||
|
{ |
||||||
|
ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n"); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
emptyDataTest(); |
||||||
|
regressionTest(); |
||||||
|
|
||||||
|
ts->set_failed_test_info( cvtest::TS::OK ); |
||||||
|
} |
||||||
|
|
||||||
|
virtual Mat readDescriptors() |
||||||
|
{ |
||||||
|
Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
||||||
|
return res; |
||||||
|
} |
||||||
|
|
||||||
|
virtual bool writeDescriptors( Mat& descs ) |
||||||
|
{ |
||||||
|
writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
||||||
|
return true; |
||||||
|
} |
||||||
|
|
||||||
|
string name; |
||||||
|
const DistanceType maxDist; |
||||||
|
Ptr<DescriptorExtractor> dextractor; |
||||||
|
Distance distance; |
||||||
|
Ptr<FeatureDetector> detector; |
||||||
|
|
||||||
|
private: |
||||||
|
CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; } |
||||||
|
}; |
||||||
|
|
||||||
|
}} // namespace
|
@ -0,0 +1,227 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html
|
||||||
|
|
||||||
|
#include "test_invariance_utils.hpp" |
||||||
|
|
||||||
|
namespace opencv_test { namespace { |
||||||
|
|
||||||
|
#define SHOW_DEBUG_LOG 1 |
||||||
|
|
||||||
|
typedef tuple<std::string, Ptr<FeatureDetector>, float, float> String_FeatureDetector_Float_Float_t; |
||||||
|
|
||||||
|
|
||||||
|
static |
||||||
|
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H, |
||||||
|
const vector<KeyPoint>& keypoints1, |
||||||
|
vector<DMatch>& matches) |
||||||
|
{ |
||||||
|
vector<Point2f> points0; |
||||||
|
KeyPoint::convert(keypoints0, points0); |
||||||
|
Mat points0t; |
||||||
|
if(H.empty()) |
||||||
|
points0t = Mat(points0); |
||||||
|
else |
||||||
|
perspectiveTransform(Mat(points0), points0t, H); |
||||||
|
|
||||||
|
matches.clear(); |
||||||
|
vector<uchar> usedMask(keypoints1.size(), 0); |
||||||
|
for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++) |
||||||
|
{ |
||||||
|
int nearestPointIndex = -1; |
||||||
|
float maxIntersectRatio = 0.f; |
||||||
|
const float r0 = 0.5f * keypoints0[i0].size; |
||||||
|
for(size_t i1 = 0; i1 < keypoints1.size(); i1++) |
||||||
|
{ |
||||||
|
if(nearestPointIndex >= 0 && usedMask[i1]) |
||||||
|
continue; |
||||||
|
|
||||||
|
float r1 = 0.5f * keypoints1[i1].size; |
||||||
|
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0, |
||||||
|
keypoints1[i1].pt, r1); |
||||||
|
if(intersectRatio > maxIntersectRatio) |
||||||
|
{ |
||||||
|
maxIntersectRatio = intersectRatio; |
||||||
|
nearestPointIndex = static_cast<int>(i1); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio)); |
||||||
|
if(nearestPointIndex >= 0) |
||||||
|
usedMask[nearestPointIndex] = 1; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
class DetectorInvariance : public TestWithParam<String_FeatureDetector_Float_Float_t> |
||||||
|
{ |
||||||
|
protected: |
||||||
|
virtual void SetUp() { |
||||||
|
// Read test data
|
||||||
|
const std::string filename = cvtest::TS::ptr()->get_data_path() + get<0>(GetParam()); |
||||||
|
image0 = imread(filename); |
||||||
|
ASSERT_FALSE(image0.empty()) << "couldn't read input image"; |
||||||
|
|
||||||
|
featureDetector = get<1>(GetParam()); |
||||||
|
minKeyPointMatchesRatio = get<2>(GetParam()); |
||||||
|
minInliersRatio = get<3>(GetParam()); |
||||||
|
} |
||||||
|
|
||||||
|
Ptr<FeatureDetector> featureDetector; |
||||||
|
float minKeyPointMatchesRatio; |
||||||
|
float minInliersRatio; |
||||||
|
Mat image0; |
||||||
|
}; |
||||||
|
|
||||||
|
typedef DetectorInvariance DetectorScaleInvariance; |
||||||
|
typedef DetectorInvariance DetectorRotationInvariance; |
||||||
|
|
||||||
|
TEST_P(DetectorRotationInvariance, rotation) |
||||||
|
{ |
||||||
|
Mat image1, mask1; |
