mirror of https://github.com/opencv/opencv.git
parent
84676fefe3
commit
3eea3dd46b
14 changed files with 1637 additions and 7 deletions
@ -0,0 +1,127 @@ |
||||
<!DOCTYPE html> |
||||
<html> |
||||
<head> |
||||
<meta charset="utf-8"> |
||||
<title>Intelligent Scissors Example</title> |
||||
<link href="js_example_style.css" rel="stylesheet" type="text/css" /> |
||||
</head> |
||||
<body> |
||||
<h2>Intelligent Scissors Example</h2> |
||||
<p> |
||||
Click <b>Start</b> button to launch the code below.<br> |
||||
Then click on image to pick source point. After that you can hover mouse pointer over canvas to specify target point candidate.<br> |
||||
You can change the code in the <textarea> to investigate more. You can choose another image (need to "Stop" first). |
||||
</p> |
||||
<div> |
||||
<div class="control"><button id="tryIt" disabled>Start</button> <button id="stopIt" disabled>Stop</button></div> |
||||
<textarea class="code" rows="20" cols="100" id="codeEditor" spellcheck="false"> |
||||
</textarea> |
||||
<p class="err" id="errorMessage"></p> |
||||
</div> |
||||
<div id="inputParams"> |
||||
<div class="caption">canvasInput <input type="file" id="fileInput" name="file" accept="image/*" /></div> |
||||
<canvas id="canvasInput"></canvas> |
||||
</div> |
||||
<div id="result" style="display:none"> |
||||
<canvas id="canvasOutput"></canvas> |
||||
</div> |
||||
|
||||
<script src="utils.js" type="text/javascript"></script> |
||||
|
||||
<script id="codeSnippet" type="text/code-snippet"> |
||||
let src = cv.imread('canvasInput'); |
||||
//cv.resize(src, src, new cv.Size(1024, 1024)); |
||||
cv.imshow('canvasOutput', src); |
||||
|
||||
let tool = new cv.segmentation_IntelligentScissorsMB(); |
||||
tool.setEdgeFeatureCannyParameters(32, 100); |
||||
tool.setGradientMagnitudeMaxLimit(200); |
||||
tool.applyImage(src); |
||||
|
||||
let hasMap = false; |
||||
|
||||
let canvas = document.getElementById('canvasOutput'); |
||||
canvas.addEventListener('click', e => { |
||||
let startX = e.offsetX, startY = e.offsetY; console.log(startX, startY); |
||||
if (startX < src.cols && startY < src.rows) |
||||
{ |
||||
console.time('buildMap'); |
||||
tool.buildMap(new cv.Point(startX, startY)); |
||||
console.timeEnd('buildMap'); |
||||
hasMap = true; |
||||
} |
||||
}); |
||||
canvas.addEventListener('mousemove', e => { |
||||
let x = e.offsetX, y = e.offsetY; //console.log(x, y); |
||||
let dst = src.clone(); |
||||
if (hasMap && x >= 0 && x < src.cols && y >= 0 && y < src.rows) |
||||
{ |
||||
let contour = new cv.Mat(); |
||||
tool.getContour(new cv.Point(x, y), contour); |
||||
let contours = new cv.MatVector(); |
||||
contours.push_back(contour); |
||||
let color = new cv.Scalar(0, 255, 0, 255); // RGBA |
||||
cv.polylines(dst, contours, false, color, 1, cv.LINE_8); |
||||
contours.delete(); contour.delete(); |
||||
} |
||||
cv.imshow('canvasOutput', dst); |
||||
dst.delete(); |
||||
}); |
||||
canvas.addEventListener('dispose', e => { |
||||
src.delete(); |
||||
tool.delete(); |
||||
}); |
||||
</script> |
||||
|
||||
<script type="text/javascript"> |
||||
let utils = new Utils('errorMessage'); |
||||
|
||||
utils.loadCode('codeSnippet', 'codeEditor'); |
||||
utils.loadImageToCanvas('lena.jpg', 'canvasInput'); |
||||
utils.addFileInputHandler('fileInput', 'canvasInput'); |
||||
|
||||
let disposeEvent = new Event('dispose'); |
||||
|
||||
let tryIt = document.getElementById('tryIt'); |
||||
let stopIt = document.getElementById('stopIt'); |
||||
|
||||
tryIt.addEventListener('click', () => { |
||||
let e_input = document.getElementById('inputParams'); |
||||
e_input.style.display = 'none'; |
||||
|
||||
let e_result = document.getElementById("result") |
||||
e_result.style.display = ''; |
||||
|
||||
var e = document.getElementById("canvasOutput"); |
||||
var e_new = e.cloneNode(true); |
||||
e.parentNode.replaceChild(e_new, e); // reset event handlers |
||||
|
||||
stopIt.removeAttribute('disabled'); |
||||
tryIt.setAttribute('disabled', ''); |
||||
|
||||
utils.executeCode('codeEditor'); |
||||
}); |
||||
|
||||
stopIt.addEventListener('click', () => { |
||||
