Updating to c++ interfaces

pull/3308/head
edgarriba 10 years ago
parent 9698cc93d9
commit 4071c4e7c9
  1. 426
      modules/calib3d/src/upnp.cpp
  2. 69
      modules/calib3d/src/upnp.h

@ -1,8 +1,58 @@
//M*//////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/****************************************************************************************\
* Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation.
* Contributed by Edgar Riba
\****************************************************************************************/
#include "precomp.hpp"
#include "upnp.h"
#include <limits>
upnp::upnp(const cv::Mat& cameraMatrix, const cv::Mat& opoints, const cv::Mat& ipoints)
using namespace std;
using namespace cv;
upnp::upnp(const Mat& cameraMatrix, const Mat& opoints, const Mat& ipoints)
{
if (cameraMatrix.depth() == CV_32F)
init_camera_parameters<float>(cameraMatrix);
@ -17,14 +67,14 @@ upnp::upnp(const cv::Mat& cameraMatrix, const cv::Mat& opoints, const cv::Mat& i
if (opoints.depth() == ipoints.depth())
{
if (opoints.depth() == CV_32F)
init_points<cv::Point3f,cv::Point2f>(opoints, ipoints);
init_points<Point3f,Point2f>(opoints, ipoints);
else
init_points<cv::Point3d,cv::Point2d>(opoints, ipoints);
init_points<Point3d,Point2d>(opoints, ipoints);
}
else if (opoints.depth() == CV_32F)
init_points<cv::Point3f,cv::Point2d>(opoints, ipoints);
init_points<Point3f,Point2d>(opoints, ipoints);
else
init_points<cv::Point3d,cv::Point2f>(opoints, ipoints);
init_points<Point3d,Point2f>(opoints, ipoints);
alphas.resize(4 * number_of_correspondences);
pcs.resize(3 * number_of_correspondences);
@ -42,30 +92,32 @@ upnp::~upnp()
delete[] A2;
}
double upnp::compute_pose(cv::Mat& R, cv::Mat& t)
double upnp::compute_pose(Mat& R, Mat& t)
{
choose_control_points();
compute_alphas();
CvMat * M = cvCreateMat(2 * number_of_correspondences, 12, CV_64F);
Mat * M = new Mat(2 * number_of_correspondences, 12, CV_64F);
for(int i = 0; i < number_of_correspondences; i++)
{
fill_M(M, 2 * i, &alphas[0] + 4 * i, us[2 * i], us[2 * i + 1]);
}
double mtm[12 * 12], d[12], ut[12 * 12];
CvMat MtM = cvMat(12, 12, CV_64F, mtm);
CvMat D = cvMat(12, 1, CV_64F, d);
CvMat Ut = cvMat(12, 12, CV_64F, ut);
double mtm[12 * 12], d[12], ut[12 * 12], vt[12 * 12];
Mat MtM = Mat(12, 12, CV_64F, mtm);
Mat D = Mat(12, 1, CV_64F, d);
Mat Ut = Mat(12, 12, CV_64F, ut);
Mat Vt = Mat(12, 12, CV_64F, vt);
cvMulTransposed(M, &MtM, 1);
cvSVD(&MtM, &D, &Ut, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
cvReleaseMat(&M);
MtM = M->t() * (*M);
SVD::compute(MtM, D, Ut, Vt, SVD::MODIFY_A | SVD::FULL_UV);
Mat(Ut.t()).copyTo(Ut);
M->release();
double l_6x12[6 * 12], rho[6];
CvMat L_6x12 = cvMat(6, 12, CV_64F, l_6x12);
CvMat Rho = cvMat(6, 1, CV_64F, rho);
Mat L_6x12 = Mat(6, 12, CV_64F, l_6x12);
Mat Rho = Mat(6, 1, CV_64F, rho);
compute_L_6x12(ut, l_6x12);
compute_rho(rho);
@ -84,8 +136,8 @@ double upnp::compute_pose(cv::Mat& R, cv::Mat& t)
int N = 1;
if (rep_errors[2] < rep_errors[1]) N = 2;
cv::Mat(3, 1, CV_64F, ts[N]).copyTo(t);
cv::Mat(3, 3, CV_64F, Rs[N]).copyTo(R);
Mat(3, 1, CV_64F, ts[N]).copyTo(t);
Mat(3, 3, CV_64F, Rs[N]).copyTo(R);
fu = fv = Efs[N][0];
return fu;
@ -96,7 +148,7 @@ void upnp::copy_R_and_t(const double R_src[3][3], const double t_src[3],
{
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++)
R_dst[i][j] = R_src[i][j];
R_dst[i][j] = R_src[i][j];
t_dst[i] = t_src[i];
}
}
@ -123,12 +175,12 @@ void upnp::estimate_R_and_t(double R[3][3], double t[3])
}
