mirror of https://github.com/opencv/opencv.git
Merge pull request #25779 from fengyuentau:dnn/fix_onnx_depthtospace
dnn: add DepthToSpace and SpaceToDepth #25779 We are working on updating WeChat QRCode module. One of the new models is a fully convolutional model and hence it should be able to run with different input shapes. However, it has an operator `DepthToSpace`, which is parsed as a subgraph of `Reshape -> Permute -> Reshape` with a fixed shape getting during parsing. The subgraph itself is not a problem, but the true problem is the subgraph with a fixed input and output shape regardless input changes. This does not allow the model to run with different input shapes. Solution is to add a dedicated layer for DepthtoSpace and SpaceToDepth. Backend support: - [x] CPU - [x] CUDA - [x] OpenCL - [x] OpenVINO - [x] CANN - [x] TIMVX - ~Vulkan~ (missing fundamental tools, like permutation and reshape) ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMakepull/25803/head
parent
acd16e384f
commit
3f13ce797b
8 changed files with 663 additions and 95 deletions
@ -0,0 +1,76 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_DEPTH_SPACE_OPS_HPP |
||||
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_DEPTH_SPACE_OPS_HPP |
||||
|
||||
#include "../../op_cuda.hpp" |
||||
|
||||
#include "../csl/stream.hpp" |
||||
#include "../csl/tensor.hpp" |
||||
#include "../csl/tensor_ops.hpp" |
||||
#include "../csl/memory.hpp" |
||||
#include "../kernels/permute.hpp" |
||||
|
||||
#include <utility> |
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { |
||||
|
||||
template <class T> |
||||
class DepthSpaceOps final : public CUDABackendNode { |
||||
public: |
||||
using wrapper_type = GetCUDABackendWrapperType<T>; |
||||
|
||||
DepthSpaceOps(csl::Stream stream_, const std::vector<int> &internal_shape_, |
||||
const std::vector<size_t> &permutation_) |
||||
: stream(std::move(stream_)), internal_shape(internal_shape_), |
||||
permutation(permutation_) |
||||
{ |
||||
transposed_internal_shape = std::vector<int>(internal_shape.size()); |
||||
for (size_t i = 0; i < permutation.size(); i++) { |
||||
transposed_internal_shape[i] = internal_shape[permutation[i]]; |
||||
} |
||||
|
||||
size_t num_elements = std::accumulate(internal_shape.begin(), internal_shape.end(), 1, std::multiplies<size_t>()); |
||||
csl::WorkspaceBuilder builder; |
||||
builder.require<T>(num_elements); |
||||
scratch_mem_in_bytes = builder.required_workspace_size(); |
||||
} |
||||
|
||||
void forward(const std::vector<cv::Ptr<BackendWrapper>> &inputs, |
||||
const std::vector<cv::Ptr<BackendWrapper>> &outputs, |
||||
csl::Workspace &workspace) override { |
||||
CV_CheckEQ(inputs.size(), size_t(1), "DepthSpaceOps: only one input is accepted"); |
||||
CV_CheckEQ(outputs.size(), size_t(1), "DepthSpaceOps: only one output is accepted"); |
||||
|
||||
auto input_wrapper = inputs.front().dynamicCast<wrapper_type>(); |
||||
auto input = input_wrapper->getView(); |
||||
CV_CheckEQ(input.rank(), size_t(4), "DepthSpaceOps: input needs to be 4-dimensional [N, C, H, W]"); |
||||
auto output_wrapper = outputs.front().dynamicCast<wrapper_type>(); |
||||
auto output = output_wrapper->getSpan(); |
||||
auto ws_allocator = csl::WorkspaceAllocator(workspace); |
||||
auto transposed_internal = ws_allocator.get_tensor_span<T>(transposed_internal_shape.begin(), transposed_internal_shape.end()); |
||||
|
||||
// Call reshape on input so that it has the correct shape for permutation
|
||||
input.reshape(internal_shape.begin(), internal_shape.end()); |
||||
kernels::permute(stream, transposed_internal, input, permutation); |
||||