let e_input = document.getElementById('inputParams'); |
||||
e_input.style.display = ''; |
||||
|
||||
let e_result = document.getElementById("result") |
||||
e_result.style.display = 'none'; |
||||
|
||||
var e = document.getElementById("canvasOutput"); |
||||
e.dispatchEvent(disposeEvent); |
||||
|
||||
var e_new = e.cloneNode(true); |
||||
e.parentNode.replaceChild(e_new, e); // reset event handlers |
||||
|
||||
tryIt.removeAttribute('disabled'); |
||||
stopIt.setAttribute('disabled', ''); |
||||
}); |
||||
|
||||
utils.loadOpenCv(() => { |
||||
tryIt.removeAttribute('disabled'); |
||||
}); |
||||
</script> |
||||
</body> |
||||
</html> |
@ -0,0 +1,14 @@ |
||||
Intelligent Scissors Demo {#tutorial_js_intelligent_scissors} |
||||
========================= |
||||
|
||||
Goal |
||||
---- |
||||
|
||||
- Here you can check how to use IntelligentScissors tool for image segmentation task. |
||||
- Available methods and parameters: @ref cv::segmentation::IntelligentScissorsMB |
||||
|
||||
\htmlonly |
||||
<iframe src="../../js_intelligent_scissors.html" width="100%" |
||||
onload="this.style.height=this.contentDocument.body.scrollHeight +'px';"> |
||||
</iframe> |
||||
\endhtmlonly |
@ -0,0 +1,141 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_IMGPROC_SEGMENTATION_HPP |
||||
#define OPENCV_IMGPROC_SEGMENTATION_HPP |
||||
|
||||
#include "opencv2/imgproc.hpp" |
||||
|
||||
namespace cv { |
||||
|
||||
namespace segmentation { |
||||
|
||||
//! @addtogroup imgproc_segmentation
|
||||
//! @{
|
||||
|
||||
|
||||
/** @brief Intelligent Scissors image segmentation
|
||||
* |
||||
* This class is used to find the path (contour) between two points |
||||
* which can be used for image segmentation. |
||||
* |
||||
* Usage example: |
||||
* @snippet snippets/imgproc_segmentation.cpp usage_example_intelligent_scissors |
||||
* |
||||
* Reference: <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf">"Intelligent Scissors for Image Composition"</a> |
||||
* algorithm designed by Eric N. Mortensen and William A. Barrett, Brigham Young University |
||||
* @cite Mortensen95intelligentscissors |
||||
*/ |
||||
class CV_EXPORTS_W_SIMPLE IntelligentScissorsMB |
||||
{ |
||||
public: |
||||
CV_WRAP |
||||
IntelligentScissorsMB(); |
||||
|
||||
/** @brief Specify weights of feature functions
|
||||
* |
||||
* Consider keeping weights normalized (sum of weights equals to 1.0) |
||||
* Discrete dynamic programming (DP) goal is minimization of costs between pixels. |
||||
* |
||||
* @param weight_non_edge Specify cost of non-edge pixels (default: 0.43f) |
||||
* @param weight_gradient_direction Specify cost of gradient direction function (default: 0.43f) |
||||
* @param weight_gradient_magnitude Specify cost of gradient magnitude function (default: 0.14f) |
||||
*/ |
||||
CV_WRAP |
||||
IntelligentScissorsMB& setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude); |
||||
|
||||
/** @brief Specify gradient magnitude max value threshold
|
||||
* |
||||
* Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article). |
||||
* Otherwize pixels with `gradient magnitude >= threshold` have zero cost. |
||||
* |
||||
* @note Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos). |
||||
* |
||||
* @param gradient_magnitude_threshold_max Specify gradient magnitude max value threshold (default: 0, disabled) |
||||
*/ |
||||
CV_WRAP |
||||
IntelligentScissorsMB& setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max = 0.0f); |
||||
|
||||
/** @brief Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters
|
||||
* |
||||
* This feature extractor is used by default according to article. |
||||
* |
||||
* Implementation has additional filtering for regions with low-amplitude noise. |
||||
* This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16). |
||||
* |
||||
* @note Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first). |
||||
* |
||||
* @note Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters(). |
||||
* |
||||
* @param gradient_magnitude_min_value Minimal gradient magnitude value for edge pixels (default: 0, check is disabled) |
||||
*/ |
||||
CV_WRAP |
||||