double abt[3 * 3], abt_d[3], abt_u[3 * 3], abt_v[3 * 3];
CvMat ABt = cvMat(3, 3, CV_64F, abt);
CvMat ABt_D = cvMat(3, 1, CV_64F, abt_d);
CvMat ABt_U = cvMat(3, 3, CV_64F, abt_u);
CvMat ABt_V = cvMat(3, 3, CV_64F, abt_v);
Mat ABt = Mat(3, 3, CV_64F, abt);
Mat ABt_D = Mat(3, 1, CV_64F, abt_d);
Mat ABt_U = Mat(3, 3, CV_64F, abt_u);
Mat ABt_V = Mat(3, 3, CV_64F, abt_v);
cvSetZero(&ABt);
ABt.setTo(0.0);
for(int i = 0; i < number_of_correspondences; i++) {
double * pc = &pcs[3 * i];
double * pw = &pws[3 * i];
@ -140,7 +192,8 @@ void upnp::estimate_R_and_t(double R[3][3], double t[3])
}
}
cvSVD(&ABt, &ABt_D, &ABt_U, &ABt_V, CV_SVD_MODIFY_A);
SVD::compute(ABt, ABt_D, ABt_U, ABt_V, SVD::MODIFY_A);
Mat(ABt_V.t()).copyTo(ABt_V);
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
@ -211,31 +264,31 @@ double upnp::reprojection_error(const double R[3][3], const double t[3])
void upnp::choose_control_points()
{
for (int i = 0; i < 4; ++i)
cws[i][0] = cws[i][1] = cws[i][2] = 0;
cws[0][0] = cws[1][1] = cws[2][2] = 1.;
cws[i][0] = cws[i][1] = cws[i][2] = 0.0;
cws[0][0] = cws[1][1] = cws[2][2] = 1.0;
}
void upnp::compute_alphas()
{
cv::Mat CC = cv::Mat(4, 3, CV_64F, &cws);
cv::Mat PC = cv::Mat(number_of_correspondences, 3, CV_64F, &pws[0]);
cv::Mat ALPHAS = cv::Mat(number_of_correspondences, 4, CV_64F, &alphas[0]);
Mat CC = Mat(4, 3, CV_64F, &cws);
Mat PC = Mat(number_of_correspondences, 3, CV_64F, &pws[0]);
Mat ALPHAS = Mat(number_of_correspondences, 4, CV_64F, &alphas[0]);
cv::Mat CC_ = CC.clone().t();
cv::Mat PC_ = PC.clone().t();
Mat CC_ = CC.clone().t();
Mat PC_ = PC.clone().t();
cv::Mat row14 = cv::Mat::ones(1, 4, CV_64F);
cv::Mat row1n = cv::Mat::ones(1, number_of_correspondences, CV_64F);
Mat row14 = Mat::ones(1, 4, CV_64F);
Mat row1n = Mat::ones(1, number_of_correspondences, CV_64F);
CC_.push_back(row14);
PC_.push_back(row1n);
ALPHAS = cv::Mat( CC_.inv() * PC_ ).t();
ALPHAS = Mat( CC_.inv() * PC_ ).t();
}
void upnp::fill_M(CvMat * M, const int row, const double * as, const double u, const double v)
void upnp::fill_M(Mat * M, const int row, const double * as, const double u, const double v)
{
double * M1 = M->data.db + row * 12;
double * M1 = M->ptr<double>(row);
double * M2 = M1 + 12;
for(int i = 0; i < 4; i++) {
@ -252,7 +305,7 @@ void upnp::fill_M(CvMat * M, const int row, const double * as, const double u, c
void upnp::compute_ccs(const double * betas, const double * ut)
{
for(int i = 0; i < 4; ++i)
ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0f;
ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0;
int N = 4;
for(int i = 0; i < N; ++i) {
@ -276,42 +329,45 @@ void upnp::compute_pcs(void)
}
}
void upnp::find_betas_and_focal_approx_1(const CvMat * Ut, const CvMat * Rho, double * betas, double * efs)
void upnp::find_betas_and_focal_approx_1(Mat * Ut, Mat * Rho, double * betas, double * efs)
{
cv::Mat Kmf1 = cv::Mat(12, 1, CV_64F, Ut->data.db + 11 * 12);
cv::Mat dsq = cv::Mat(6, 1, CV_64F, Rho->data.db);
Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr<double>(11));
Mat dsq = Mat(6, 1, CV_64F, Rho->ptr<double>(0));
cv::Mat D = compute_constraint_distance_2param_6eq_2unk_f_unk( Kmf1 );
cv::Mat Dt = D.t();
Mat D = compute_constraint_distance_2param_6eq_2unk_f_unk( Kmf1 );
Mat Dt = D.t();
cv::Mat A = Dt * D;
cv::Mat b = Dt * dsq;
Mat A = Dt * D;
Mat b = Dt * dsq;
cv::Mat x = cv::Mat(2, 1, CV_64F);
cv::solve(A, b, x);
Mat x = Mat(2, 1, CV_64F);
solve(A, b, x);
betas[0] = std::sqrt( std::abs( x.at<double>(0) ) );