// Only copying is needed as output already has the expected shape
|
||||
auto t = csl::TensorView<T>(transposed_internal); |
||||
csl::memcpy(output.get(), t.get(), output.size(), stream); |
||||
} |
||||
|
||||
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; } |
||||
|
||||
private: |
||||
csl::Stream stream; |
||||
std::vector<int> internal_shape; |
||||
std::vector<size_t> permutation; |
||||
std::vector<int> transposed_internal_shape; |
||||
|
||||
std::size_t scratch_mem_in_bytes; |
||||
}; |
||||
|
||||
}}} // namespace cv::dnn::cuda4dnn
|
||||
|
||||
#endif // OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_DEPTH_SPACE_OPS_HPP
|
@ -0,0 +1,492 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp" |
||||
#include <opencv2/dnn/shape_utils.hpp> |
||||
|
||||
// OpenCL backend
|
||||
#ifdef HAVE_OPENCL |
||||
#include "opencl_kernels_dnn.hpp" |
||||
#endif |
||||
|
||||
// OpenVINO backend
|
||||
#ifdef HAVE_DNN_NGRAPH |
||||
#include "../op_inf_engine.hpp" |
||||
#include "../ie_ngraph.hpp" |
||||
#endif |
||||
|
||||
// CUDA backend
|
||||
#ifdef HAVE_CUDA |
||||
#include "../op_cuda.hpp" |
||||
#include "../cuda4dnn/primitives/depth_space_ops.hpp" |
||||
#endif |
||||
|
||||
// CANN backend
|
||||
#ifdef HAVE_CANN |
||||
#include "../op_cann.hpp" |
||||
#endif |
||||
|
||||
// TIM-VX backend
|
||||
#ifdef HAVE_TIMVX |
||||
#include "../op_timvx.hpp" |
||||
#endif |
||||
|
||||
namespace cv { namespace dnn { |
||||
|
||||
struct DepthSpaceOps { |
||||
MatShape internal_shape; |
||||
MatShape transposed_internal_shape; |
||||
std::vector<int> permutation; |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
UMat umat_permutation; |
||||
UMat umat_internal_strides; |
||||
UMat umat_transposed_internal_strides; |
||||
#endif |
||||
|
||||
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) { |
||||
transposed_internal_shape = MatShape(internal_shape.size()); |
||||
for (size_t i = 0; i < permutation.size(); i++) { |
||||
transposed_internal_shape[i] = internal_shape[permutation[i]]; |
||||
} |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
umat_permutation.release(); |
||||
umat_internal_strides.release(); |
||||
umat_transposed_internal_strides.release(); |
||||
#endif |
||||
} |
||||
|
||||
void cpuCompute(const Mat &input, Mat &output) { |
||||
const auto output_shape = shape(output); |
||||
Mat tmp; |
||||
cv::transposeND(input.reshape(1, internal_shape), permutation, tmp); |
||||
tmp.reshape(1, output_shape).copyTo(output); |
||||
} |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
bool oclCompute(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { |
||||
std::vector<UMat> inputs, outputs; |
||||
|
||||
inputs_arr.getUMatVector(inputs); |
||||
outputs_arr.getUMatVector(outputs); |
||||
|
||||
if (umat_permutation.empty() || umat_internal_strides.empty() || umat_transposed_internal_strides.empty()) { |
||||
Mat mat_permutation(1, permutation.size(), CV_32S, permutation.data()); |
||||
mat_permutation.copyTo(umat_permutation); |
||||
|
||||
std::vector<int> internal_strides(permutation.size(), 1), transposed_internal_stides(permutation.size(), 1); |
||||
for (int i = static_cast<int>(permutation.size()) - 2; i >= 0; i--) { |
||||
internal_strides[i] = internal_strides[i + 1] * internal_shape[i + 1]; |
||||
transposed_internal_stides[i] = transposed_internal_stides[i + 1] * transposed_internal_shape[i + 1]; |
||||
} |
||||
Mat mat_internal_strides(1, internal_strides.size(), CV_32S, internal_strides.data()); |
||||
mat_internal_strides.copyTo(umat_internal_strides); |
||||
Mat mat_transposed_internal_strides(1, transposed_internal_stides.size(), CV_32S, transposed_internal_stides.data()); |