||||||
|
const int borderSize = 16; |
||||||
|
Mat mask0(image0.size(), CV_8UC1, Scalar(0)); |
||||||
|
mask0(Rect(borderSize, borderSize, mask0.cols - 2*borderSize, mask0.rows - 2*borderSize)).setTo(Scalar(255)); |
||||||
|
|
||||||
|
vector<KeyPoint> keypoints0; |
||||||
|
featureDetector->detect(image0, keypoints0, mask0); |
||||||
|
EXPECT_GE(keypoints0.size(), 15u); |
||||||
|
|
||||||
|
const int maxAngle = 360, angleStep = 15; |
||||||
|
for(int angle = 0; angle < maxAngle; angle += angleStep) |
||||||
|
{ |
||||||
|
Mat H = rotateImage(image0, mask0, static_cast<float>(angle), image1, mask1); |
||||||
|
|
||||||
|
vector<KeyPoint> keypoints1; |
||||||
|
featureDetector->detect(image1, keypoints1, mask1); |
||||||
|
|
||||||
|
vector<DMatch> matches; |
||||||
|
matchKeyPoints(keypoints0, H, keypoints1, matches); |
||||||
|
|
||||||
|
int angleInliersCount = 0; |
||||||
|
|
||||||
|
const float minIntersectRatio = 0.5f; |
||||||
|
int keyPointMatchesCount = 0; |
||||||
|
for(size_t m = 0; m < matches.size(); m++) |
||||||
|
{ |
||||||
|
if(matches[m].distance < minIntersectRatio) |
||||||
|
continue; |
||||||
|
|
||||||
|
keyPointMatchesCount++; |
||||||
|
|
||||||
|
// Check does this inlier have consistent angles
|
||||||
|
const float maxAngleDiff = 15.f; // grad
|
||||||
|
float angle0 = keypoints0[matches[m].queryIdx].angle; |
||||||
|
float angle1 = keypoints1[matches[m].trainIdx].angle; |
||||||
|
ASSERT_FALSE(angle0 == -1 || angle1 == -1) << "Given FeatureDetector is not rotation invariant, it can not be tested here."; |
||||||
|
ASSERT_GE(angle0, 0.f); |
||||||
|
ASSERT_LT(angle0, 360.f); |
||||||
|
ASSERT_GE(angle1, 0.f); |
||||||
|
ASSERT_LT(angle1, 360.f); |
||||||
|
|
||||||
|
float rotAngle0 = angle0 + angle; |
||||||
|
if(rotAngle0 >= 360.f) |
||||||
|
rotAngle0 -= 360.f; |
||||||
|
|
||||||
|
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1); |
||||||
|
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff)); |
||||||
|
ASSERT_GE(angleDiff, 0.f); |
||||||
|
bool isAngleCorrect = angleDiff < maxAngleDiff; |
||||||
|
if(isAngleCorrect) |
||||||
|
angleInliersCount++; |
||||||
|
} |
||||||
|
|
||||||
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size(); |
||||||
|
EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio) << "angle: " << angle; |
||||||
|
|
||||||
|
if(keyPointMatchesCount) |
||||||
|
{ |
||||||
|
float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount; |
||||||
|
EXPECT_GE(angleInliersRatio, minInliersRatio) << "angle: " << angle; |
||||||
|
} |
||||||
|
#if SHOW_DEBUG_LOG |
||||||
|
std::cout |
||||||
|
<< "angle = " << angle |
||||||
|
<< ", keypoints = " << keypoints1.size() |
||||||
|
<< ", keyPointMatchesRatio = " << keyPointMatchesRatio |
||||||
|
<< ", angleInliersRatio = " << (keyPointMatchesCount ? (static_cast<float>(angleInliersCount) / keyPointMatchesCount) : 0) |
||||||
|
<< std::endl; |
||||||
|
#endif |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(DetectorScaleInvariance, scale) |
||||||
|
{ |
||||||
|
vector<KeyPoint> keypoints0; |
||||||
|
featureDetector->detect(image0, keypoints0); |
||||||
|
EXPECT_GE(keypoints0.size(), 15u); |
||||||
|
|
||||||
|
for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++) |
||||||
|
{ |
||||||
|
float scale = 1.f + scaleIdx * 0.5f; |
||||||
|
Mat image1; |
||||||
|
resize(image0, image1, Size(), 1./scale, 1./scale, INTER_LINEAR_EXACT); |
||||||
|
|
||||||
|
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
|
||||||
|
featureDetector->detect(image1, keypoints1); |
||||||
|
EXPECT_GE(keypoints1.size(), 15u); |
||||||
|
EXPECT_LE(keypoints1.size(), keypoints0.size()) << "Strange behavior of the detector. " |
||||||
|
"It gives more points count in an image of the smaller size."; |