betas[1] = betas[2] = betas[3] = 0;
betas[0] = sqrt( abs( x.at<double>(0) ) );
betas[1] = betas[2] = betas[3] = 0.0;
efs[0] = std::sqrt( std::abs( x.at<double>(1) ) ) / betas[0];
efs[0] = sqrt( abs( x.at<double>(1) ) ) / betas[0];
}
void upnp::find_betas_and_focal_approx_2(const CvMat * Ut, const CvMat * Rho, double * betas, double * efs)
void upnp::find_betas_and_focal_approx_2(Mat * Ut, Mat * Rho, double * betas, double * efs)
{
double u[12*12];
Mat U = Mat(12, 12, CV_64F, u);
Ut->copyTo(U);
cv::Mat Kmf1 = cv::Mat(12, 1, CV_64F, Ut->data.db + 10 * 12);
cv::Mat Kmf2 = cv::Mat(12, 1, CV_64F, Ut->data.db + 11 * 12);
cv::Mat dsq = cv::Mat(6, 1, CV_64F, Rho->data.db);
Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr<double>(10));
Mat Kmf2 = Mat(12, 1, CV_64F, Ut->ptr<double>(11));
Mat dsq = Mat(6, 1, CV_64F, Rho->ptr<double>(0));
cv::Mat D = compute_constraint_distance_3param_6eq_6unk_f_unk( Kmf1, Kmf2 );
Mat D = compute_constraint_distance_3param_6eq_6unk_f_unk( Kmf1, Kmf2 );
cv::Mat A = D;
cv::Mat b = dsq;
Mat A = D;
Mat b = dsq;
double x[6];
cv::Mat X = cv::Mat(6, 1, CV_64F, x);
Mat X = Mat(6, 1, CV_64F, x);
cv::solve(A, b, X, cv::DECOMP_QR);
solve(A, b, X, DECOMP_QR);
double solutions[18][3];
generate_all_possible_solutions_for_f_unk(x, solutions);
@ -323,11 +379,11 @@ void upnp::find_betas_and_focal_approx_2(const CvMat * Ut, const CvMat * Rho, do
betas[3] = solutions[i][0];
betas[2] = solutions[i][1];
betas[1] = betas[0] = 0;
betas[1] = betas[0] = 0.0;
fu = fv = solutions[i][2];
double Rs[3][3], ts[3];
double error_i = compute_R_and_t( Ut->data.db, betas, Rs, ts);
double error_i = compute_R_and_t( u, betas, Rs, ts);
if( error_i < min_error)
{
@ -338,136 +394,136 @@ void upnp::find_betas_and_focal_approx_2(const CvMat * Ut, const CvMat * Rho, do
betas[0] = solutions[min_sol][0];
betas[1] = solutions[min_sol][1];
betas[2] = betas[3] = 0;
betas[2] = betas[3] = 0.0;
efs[0] = solutions[min_sol][2];
}
cv::Mat upnp::compute_constraint_distance_2param_6eq_2unk_f_unk(const cv::Mat& M1)
Mat upnp::compute_constraint_distance_2param_6eq_2unk_f_unk(const Mat& M1)
{
cv::Mat P = cv::Mat(6, 2, CV_64F);
Mat P = Mat(6, 2, CV_64F);
double m[13];
for (int i = 1; i < 13; ++i) m[i] = M1.at<double>(i-1);
double t1 = std::pow( m[4], 2 );
double t4 = std::pow( m[1], 2 );
double t5 = std::pow( m[5], 2 );
double t8 = std::pow( m[2], 2 );
double t10 = std::pow( m[6], 2 );
double t13 = std::pow( m[3], 2 );
double t15 = std::pow( m[7], 2 );
double t18 = std::pow( m[8], 2 );
double t22 = std::pow( m[9], 2 );
double t26 = std::pow( m[10], 2 );
double t29 = std::pow( m[11], 2 );
double t33 = std::pow( m[12], 2 );
P.at<double>(0,0) = t1 - 2 * m[4] * m[1] + t4 + t5 - 2 * m[5] * m[2] + t8;
P.at<double>(0,1) = t10 - 2 * m[6] * m[3] + t13;
P.at<double>(1,0) = t15 - 2 * m[7] * m[1] + t4 + t18 - 2 * m[8] * m[2] + t8;
P.at<double>(1,1) = t22 - 2 * m[9] * m[3] + t13;
P.at<double>(2,0) = t26 - 2 * m[10] * m[1] + t4 + t29 - 2 * m[11] * m[2] + t8;
P.at<double>(2,1) = t33 - 2 * m[12] * m[3] + t13;
P.at<double>(3,0) = t15 - 2 * m[7] * m[4] + t1 + t18 - 2 * m[8] * m[5] + t5;
P.at<double>(3,1) = t22 - 2 * m[9] * m[6] + t10;
P.at<double>(4,0) = t26 - 2 * m[10] * m[4] + t1 + t29 - 2 * m[11] * m[5] + t5;
P.at<double>(4,1) = t33 - 2 * m[12] * m[6] + t10;
P.at<double>(5,0) = t26 - 2 * m[10] * m[7] + t15 + t29 - 2 * m[11] * m[8] + t18;
P.at<double>(5,1) = t33 - 2 * m[12] * m[9] + t22;
for (int i = 1; i < 13; ++i) m[i] = *M1.ptr<double>(i-1);
double t1 = pow( m[4], 2 );