||||
mat_transposed_internal_strides.copyTo(umat_transposed_internal_strides); |
||||
} |
||||
|
||||
const auto output_shape = shape(outputs.front()); |
||||
UMat tmp = inputs.front().reshape(1, static_cast<int>(internal_shape.size()), internal_shape.data()); |
||||
|
||||
bool use_half = (inputs_arr.depth() == CV_16F); |
||||
std::string permute_options = cv::format("-DDtype=%s", use_half ? "half" : "float"); |
||||
ocl::Kernel permute_kernel("permute", ocl::dnn::permute_oclsrc, permute_options); |
||||
if (permute_kernel.empty()) { |
||||
return false; |
||||
} |
||||
UMat transposed_tmp(static_cast<int>(transposed_internal_shape.size()), transposed_internal_shape.data(), inputs_arr.depth()); |
||||
size_t num_element = static_cast<size_t>(std::accumulate(internal_shape.begin(), internal_shape.end(), 1, std::multiplies<int>())); |
||||
permute_kernel.set(0, static_cast<int>(num_element)); |
||||
permute_kernel.set(1, ocl::KernelArg::PtrReadOnly(tmp)); |
||||
permute_kernel.set(2, ocl::KernelArg::PtrReadOnly(umat_permutation)); |
||||
permute_kernel.set(3, ocl::KernelArg::PtrReadOnly(umat_internal_strides)); |
||||
permute_kernel.set(4, ocl::KernelArg::PtrReadOnly(umat_transposed_internal_strides)); |
||||
permute_kernel.set(5, static_cast<int>(permutation.size())); |
||||
permute_kernel.set(6, ocl::KernelArg::PtrWriteOnly(transposed_tmp)); |
||||
if (!permute_kernel.run(1, &num_element, NULL, false)) { |
||||
return false; |
||||
} |
||||
|
||||
transposed_tmp.reshape(1, static_cast<int>(output_shape.size()), output_shape.data()).copyTo(outputs.front()); |
||||
return true; |
||||
} |
||||
#endif // HAVE_OPENCL
|
||||
}; |
||||
|
||||
class DepthToSpaceLayerImpl CV_FINAL : public DepthToSpaceLayer, public DepthSpaceOps { |
||||
public: |
||||
DepthToSpaceLayerImpl(const LayerParams ¶ms) { |
||||
setParamsFrom(params); |
||||
|
||||
CV_CheckTrue(params.has("blocksize"), "DepthSpaceLayer: blocksize is required"); |
||||
blocksize = params.get<int>("blocksize"); |
||||
|
||||
auto mode = params.get<std::string>("mode", "DCR"); |
||||
if (mode == "CRD") { |
||||
is_crd = true; |
||||
permutation = {0, 1, 4, 2, 5, 3}; |
||||
} else if (mode == "DCR") { |
||||
is_crd = false; |
||||
permutation = {0, 3, 4, 1, 5, 2}; |
||||
} else { |
||||
CV_Error(Error::StsBadArg, cv::format("DepthToSpace: unsupported mode %s\n", mode.c_str())); |
||||
} |
||||
} |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE { |
||||
return backendId == DNN_BACKEND_OPENCV || |
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH || |
||||
backendId == DNN_BACKEND_CUDA || |
||||
backendId == DNN_BACKEND_CANN || |
||||
(backendId == DNN_BACKEND_TIMVX && is_crd); |
||||
} |
||||
|
||||
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE { |
||||
CV_CheckEQ(inputs.size(), static_cast<size_t>(1), "DepthSpaceLayer: accepts only one input"); |
||||
const auto &input = inputs.front(); |
||||
CV_CheckEQ(input.size(), static_cast<size_t>(4), "DepthSpaceLayer: input needs to be 4-dimensional [N, C, H, W]"); |
||||
int batch = input[0], input_depth = input[1], input_height = input[2], input_width = input[3]; |
||||
int output_depth = -1, output_height = -1, output_width = -1; |
||||
|
||||
CV_CheckEQ(input_depth % (blocksize * blocksize), 0, |
||||
"DepthSpaceLayer: requires input depth to be a multiple of (blocksize * blocksize)"); |
||||
output_depth = input_depth / blocksize / blocksize; |
||||
output_height = input_height * blocksize; |
||||
output_width = input_width * blocksize; |
||||
|
||||
outputs.assign(1, MatShape{batch, output_depth, output_height, output_width}); |
||||
return false; |
||||