||||||
|
|
||||||
|
scaleKeyPoints(keypoints1, osiKeypoints1, scale); |
||||||
|
vector<DMatch> matches; |
||||||
|
// image1 is query image (it's reduced image0)
|
||||||
|
// image0 is train image
|
||||||
|
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches); |
||||||
|
|
||||||
|
const float minIntersectRatio = 0.5f; |
||||||
|
int keyPointMatchesCount = 0; |
||||||
|
int scaleInliersCount = 0; |
||||||
|
|
||||||
|
for(size_t m = 0; m < matches.size(); m++) |
||||||
|
{ |
||||||
|
if(matches[m].distance < minIntersectRatio) |
||||||
|
continue; |
||||||
|
|
||||||
|
keyPointMatchesCount++; |
||||||
|
|
||||||
|
// Check does this inlier have consistent sizes
|
||||||
|
const float maxSizeDiff = 0.8f;//0.9f; // grad
|
||||||
|
float size0 = keypoints0[matches[m].trainIdx].size; |
||||||
|
float size1 = osiKeypoints1[matches[m].queryIdx].size; |
||||||
|
ASSERT_GT(size0, 0); |
||||||
|
ASSERT_GT(size1, 0); |
||||||
|
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1)) |
||||||
|
scaleInliersCount++; |
||||||
|
} |
||||||
|
|
||||||
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size(); |
||||||
|
EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio); |
||||||
|
|
||||||
|
if(keyPointMatchesCount) |
||||||
|
{ |
||||||
|
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount; |
||||||
|
EXPECT_GE(scaleInliersRatio, minInliersRatio); |
||||||
|
} |
||||||
|
#if SHOW_DEBUG_LOG |
||||||
|
std::cout |
||||||
|
<< "scale = " << scale |
||||||
|
<< ", keyPointMatchesRatio = " << keyPointMatchesRatio |
||||||
|
<< ", scaleInliersRatio = " << (keyPointMatchesCount ? static_cast<float>(scaleInliersCount) / keyPointMatchesCount : 0) |
||||||
|
<< std::endl; |
||||||
|
#endif |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
#undef SHOW_DEBUG_LOG |
||||||
|
}} // namespace
|
||||||
|
|
||||||
|
namespace std { |
||||||
|
using namespace opencv_test; |
||||||
|
static inline void PrintTo(const String_FeatureDetector_Float_Float_t& v, std::ostream* os) |
||||||
|
{ |
||||||
|
*os << "(\"" << get<0>(v) |
||||||
|
<< "\", " << get<2>(v) |
||||||
|
<< ", " << get<3>(v) |
||||||
|
<< ")"; |
||||||
|
} |
||||||
|
} // namespace
|
@ -0,0 +1,201 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html
|
||||||
|
|
||||||
|
namespace opencv_test { namespace { |
||||||
|
|
||||||
|
/****************************************************************************************\
|
||||||
|
* Regression tests for feature detectors comparing keypoints. * |
||||||
|
\****************************************************************************************/ |
||||||
|
|
||||||
|
class CV_FeatureDetectorTest : public cvtest::BaseTest |
||||||
|
{ |
||||||
|
public: |
||||||
|
CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) : |
||||||
|
name(_name), fdetector(_fdetector) {} |
||||||
|
|
||||||
|
protected: |
||||||
|
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ); |
||||||
|
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints ); |
||||||
|
|
||||||
|
void emptyDataTest(); |
||||||
|
void regressionTest(); // TODO test of detect() with mask
|
||||||
|
|
||||||
|
virtual void run( int ); |
||||||
|
|
||||||
|
string name; |
||||||
|
Ptr<FeatureDetector> fdetector; |
||||||
|
}; |
||||||
|
|
||||||
|
void CV_FeatureDetectorTest::emptyDataTest() |
||||||
|
{ |
||||||
|
// One image.
|
||||||
|
Mat image; |
||||||
|
vector<KeyPoint> keypoints; |
||||||
|
try |
||||||
|
{ |
||||||
|
fdetector->detect( image, keypoints ); |
||||||
|
} |
||||||
|
catch(...) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||||
|
} |
||||||
|
|
||||||
|
if( !keypoints.empty() ) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
// Several images.