double t4 = pow( m[1], 2 );
double t5 = pow( m[5], 2 );
double t8 = pow( m[2], 2 );
double t10 = pow( m[6], 2 );
double t13 = pow( m[3], 2 );
double t15 = pow( m[7], 2 );
double t18 = pow( m[8], 2 );
double t22 = pow( m[9], 2 );
double t26 = pow( m[10], 2 );
double t29 = pow( m[11], 2 );
double t33 = pow( m[12], 2 );
*P.ptr<double>(0,0) = t1 - 2 * m[4] * m[1] + t4 + t5 - 2 * m[5] * m[2] + t8;
*P.ptr<double>(0,1) = t10 - 2 * m[6] * m[3] + t13;
*P.ptr<double>(1,0) = t15 - 2 * m[7] * m[1] + t4 + t18 - 2 * m[8] * m[2] + t8;
*P.ptr<double>(1,1) = t22 - 2 * m[9] * m[3] + t13;
*P.ptr<double>(2,0) = t26 - 2 * m[10] * m[1] + t4 + t29 - 2 * m[11] * m[2] + t8;
*P.ptr<double>(2,1) = t33 - 2 * m[12] * m[3] + t13;
*P.ptr<double>(3,0) = t15 - 2 * m[7] * m[4] + t1 + t18 - 2 * m[8] * m[5] + t5;
*P.ptr<double>(3,1) = t22 - 2 * m[9] * m[6] + t10;
*P.ptr<double>(4,0) = t26 - 2 * m[10] * m[4] + t1 + t29 - 2 * m[11] * m[5] + t5;
*P.ptr<double>(4,1) = t33 - 2 * m[12] * m[6] + t10;
*P.ptr<double>(5,0) = t26 - 2 * m[10] * m[7] + t15 + t29 - 2 * m[11] * m[8] + t18;
*P.ptr<double>(5,1) = t33 - 2 * m[12] * m[9] + t22;
return P;
}
cv::Mat upnp::compute_constraint_distance_3param_6eq_6unk_f_unk(const cv::Mat& M1, const cv::Mat& M2)
Mat upnp::compute_constraint_distance_3param_6eq_6unk_f_unk(const Mat& M1, const Mat& M2)
{
cv::Mat P = cv::Mat(6, 6, CV_64F);
Mat P = Mat(6, 6, CV_64F);
double m[3][13];
for (int i = 1; i < 13; ++i)
{
m[1][i] = M1.at<double>(i-1);
m[2][i] = M2.at<double>(i-1);
m[1][i] = *M1.ptr<double>(i-1);
m[2][i] = *M2.ptr<double>(i-1);
}
double t1 = std::pow( m[1][4], 2 );
double t2 = std::pow( m[1][1], 2 );
double t7 = std::pow( m[1][5], 2 );
double t8 = std::pow( m[1][2], 2 );
double t1 = pow( m[1][4], 2 );
double t2 = pow( m[1][1], 2 );
double t7 = pow( m[1][5], 2 );
double t8 = pow( m[1][2], 2 );
double t11 = m[1][1] * m[2][1];
double t12 = m[1][5] * m[2][5];
double t15 = m[1][2] * m[2][2];
double t16 = m[1][4] * m[2][4];
double t19 = std::pow( m[2][4], 2 );
double t22 = std::pow( m[2][2], 2 );
double t23 = std::pow( m[2][1], 2 );
double t24 = std::pow( m[2][5], 2 );
double t28 = std::pow( m[1][6], 2 );
double t29 = std::pow( m[1][3], 2 );
double t34 = std::pow( m[1][3], 2 );
double t19 = pow( m[2][4], 2 );
double t22 = pow( m[2][2], 2 );
double t23 = pow( m[2][1], 2 );
double t24 = pow( m[2][5], 2 );
double t28 = pow( m[1][6], 2 );
double t29 = pow( m[1][3], 2 );
double t34 = pow( m[1][3], 2 );
double t36 = m[1][6] * m[2][6];
double t40 = std::pow( m[2][6], 2 );
double t41 = std::pow( m[2][3], 2 );
double t47 = std::pow( m[1][7], 2 );
double t48 = std::pow( m[1][8], 2 );
double t40 = pow( m[2][6], 2 );
double t41 = pow( m[2][3], 2 );
double t47 = pow( m[1][7], 2 );
double t48 = pow( m[1][8], 2 );
double t52 = m[1][7] * m[2][7];
double t55 = m[1][8] * m[2][8];
double t59 = std::pow( m[2][8], 2 );
double t62 = std::pow( m[2][7], 2 );
double t64 = std::pow( m[1][9], 2 );
double t59 = pow( m[2][8], 2 );
double t62 = pow( m[2][7], 2 );
double t64 = pow( m[1][9], 2 );
double t68 = m[1][9] * m[2][9];
double t74 = std::pow( m[2][9], 2 );
double t78 = std::pow( m[1][10], 2 );
double t79 = std::pow( m[1][11], 2 );
double t74 = pow( m[2][9], 2 );
double t78 = pow( m[1][10], 2 );
double t79 = pow( m[1][11], 2 );
double t84 = m[1][10] * m[2][10];
double t87 = m[1][11] * m[2][11];
double t90 = std::pow( m[2][10], 2 );
double t95 = std::pow( m[2][11], 2 );
double t99 = std::pow( m[1][12], 2 );
double t90 = pow( m[2][10], 2 );