} |
||||
|
||||
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { |
||||
std::vector<Mat> inputs; |
||||
inputs_arr.getMatVector(inputs); |
||||
|
||||
auto input_shape = shape(inputs.front()); |
||||
int batch = input_shape[0], input_depth = input_shape[1], input_height = input_shape[2], input_width = input_shape[3]; |
||||
if (is_crd) { |
||||
internal_shape = MatShape{batch, input_depth / (blocksize * blocksize), blocksize, blocksize, input_height, input_width}; |
||||
} else { |
||||
internal_shape = MatShape{batch, blocksize, blocksize, input_depth / (blocksize * blocksize), input_height, input_width}; |
||||
} |
||||
|
||||
DepthSpaceOps::finalize(inputs_arr, outputs_arr); |
||||
} |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
// TODO: support 8-bit int in permute kernel
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && inputs_arr.depth() != CV_8S, |
||||
DepthSpaceOps::oclCompute(inputs_arr, outputs_arr, internals_arr)) |
||||
|
||||
if (inputs_arr.depth() == CV_16F) { |
||||
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
||||
return; |
||||
} |
||||
|
||||
std::vector<Mat> inputs, outputs; |
||||
inputs_arr.getMatVector(inputs); |
||||
outputs_arr.getMatVector(outputs); |
||||
|
||||
DepthSpaceOps::cpuCompute(inputs.front(), outputs.front()); |
||||
} |
||||
|
||||
#ifdef HAVE_DNN_NGRAPH |
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper>> &inputs, |
||||
const std::vector<Ptr<BackendNode>> &nodes) CV_OVERRIDE { |
||||
using namespace ov::op; |
||||
auto input_node = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
||||
std::shared_ptr<ov::Node> output_node; |
||||
if (is_crd) { |
||||
output_node = std::make_shared<v0::DepthToSpace>(input_node, v0::DepthToSpace::DepthToSpaceMode::DEPTH_FIRST, static_cast<size_t>(blocksize)); |
||||
} else { |
||||
output_node = std::make_shared<v0::DepthToSpace>(input_node, v0::DepthToSpace::DepthToSpaceMode::BLOCKS_FIRST, static_cast<size_t>(blocksize)); |
||||
} |
||||
return Ptr<BackendNode>(new InfEngineNgraphNode(output_node)); |
||||
} |
||||
#endif // HAVE_DNN_NGRAPH
|
||||
|
||||
#ifdef HAVE_CUDA |
||||
Ptr<BackendNode> initCUDA(void *context_, |
||||
const std::vector<Ptr<BackendWrapper>>& inputs, |
||||
const std::vector<Ptr<BackendWrapper>>& outputs) override { |
||||
using namespace cv::dnn::cuda4dnn; |
||||
auto context = reinterpret_cast<csl::CSLContext*>(context_); |
||||
std::vector<size_t> perm(permutation.begin(), permutation.end()); |
||||
return make_cuda_node<cuda4dnn::DepthSpaceOps>(preferableTarget, std::move(context->stream), internal_shape, perm); |
||||
} |
||||
#endif // HAVE_CUDA
|
||||
|
||||
#ifdef HAVE_CANN |
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper>> &inputs, |
||||
const std::vector<Ptr<BackendWrapper>> &outputs, |
||||
const std::vector<Ptr<BackendNode>> &nodes) CV_OVERRIDE { |
||||
CV_CheckEQ(inputs.size(), static_cast<size_t>(1), "DepthToSpace/CANN: only accepts one input wrapper"); |
||||
CV_CheckEQ(nodes.size(), static_cast<size_t>(1), "DepthToSpace/CANN: only accepts one input node"); |
||||
|
||||
auto input_tensor_wrapper = inputs.front().dynamicCast<CannBackendWrapper>(); |
||||
auto input_tensor_desc = input_tensor_wrapper->getTensorDesc(); |
||||
auto input_node = nodes.front().dynamicCast<CannBackendNode>()->getOp(); |
||||
|
||||
auto node = std::make_shared<ge::op::DepthToSpace>(name); |
||||
|
||||
node->set_attr_block_size(blocksize); |
||||
if (is_crd) { |
||||
node->set_attr_mode("CRD"); |
||||
} else { |
||||
node->set_attr_mode("DCR"); |
||||
} |
||||
node->set_attr_data_format("NCHW"); |
||||
|
||||
node->set_input_x_by_name(*input_node, input_tensor_wrapper->name.c_str()); |
