|
|
|
@ -1554,10 +1554,8 @@ Note that the parameters margin regularization, initial step size, and step decr |
|
|
|
|
|
|
|
|
|
To use SVMSGD algorithm do as follows: |
|
|
|
|
|
|
|
|
|
- first, create the SVMSGD object. |
|
|
|
|
|
|
|
|
|
- then set parameters (model type, margin type, margin regularization, initial step size, step decreasing power) using the functions |
|
|
|
|
setSvmsgdType(), setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower(), or the function setOptimalParameters(). |
|
|
|
|
- first, create the SVMSGD object. The algoorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(), |
|
|
|
|
setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower(). |
|
|
|
|
|
|
|
|
|
- then the SVM model can be trained using the train features and the correspondent labels by the method train(). |
|
|
|
|
|
|
|
|
|