double t95 = pow( m[2][11], 2 );
double t99 = pow( m[1][12], 2 );
double t101 = m[1][12] * m[2][12];
double t105 = std::pow( m[2][12], 2 );
P.at<double>(0,0) = t1 + t2 - 2 * m[1][4] * m[1][1] - 2 * m[1][5] * m[1][2] + t7 + t8;
P.at<double>(0,1) = -2 * m[2][4] * m[1][1] + 2 * t11 + 2 * t12 - 2 * m[1][4] * m[2][1] - 2 * m[2][5] * m[1][2] + 2 * t15 + 2 * t16 - 2 * m[1][5] * m[2][2];
P.at<double>(0,2) = t19 - 2 * m[2][4] * m[2][1] + t22 + t23 + t24 - 2 * m[2][5] * m[2][2];
P.at<double>(0,3) = t28 + t29 - 2 * m[1][6] * m[1][3];
P.at<double>(0,4) = -2 * m[2][6] * m[1][3] + 2 * t34 - 2 * m[1][6] * m[2][3] + 2 * t36;
P.at<double>(0,5) = -2 * m[2][6] * m[2][3] + t40 + t41;
P.at<double>(1,0) = t8 - 2 * m[1][8] * m[1][2] - 2 * m[1][7] * m[1][1] + t47 + t48 + t2;
P.at<double>(1,1) = 2 * t15 - 2 * m[1][8] * m[2][2] - 2 * m[2][8] * m[1][2] + 2 * t52 - 2 * m[1][7] * m[2][1] - 2 * m[2][7] * m[1][1] + 2 * t55 + 2 * t11;
P.at<double>(1,2) = -2 * m[2][8] * m[2][2] + t22 + t23 + t59 - 2 * m[2][7] * m[2][1] + t62;
P.at<double>(1,3) = t29 + t64 - 2 * m[1][9] * m[1][3];
P.at<double>(1,4) = 2 * t34 + 2 * t68 - 2 * m[2][9] * m[1][3] - 2 * m[1][9] * m[2][3];
P.at<double>(1,5) = -2 * m[2][9] * m[2][3] + t74 + t41;
P.at<double>(2,0) = -2 * m[1][11] * m[1][2] + t2 + t8 + t78 + t79 - 2 * m[1][10] * m[1][1];
P.at<double>(2,1) = 2 * t15 - 2 * m[1][11] * m[2][2] + 2 * t84 - 2 * m[1][10] * m[2][1] - 2 * m[2][10] * m[1][1] + 2 * t87 - 2 * m[2][11] * m[1][2]+ 2 * t11;
P.at<double>(2,2) = t90 + t22 - 2 * m[2][10] * m[2][1] + t23 - 2 * m[2][11] * m[2][2] + t95;
P.at<double>(2,3) = -2 * m[1][12] * m[1][3] + t99 + t29;
P.at<double>(2,4) = 2 * t34 + 2 * t101 - 2 * m[2][12] * m[1][3] - 2 * m[1][12] * m[2][3];
P.at<double>(2,5) = t41 + t105 - 2 * m[2][12] * m[2][3];
P.at<double>(3,0) = t48 + t1 - 2 * m[1][8] * m[1][5] + t7 - 2 * m[1][7] * m[1][4] + t47;
P.at<double>(3,1) = 2 * t16 - 2 * m[1][7] * m[2][4] + 2 * t55 + 2 * t52 - 2 * m[1][8] * m[2][5] - 2 * m[2][8] * m[1][5] - 2 * m[2][7] * m[1][4] + 2 * t12;
P.at<double>(3,2) = t24 - 2 * m[2][8] * m[2][5] + t19 - 2 * m[2][7] * m[2][4] + t62 + t59;
P.at<double>(3,3) = -2 * m[1][9] * m[1][6] + t64 + t28;
P.at<double>(3,4) = 2 * t68 + 2 * t36 - 2 * m[2][9] * m[1][6] - 2 * m[1][9] * m[2][6];
P.at<double>(3,5) = t40 + t74 - 2 * m[2][9] * m[2][6];
P.at<double>(4,0) = t1 - 2 * m[1][10] * m[1][4] + t7 + t78 + t79 - 2 * m[1][11] * m[1][5];
P.at<double>(4,1) = 2 * t84 - 2 * m[1][11] * m[2][5] - 2 * m[1][10] * m[2][4] + 2 * t16 - 2 * m[2][11] * m[1][5] + 2 * t87 - 2 * m[2][10] * m[1][4] + 2 * t12;
P.at<double>(4,2) = t19 + t24 - 2 * m[2][10] * m[2][4] - 2 * m[2][11] * m[2][5] + t95 + t90;
P.at<double>(4,3) = t28 - 2 * m[1][12] * m[1][6] + t99;
P.at<double>(4,4) = 2 * t101 + 2 * t36 - 2 * m[2][12] * m[1][6] - 2 * m[1][12] * m[2][6];
P.at<double>(4,5) = t105 - 2 * m[2][12] * m[2][6] + t40;
P.at<double>(5,0) = -2 * m[1][10] * m[1][7] + t47 + t48 + t78 + t79 - 2 * m[1][11] * m[1][8];
P.at<double>(5,1) = 2 * t84 + 2 * t87 - 2 * m[2][11] * m[1][8] - 2 * m[1][10] * m[2][7] - 2 * m[2][10] * m[1][7] + 2 * t55 + 2 * t52 - 2 * m[1][11] * m[2][8];
P.at<double>(5,2) = -2 * m[2][10] * m[2][7] - 2 * m[2][11] * m[2][8] + t62 + t59 + t90 + t95;
P.at<double>(5,3) = t64 - 2 * m[1][12] * m[1][9] + t99;
P.at<double>(5,4) = 2 * t68 - 2 * m[2][12] * m[1][9] - 2 * m[1][12] * m[2][9] + 2 * t101;
P.at<double>(5,5) = t105 - 2 * m[2][12] * m[2][9] + t74;
double t105 = pow( m[2][12], 2 );
*P.ptr<double>(0,0) = t1 + t2 - 2 * m[1][4] * m[1][1] - 2 * m[1][5] * m[1][2] + t7 + t8;