||||
node->update_input_desc_x(*input_tensor_desc); |
||||
|
||||
auto output_tensor_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); |
||||
node->update_output_desc_y(*output_tensor_desc); |
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(node)); |
||||
} |
||||
#endif |
||||
|
||||
#ifdef HAVE_TIMVX |
||||
virtual Ptr<BackendNode> initTimVX(void* timvx_info_, |
||||
const std::vector<Ptr<BackendWrapper>> &inputs, |
||||
const std::vector<Ptr<BackendWrapper>> &outputs, |
||||
bool isLast) CV_OVERRIDE { |
||||
auto info = reinterpret_cast<TimVXInfo*>(timvx_info_); |
||||
CV_Assert(info); |
||||
auto timvx_graph = info->getGraph(); |
||||
CV_Assert(timvx_graph); |
||||
auto graph = timvx_graph->graph; |
||||
|
||||
auto input_wrapper = inputs.front().dynamicCast<TimVXBackendWrapper>(); |
||||
int input_wrapper_index = -1; |
||||
if (input_wrapper->isTensor()) { |
||||
input_wrapper_index = timvx_graph->getTensorIndex(input_wrapper->getTensor()); |
||||
if (input_wrapper_index == -1) { |
||||
auto tmp = input_wrapper->getMat(); |
||||
input_wrapper = std::make_shared<TimVXBackendWrapper>(tmp); |
||||
} |
||||
} |
||||
if (!input_wrapper->isTensor() || input_wrapper_index == 1) { |
||||
auto input_node_quant = Ptr<tim::vx::Quantization>(new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, 1.0f, 0)); |
||||
input_wrapper->createTensor(graph, tim::vx::TensorAttribute::INPUT, input_node_quant); |
||||
input_wrapper_index = timvx_graph->addWrapper(input_wrapper); |
||||
} |
||||
|
||||
auto output_wrapper = outputs.front().dynamicCast<TimVXBackendWrapper>(); |
||||
auto output_node_quant = input_wrapper->getTensorQuantization(); |
||||
if (isLast) { |
||||
auto shape_type = getShapeTypeFromMat(output_wrapper->getMat()); |
||||
output_wrapper->setTensorShape(shape_type); |
||||
output_wrapper->createTensor(graph, tim::vx::TensorAttribute::OUTPUT, output_node_quant); |
||||
} else { |
||||
output_wrapper->createTensor(graph, tim::vx::TensorAttribute::TRANSIENT, output_node_quant); |
||||
} |
||||
int output_wrapper_index = timvx_graph->addWrapper(output_wrapper); |
||||
|
||||
std::shared_ptr<tim::vx::Operation> timvx_node; |
||||
timvx_node = graph->CreateOperation<tim::vx::ops::DepthToSpace>(blocksize); |
||||
std::vector<int> input_wrapper_indices{input_wrapper_index}, output_wrapper_indices{output_wrapper_index}; |
||||
return Ptr<BackendNode>(new TimVXBackendNode(timvx_graph, timvx_node, input_wrapper_indices, output_wrapper_indices)); |
||||
} |
||||
#endif |
||||
|
||||
virtual bool tryQuantize(const std::vector<std::vector<float>> &scales, |
||||
const std::vector<std::vector<int>> &zeropoints, LayerParams ¶ms) CV_OVERRIDE { |
||||
return true; |
||||
} |
||||
|
||||
private: |
||||
int blocksize; |
||||
|
||||
bool is_crd; |
||||
}; |
||||
|
||||
Ptr<DepthToSpaceLayer> DepthToSpaceLayer::create(const LayerParams ¶ms) { |
||||
return makePtr<DepthToSpaceLayerImpl>(params); |
||||
} |
||||
|
||||
class SpaceToDepthLayerImpl CV_FINAL : public SpaceToDepthLayer, public DepthSpaceOps { |
||||
public: |
||||
SpaceToDepthLayerImpl(const LayerParams ¶ms) { |
||||
setParamsFrom(params); |
||||
|
||||
CV_CheckTrue(params.has("blocksize"), "SpaceToDepthLayer: blocksize is required"); |
||||
blocksize = params.get<int>("blocksize"); |
||||
|
||||
permutation = {0, 3, 5, 1, 2, 4}; |
||||
} |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE { |
||||
return backendId == DNN_BACKEND_OPENCV || |
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH || |
||||
backendId == DNN_BACKEND_CUDA || |
||||
backendId == DNN_BACKEND_CANN || |
||||