|
||||||
|
vector<Mat> images; |
||||||
|
vector<vector<KeyPoint> > keypointCollection; |
||||||
|
try |
||||||
|
{ |
||||||
|
fdetector->detect( images, keypointCollection ); |
||||||
|
} |
||||||
|
catch(...) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ) |
||||||
|
{ |
||||||
|
const float maxPtDif = 1.f; |
||||||
|
const float maxSizeDif = 1.f; |
||||||
|
const float maxAngleDif = 2.f; |
||||||
|
const float maxResponseDif = 0.1f; |
||||||
|
|
||||||
|
float dist = (float)cv::norm( p1.pt - p2.pt ); |
||||||
|
return (dist < maxPtDif && |
||||||
|
fabs(p1.size - p2.size) < maxSizeDif && |
||||||
|
abs(p1.angle - p2.angle) < maxAngleDif && |
||||||
|
abs(p1.response - p2.response) < maxResponseDif && |
||||||
|
p1.octave == p2.octave && |
||||||
|
p1.class_id == p2.class_id ); |
||||||
|
} |
||||||
|
|
||||||
|
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints ) |
||||||
|
{ |
||||||
|
const float maxCountRatioDif = 0.01f; |
||||||
|
|
||||||
|
// Compare counts of validation and calculated keypoints.
|
||||||
|
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size(); |
||||||
|
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif ) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n", |
||||||
|
validKeypoints.size(), calcKeypoints.size() ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size()); |
||||||
|
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size()); |
||||||
|
for( size_t v = 0; v < validKeypoints.size(); v++ ) |
||||||
|
{ |
||||||
|
int nearestIdx = -1; |
||||||
|
float minDist = std::numeric_limits<float>::max(); |
||||||
|
|
||||||
|
for( size_t c = 0; c < calcKeypoints.size(); c++ ) |
||||||
|
{ |
||||||
|
progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 ); |
||||||
|
float curDist = (float)cv::norm( calcKeypoints[c].pt - validKeypoints[v].pt ); |
||||||
|
if( curDist < minDist ) |
||||||
|
{ |
||||||
|
minDist = curDist; |
||||||
|
nearestIdx = (int)c; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
assert( minDist >= 0 ); |
||||||
|
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) ) |
||||||
|
badPointCount++; |
||||||
|
} |
||||||
|
ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n", |
||||||
|
badPointCount, validKeypoints.size(), calcKeypoints.size() ); |
||||||
|
if( badPointCount > 0.9 * commonPointCount ) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
||||||
|
return; |
||||||
|
} |
||||||
|
ts->printf( cvtest::TS::LOG, " - OK\n" ); |
||||||
|
} |
||||||
|
|
||||||
|
void CV_FeatureDetectorTest::regressionTest() |
||||||
|
{ |
||||||
|
assert( !fdetector.empty() ); |
||||||
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
||||||
|
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz"; |
||||||
|
|
||||||
|
// Read the test image.
|
||||||
|
Mat image = imread( imgFilename ); |
||||||
|
if( image.empty() ) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
FileStorage fs( resFilename, FileStorage::READ ); |
||||||
|
|
||||||
|
// Compute keypoints.
|
||||||
|
vector<KeyPoint> calcKeypoints; |
||||||
|
fdetector->detect( image, calcKeypoints ); |
||||||
|
|
||||||
|
if( fs.isOpened() ) // Compare computed and valid keypoints.
|
||||||
|
{ |
||||||
|
// TODO compare saved feature detector params with current ones
|
||||||
|
|
||||||
|
// Read validation keypoints set.
|
||||||
|
vector<KeyPoint> validKeypoints; |
||||||
|
read( fs["keypoints"], validKeypoints ); |
||||||
|
if( validKeypoints.empty() ) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
compareKeypointSets( validKeypoints, calcKeypoints ); |
||||||
|
} |
||||||
|
else // Write detector parameters and computed keypoints as validation data.
|
||||||
|
{ |
||||||
|
fs.open( resFilename, FileStorage::WRITE ); |
||||||
|
if( !fs.isOpened() ) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
return; |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
fs << "detector_params" << "{"; |
||||||
|
fdetector->write( fs ); |
||||||
|
fs << "}"; |
||||||
|
|
||||||
|
write( fs, "keypoints", calcKeypoints ); |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
void CV_FeatureDetectorTest::run( int /*start_from*/ ) |
||||||
|
{ |
||||||
|
if( !fdetector ) |
||||||
|
{ |
||||||
|
ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" ); |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
emptyDataTest(); |
||||||
|
regressionTest(); |
||||||
|
|
||||||
|
ts->set_failed_test_info( cvtest::TS::OK ); |
||||||
|
} |
||||||
|
|
||||||
|
}} // namespace
|
Loading…
Reference in new issue