*P.ptr<double>(0,1) = -2 * m[2][4] * m[1][1] + 2 * t11 + 2 * t12 - 2 * m[1][4] * m[2][1] - 2 * m[2][5] * m[1][2] + 2 * t15 + 2 * t16 - 2 * m[1][5] * m[2][2];
*P.ptr<double>(0,2) = t19 - 2 * m[2][4] * m[2][1] + t22 + t23 + t24 - 2 * m[2][5] * m[2][2];
*P.ptr<double>(0,3) = t28 + t29 - 2 * m[1][6] * m[1][3];
*P.ptr<double>(0,4) = -2 * m[2][6] * m[1][3] + 2 * t34 - 2 * m[1][6] * m[2][3] + 2 * t36;
*P.ptr<double>(0,5) = -2 * m[2][6] * m[2][3] + t40 + t41;
*P.ptr<double>(1,0) = t8 - 2 * m[1][8] * m[1][2] - 2 * m[1][7] * m[1][1] + t47 + t48 + t2;
*P.ptr<double>(1,1) = 2 * t15 - 2 * m[1][8] * m[2][2] - 2 * m[2][8] * m[1][2] + 2 * t52 - 2 * m[1][7] * m[2][1] - 2 * m[2][7] * m[1][1] + 2 * t55 + 2 * t11;
*P.ptr<double>(1,2) = -2 * m[2][8] * m[2][2] + t22 + t23 + t59 - 2 * m[2][7] * m[2][1] + t62;
*P.ptr<double>(1,3) = t29 + t64 - 2 * m[1][9] * m[1][3];
*P.ptr<double>(1,4) = 2 * t34 + 2 * t68 - 2 * m[2][9] * m[1][3] - 2 * m[1][9] * m[2][3];
*P.ptr<double>(1,5) = -2 * m[2][9] * m[2][3] + t74 + t41;
*P.ptr<double>(2,0) = -2 * m[1][11] * m[1][2] + t2 + t8 + t78 + t79 - 2 * m[1][10] * m[1][1];
*P.ptr<double>(2,1) = 2 * t15 - 2 * m[1][11] * m[2][2] + 2 * t84 - 2 * m[1][10] * m[2][1] - 2 * m[2][10] * m[1][1] + 2 * t87 - 2 * m[2][11] * m[1][2]+ 2 * t11;
*P.ptr<double>(2,2) = t90 + t22 - 2 * m[2][10] * m[2][1] + t23 - 2 * m[2][11] * m[2][2] + t95;
*P.ptr<double>(2,3) = -2 * m[1][12] * m[1][3] + t99 + t29;
*P.ptr<double>(2,4) = 2 * t34 + 2 * t101 - 2 * m[2][12] * m[1][3] - 2 * m[1][12] * m[2][3];
*P.ptr<double>(2,5) = t41 + t105 - 2 * m[2][12] * m[2][3];
*P.ptr<double>(3,0) = t48 + t1 - 2 * m[1][8] * m[1][5] + t7 - 2 * m[1][7] * m[1][4] + t47;
*P.ptr<double>(3,1) = 2 * t16 - 2 * m[1][7] * m[2][4] + 2 * t55 + 2 * t52 - 2 * m[1][8] * m[2][5] - 2 * m[2][8] * m[1][5] - 2 * m[2][7] * m[1][4] + 2 * t12;
*P.ptr<double>(3,2) = t24 - 2 * m[2][8] * m[2][5] + t19 - 2 * m[2][7] * m[2][4] + t62 + t59;
*P.ptr<double>(3,3) = -2 * m[1][9] * m[1][6] + t64 + t28;
*P.ptr<double>(3,4) = 2 * t68 + 2 * t36 - 2 * m[2][9] * m[1][6] - 2 * m[1][9] * m[2][6];
*P.ptr<double>(3,5) = t40 + t74 - 2 * m[2][9] * m[2][6];
*P.ptr<double>(4,0) = t1 - 2 * m[1][10] * m[1][4] + t7 + t78 + t79 - 2 * m[1][11] * m[1][5];
*P.ptr<double>(4,1) = 2 * t84 - 2 * m[1][11] * m[2][5] - 2 * m[1][10] * m[2][4] + 2 * t16 - 2 * m[2][11] * m[1][5] + 2 * t87 - 2 * m[2][10] * m[1][4] + 2 * t12;
*P.ptr<double>(4,2) = t19 + t24 - 2 * m[2][10] * m[2][4] - 2 * m[2][11] * m[2][5] + t95 + t90;
*P.ptr<double>(4,3) = t28 - 2 * m[1][12] * m[1][6] + t99;
*P.ptr<double>(4,4) = 2 * t101 + 2 * t36 - 2 * m[2][12] * m[1][6] - 2 * m[1][12] * m[2][6];
*P.ptr<double>(4,5) = t105 - 2 * m[2][12] * m[2][6] + t40;
*P.ptr<double>(5,0) = -2 * m[1][10] * m[1][7] + t47 + t48 + t78 + t79 - 2 * m[1][11] * m[1][8];
*P.ptr<double>(5,1) = 2 * t84 + 2 * t87 - 2 * m[2][11] * m[1][8] - 2 * m[1][10] * m[2][7] - 2 * m[2][10] * m[1][7] + 2 * t55 + 2 * t52 - 2 * m[1][11] * m[2][8];
*P.ptr<double>(5,2) = -2 * m[2][10] * m[2][7] - 2 * m[2][11] * m[2][8] + t62 + t59 + t90 + t95;
*P.ptr<double>(5,3) = t64 - 2 * m[1][12] * m[1][9] + t99;
*P.ptr<double>(5,4) = 2 * t68 - 2 * m[2][12] * m[1][9] - 2 * m[1][12] * m[2][9] + 2 * t101;
*P.ptr<double>(5,5) = t105 - 2 * m[2][12] * m[2][9] + t74;
return P;
}
@ -496,37 +552,37 @@ void upnp::generate_all_possible_solutions_for_f_unk(const double betas[5], doub
for (int i = 0; i < 18; ++i) {
double matrix[9], independent_term[3];
cv::Mat M = cv::Mat(3, 3, CV_64F, matrix);