(backendId == DNN_BACKEND_TIMVX); |
||||
} |
||||
|
||||
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE { |
||||
CV_CheckEQ(inputs.size(), static_cast<size_t>(1), "SpaceToDepthLayer: accepts only one input"); |
||||
const auto &input = inputs.front(); |
||||
CV_CheckEQ(input.size(), static_cast<size_t>(4), "SpaceToDepthLayer: input needs to be 4-dimensional [N, C, H, W]"); |
||||
int batch = input[0], input_depth = input[1], input_height = input[2], input_width = input[3]; |
||||
int output_depth = -1, output_height = -1, output_width = -1; |
||||
|
||||
CV_CheckEQ(input_height % blocksize, 0, "SpaceToDepthLayer: requires input height to be a multiple of blocksize"); |
||||
CV_CheckEQ(input_width % blocksize, 0, "SpaceToDepthLayer: requires input width to be a multiple of blocksize"); |
||||
output_depth = input_depth * blocksize * blocksize; |
||||
output_height = input_height / blocksize; |
||||
output_width = input_width / blocksize; |
||||
|
||||
outputs.assign(1, MatShape{batch, output_depth, output_height, output_width}); |
||||
return false; |
||||
} |
||||
|
||||
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { |
||||
std::vector<Mat> inputs; |
||||
inputs_arr.getMatVector(inputs); |
||||
|
||||
auto input_shape = shape(inputs.front()); |
||||
int batch = input_shape[0], input_depth = input_shape[1], input_height = input_shape[2], input_width = input_shape[3]; |
||||
internal_shape = MatShape{batch, input_depth, input_height / blocksize, blocksize, input_width / blocksize, blocksize}; |
||||
|
||||
DepthSpaceOps::finalize(inputs_arr, outputs_arr); |
||||
} |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
// TODO: support 8-bit int in permute kernel
|
||||
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && inputs_arr.depth() != CV_8S, |
||||
DepthSpaceOps::oclCompute(inputs_arr, outputs_arr, internals_arr)) |
||||
|
||||
if (inputs_arr.depth() == CV_16F) { |
||||
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
||||
return; |
||||
} |
||||
|
||||
std::vector<Mat> inputs, outputs; |
||||
inputs_arr.getMatVector(inputs); |
||||
outputs_arr.getMatVector(outputs); |
||||
|
||||
DepthSpaceOps::cpuCompute(inputs.front(), outputs.front()); |
||||
} |
||||
|
||||
#ifdef HAVE_DNN_NGRAPH |
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper>> &inputs, |
||||
const std::vector<Ptr<BackendNode>> &nodes) CV_OVERRIDE { |
||||
using namespace ov::op; |
||||
auto input_node = nodes[0].dynamicCast<InfEngineNgraphNode>()->node; |
||||
std::shared_ptr<ov::Node> output_node; |
||||
output_node = std::make_shared<v0::SpaceToDepth>(input_node, v0::SpaceToDepth::SpaceToDepthMode::BLOCKS_FIRST, static_cast<size_t>(blocksize)); |
||||
return Ptr<BackendNode>(new InfEngineNgraphNode(output_node)); |
||||
} |
||||
#endif // HAVE_DNN_NGRAPH
|
||||
|
||||
#ifdef HAVE_CUDA |
||||
Ptr<BackendNode> initCUDA(void *context_, |
||||
const std::vector<Ptr<BackendWrapper>> &inputs, |
||||
const std::vector<Ptr<BackendWrapper>> &outputs) override { |
||||
using namespace cv::dnn::cuda4dnn; |
||||
auto context = reinterpret_cast<csl::CSLContext*>(context_); |
||||
std::vector<size_t> perm(permutation.begin(), permutation.end()); |
||||
return make_cuda_node<cuda4dnn::DepthSpaceOps>(preferableTarget, std::move(context->stream), internal_shape, perm); |
||||
} |
||||
#endif // HAVE_CUDA
|
||||
|
||||
#ifdef HAVE_CANN |
||||
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper>> &inputs, |
||||
const std::vector<Ptr<BackendWrapper>> &outputs, |
||||
const std::vector<Ptr<BackendNode>> &nodes) CV_OVERRIDE { |
||||
CV_CheckEQ(inputs.size(), static_cast<size_t>(1), "DepthToSpace/CANN: only accepts one input wrapper"); |