cv::Mat I = cv::Mat(3, 1, CV_64F, independent_term);
cv::Mat S = cv::Mat(1, 3, CV_64F);
Mat M = Mat(3, 3, CV_64F, matrix);
Mat I = Mat(3, 1, CV_64F, independent_term);
Mat S = Mat(1, 3, CV_64F);
for (int j = 0; j < 9; ++j) matrix[j] = (double)matrix_to_resolve[i][j];
independent_term[0] = std::log( std::abs( betas[ combination[i][0]-1 ] ) );
independent_term[1] = std::log( std::abs( betas[ combination[i][1]-1 ] ) );
independent_term[2] = std::log( std::abs( betas[ combination[i][2]-1 ] ) );
independent_term[0] = log( abs( betas[ combination[i][0]-1 ] ) );
independent_term[1] = log( abs( betas[ combination[i][1]-1 ] ) );
independent_term[2] = log( abs( betas[ combination[i][2]-1 ] ) );
cv::exp( cv::Mat(M.inv() * I), S);
exp( Mat(M.inv() * I), S);
solutions[i][0] = S.at<double>(0);
solutions[i][1] = S.at<double>(1) * sign( betas[1] );
solutions[i][2] = std::abs( S.at<double>(2) );
solutions[i][2] = abs( S.at<double>(2) );
}
}
void upnp::gauss_newton(const CvMat * L_6x12, const CvMat * Rho, double betas[4], double * f)
void upnp::gauss_newton(const Mat * L_6x12, const Mat * Rho, double betas[4], double * f)
{
const int iterations_number = 50;
double a[6*4], b[6], x[4];
CvMat A = cvMat(6, 4, CV_64F, a);
CvMat B = cvMat(6, 1, CV_64F, b);
CvMat X = cvMat(4, 1, CV_64F, x);
Mat * A = new Mat(6, 4, CV_64F, a);
Mat * B = new Mat(6, 1, CV_64F, b);
Mat * X = new Mat(4, 1, CV_64F, x);
for(int k = 0; k < iterations_number; k++)
{
compute_A_and_b_gauss_newton(L_6x12->data.db, Rho->data.db, betas, &A, &B, f[0]);
qr_solve(&A, &B, &X);
compute_A_and_b_gauss_newton(L_6x12->ptr<double>(0), Rho->ptr<double>(0), betas, A, B, f[0]);
qr_solve(A, B, X);
for(int i = 0; i < 3; i++)
betas[i] += x[i];
f[0] += x[3];
@ -538,19 +594,19 @@ void upnp::gauss_newton(const CvMat * L_6x12, const CvMat * Rho, double betas[4]
}
void upnp::compute_A_and_b_gauss_newton(const double * l_6x12, const double * rho,
const double betas[4], CvMat * A, CvMat * b, double const f)
const double betas[4], Mat * A, Mat * b, double const f)
{
for(int i = 0; i < 6; i++) {
const double * rowL = l_6x12 + i * 12;
double * rowA = A->data.db + i * 4;
double * rowA = A->ptr<double>(i);
rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] + rowL[2] * betas[2] + f*f * ( 2 * rowL[6]*betas[0] + rowL[7]*betas[1] + rowL[8]*betas[2] );
rowA[1] = rowL[1] * betas[0] + 2 * rowL[3] * betas[1] + rowL[4] * betas[2] + f*f * ( rowL[7]*betas[0] + 2 * rowL[9]*betas[1] + rowL[10]*betas[2] );
rowA[2] = rowL[2] * betas[0] + rowL[4] * betas[1] + 2 * rowL[5] * betas[2] + f*f * ( rowL[8]*betas[0] + rowL[10]*betas[1] + 2 * rowL[11]*betas[2] );
rowA[3] = 2*f * ( rowL[6]*betas[0]*betas[0] + rowL[7]*betas[0]*betas[1] + rowL[8]*betas[0]*betas[2] + rowL[9]*betas[1]*betas[1] + rowL[10]*betas[1]*betas[2] + rowL[11]*betas[2]*betas[2] ) ;
cvmSet(b, i, 0, rho[i] -
*b->ptr<double>(i) = rho[i] -
(
rowL[0] * betas[0] * betas[0] +
rowL[1] * betas[0] * betas[1] +
@ -564,7 +620,7 @@ void upnp::compute_A_and_b_gauss_newton(const double * l_6x12, const double * rh
f*f * rowL[9] * betas[1] * betas[1] +
f*f * rowL[10] * betas[1] * betas[2] +
f*f * rowL[11] * betas[2] * betas[2]
));
);
}
}
@ -647,10 +703,10 @@ double upnp::dotZ(const double * v1, const double * v2)
double upnp::sign(const double v)
{
return ( v < 0 ) ? -1. : ( v > 0 ) ? 1. : 0.;
return ( v < 0.0 ) ? -1.0 : ( v > 0.0 ) ? 1.0 : 0.0;
}
void upnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
void upnp::qr_solve(Mat * A, Mat * b, Mat * X)
{
const int nr = A->rows;
const int nc = A->cols;
@ -667,7 +723,7 @@ void upnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
A2 = new double[nr];
}
double * pA = A->data.db, * ppAkk = pA;
double * pA = A->ptr<double>(0), * ppAkk = pA;
for(int k = 0; k < nc; k++)
{
double * ppAik1 = ppAkk, eta = fabs(*ppAik1);
@ -719,7 +775,7 @@ void upnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
}
// b <- Qt b
double * ppAjj = pA, * pb = b->data.db;
double * ppAjj = pA, * pb = b->ptr<double>(0);
for(int j = 0; j < nc; j++)
{
double * ppAij = ppAjj, tau = 0;
@ -739,7 +795,7 @@ void upnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
}
// X = R-1 b
double * pX = X->data.db;
double * pX = X->ptr<double>(0);
pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
for(int i = nc - 2; i >= 0; i--)
{

@ -1,12 +1,57 @@
#ifndef UPNP_H_
#define UPNP_H_
//M*//////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/****************************************************************************************\
* Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation.
* Contributed by Edgar Riba
\****************************************************************************************/
#ifndef OPENCV_CALIB3D_UPNP_H_
#define OPENCV_CALIB3D_UPNP_H_
#include "precomp.hpp"
#include "opencv2/core/core_c.h"
#include <iostream>
using namespace std;
class upnp
{
public:
@ -40,19 +85,19 @@ private:
double reprojection_error(const double R[3][3], const double t[3]);
void choose_control_points();
void compute_alphas();
void fill_M(CvMat * M, const int row, const double * alphas, const double u, const double v);
void fill_M(cv::Mat * M, const int row, const double * alphas, const double u, const double v);
void compute_ccs(const double * betas, const double * ut);
void compute_pcs(void);
void solve_for_sign(void);
void find_betas_and_focal_approx_1(const CvMat * Ut, const CvMat * Rho, double * betas, double * efs);
void find_betas_and_focal_approx_2(const CvMat * Ut, const CvMat * Rho, double * betas, double * efs);
void qr_solve(CvMat * A, CvMat * b, CvMat * X);
void find_betas_and_focal_approx_1(cv::Mat * Ut, cv::Mat * Rho, double * betas, double * efs);
void find_betas_and_focal_approx_2(cv::Mat * Ut, cv::Mat * Rho, double * betas, double * efs);
void qr_solve(cv::Mat * A, cv::Mat * b, cv::Mat * X);
cv::Mat compute_constraint_distance_2param_6eq_2unk_f_unk(const cv::Mat& M1);
cv::Mat compute_constraint_distance_3param_6eq_6unk_f_unk(const cv::Mat& M1, const cv::Mat& M2);
void generate_all_possible_solutions_for_f_unk(const double betas_[5], double solutions[18][3]);
void generate_all_possible_solutions_for_f_unk(const double betas[5], double solutions[18][3]);
double sign(const double v);
double dot(const double * v1, const double * v2);
@ -63,9 +108,9 @@ private:
void compute_rho(double * rho);
void compute_L_6x12(const double * ut, double * l_6x12);
void gauss_newton(const CvMat * L_6x12, const CvMat * Rho, double current_betas[4], double * efs);
void gauss_newton(const cv::Mat * L_6x12, const cv::Mat * Rho, double current_betas[4], double * efs);
void compute_A_and_b_gauss_newton(const double * l_6x12, const double * rho,
const double cb[4], CvMat * A, CvMat * b, double const f);
const double cb[4], cv::Mat * A, cv::Mat * b, double const f);
double compute_R_and_t(const double * ut, const double * betas,
double R[3][3], double t[3]);
@ -86,4 +131,4 @@ private:
double * A1, * A2;
};
#endif // UPNP_H_
#endif // OPENCV_CALIB3D_UPNP_H_

Loading…
Cancel
Save