||||
CV_CheckEQ(nodes.size(), static_cast<size_t>(1), "DepthToSpace/CANN: only accepts one input node"); |
||||
|
||||
auto input_tensor_wrapper = inputs.front().dynamicCast<CannBackendWrapper>(); |
||||
auto input_tensor_desc = input_tensor_wrapper->getTensorDesc(); |
||||
auto input_node = nodes.front().dynamicCast<CannBackendNode>()->getOp(); |
||||
|
||||
auto node = std::make_shared<ge::op::SpaceToDepth>(name); |
||||
|
||||
node->set_attr_block_size(blocksize); |
||||
node->set_attr_data_format("NCHW"); |
||||
|
||||
node->set_input_x_by_name(*input_node, input_tensor_wrapper->name.c_str()); |
||||
node->update_input_desc_x(*input_tensor_desc); |
||||
|
||||
auto output_tensor_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); |
||||
node->update_output_desc_y(*output_tensor_desc); |
||||
|
||||
return Ptr<BackendNode>(new CannBackendNode(node)); |
||||
} |
||||
#endif |
||||
|
||||
#ifdef HAVE_TIMVX |
||||
virtual Ptr<BackendNode> initTimVX(void* timvx_info_, |
||||
const std::vector<Ptr<BackendWrapper>> &inputs, |
||||
const std::vector<Ptr<BackendWrapper>> &outputs, |
||||
bool isLast) CV_OVERRIDE { |
||||
auto info = reinterpret_cast<TimVXInfo*>(timvx_info_); |
||||
CV_Assert(info); |
||||
auto timvx_graph = info->getGraph(); |
||||
CV_Assert(timvx_graph); |
||||
auto graph = timvx_graph->graph; |
||||
|
||||
auto input_wrapper = inputs.front().dynamicCast<TimVXBackendWrapper>(); |
||||
int input_wrapper_index = -1; |
||||
if (input_wrapper->isTensor()) { |
||||
input_wrapper_index = timvx_graph->getTensorIndex(input_wrapper->getTensor()); |
||||
if (input_wrapper_index == -1) { |
||||
auto tmp = input_wrapper->getMat(); |
||||
input_wrapper = std::make_shared<TimVXBackendWrapper>(tmp); |
||||
} |
||||
} |
||||
if (!input_wrapper->isTensor() || input_wrapper_index == 1) { |
||||
auto input_node_quant = Ptr<tim::vx::Quantization>(new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, 1.0f, 0)); |
||||
input_wrapper->createTensor(graph, tim::vx::TensorAttribute::INPUT, input_node_quant); |
||||
input_wrapper_index = timvx_graph->addWrapper(input_wrapper); |
||||
} |
||||
|
||||
auto output_wrapper = outputs.front().dynamicCast<TimVXBackendWrapper>(); |
||||
auto output_node_quant = input_wrapper->getTensorQuantization(); |
||||
if (isLast) { |
||||
auto shape_type = getShapeTypeFromMat(output_wrapper->getMat()); |
||||
output_wrapper->setTensorShape(shape_type); |
||||
output_wrapper->createTensor(graph, tim::vx::TensorAttribute::OUTPUT, output_node_quant); |
||||
} else { |
||||
output_wrapper->createTensor(graph, tim::vx::TensorAttribute::TRANSIENT, output_node_quant); |
||||
} |
||||
int output_wrapper_index = timvx_graph->addWrapper(output_wrapper); |
||||
|
||||
std::shared_ptr<tim::vx::Operation> timvx_node; |
||||
timvx_node = graph->CreateOperation<tim::vx::ops::SpaceToDepth>(std::vector<int>{blocksize, blocksize}); |
||||
std::vector<int> input_wrapper_indices{input_wrapper_index}, output_wrapper_indices{output_wrapper_index}; |
||||
return Ptr<BackendNode>(new TimVXBackendNode(timvx_graph, timvx_node, input_wrapper_indices, output_wrapper_indices)); |
||||
} |
||||
#endif |
||||
|
||||
virtual bool tryQuantize(const std::vector<std::vector<float>> &scales, |
||||
const std::vector<std::vector<int>> &zeropoints, LayerParams ¶ms) CV_OVERRIDE { |
||||
return true; |
||||
} |
||||
|
||||
private: |
||||
int blocksize; |
||||
}; |
||||
|
||||
Ptr<SpaceToDepthLayer> SpaceToDepthLayer::create(const LayerParams ¶ms) { |
||||
return makePtr<SpaceToDepthLayerImpl>(params); |
||||
} |
||||
|
||||
}} // namespace cv::dnn
|
Loading…
Reference in new issue