IntelligentScissorsMB& setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value = 0.0f); |
||||
|
||||
/** @brief Switch edge feature extractor to use Canny edge detector
|
||||
* |
||||
* @note "Laplacian Zero-Crossing" feature extractor is used by default (following to original article) |
||||
* |
||||
* @sa Canny |
||||
*/ |
||||
CV_WRAP |
||||
IntelligentScissorsMB& setEdgeFeatureCannyParameters( |
||||
double threshold1, double threshold2, |
||||
int apertureSize = 3, bool L2gradient = false |
||||
); |
||||
|
||||
/** @brief Specify input image and extract image features
|
||||
* |
||||
* @param image input image. Type is #CV_8UC1 / #CV_8UC3 |
||||
*/ |
||||
CV_WRAP |
||||
IntelligentScissorsMB& applyImage(InputArray image); |
||||
|
||||
/** @brief Specify custom features of imput image
|
||||
* |
||||
* Customized advanced variant of applyImage() call. |
||||
* |
||||
* @param non_edge Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are `{0, 1}`. |
||||
* @param gradient_direction Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: `x^2 + y^2 == 1` |
||||
* @param gradient_magnitude Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range `[0, 1]`. |
||||
* @param image **Optional parameter**. Must be specified if subset of features is specified (non-specified features are calculated internally) |
||||
*/ |
||||
CV_WRAP |
||||
IntelligentScissorsMB& applyImageFeatures( |
||||
InputArray non_edge, InputArray gradient_direction, InputArray gradient_magnitude, |
||||
InputArray image = noArray() |
||||
); |
||||
|
||||
/** @brief Prepares a map of optimal paths for the given source point on the image
|
||||
* |
||||
* @note applyImage() / applyImageFeatures() must be called before this call |
||||
* |
||||
* @param sourcePt The source point used to find the paths |
||||
*/ |
||||
CV_WRAP void buildMap(const Point& sourcePt); |
||||
|
||||
/** @brief Extracts optimal contour for the given target point on the image
|
||||
* |
||||
* @note buildMap() must be called before this call |
||||
* |
||||
* @param targetPt The target point |
||||
* @param[out] contour The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with `std::vector<Point>`) |
||||
* @param backward Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point) |
||||
*/ |
||||
CV_WRAP void getContour(const Point& targetPt, OutputArray contour, bool backward = false) const; |
||||
|
||||
#ifndef CV_DOXYGEN |
||||
struct Impl; |
||||
inline Impl* getImpl() const { return impl.get(); } |
||||
protected: |
||||
std::shared_ptr<Impl> impl; |
||||
#endif |
||||
}; |
||||
|
||||
//! @}
|
||||
|
||||
} // namespace segmentation
|
||||
} // namespace cv
|
||||
|
||||
#endif // OPENCV_IMGPROC_SEGMENTATION_HPP
|
@ -0,0 +1,772 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
|
||||
#include "precomp.hpp" |
||||
//#include "opencv2/imgproc/segmentation.hpp"
|
||||
|
||||
#include <opencv2/core/utils/logger.hpp> |
||||
|
||||
#include <queue> // std::priority_queue |
||||
|
||||
namespace cv { |
||||
namespace segmentation { |
||||
|
||||
namespace { |
||||
|
||||
// 0 1 2
|
||||
// 3 x 4
|
||||
// 5 6 7
|
||||
static const int neighbors[8][2] = { |
||||
{ -1, -1 }, |
||||
{ 0, -1 }, |
||||
{ 1, -1 }, |
||||
{ -1, 0 }, |
||||
{ 1, 0 }, |
||||
{ -1, 1 }, |
||||
{ 0, 1 }, |
||||
{ 1, 1 }, |
||||
}; |
||||
|
||||
// encoded reverse direction
|
||||
static const int neighbors_encode[8] = { |
||||
7+1, 6+1, 5+1, |
||||
4+1, 3+1, |
||||
2+1, 1+1, 0+1 |
||||
}; |
||||
|
||||
#define ACOS_TABLE_SIZE 64 |
||||
// acos_table[x + ACOS_TABLE_SIZE] = acos(x / ACOS_TABLE_SIZE) / CV_PI (see local_cost)
|
||||
// x = [ -ACOS_TABLE_SIZE .. ACOS_TABLE_SIZE ]
|
||||
float* getAcosTable() |
||||
{ |
||||
constexpr int N = ACOS_TABLE_SIZE; |
||||
static bool initialized = false; |
||||
static float acos_table[2*N + 1] = { 0 }; |
||||
if (!initialized) |
||||
{ |
||||
const float CV_PI_inv = static_cast<float>(1.0 / CV_PI); |
||||
for (int i = -N; i <= N; i++) |
||||
{ |
||||
acos_table[i + N] = acosf(i / (float)N) * CV_PI_inv; |
||||
} |
||||
initialized = true; |
||||
} |
||||
return acos_table; |
||||
} |
||||
|
||||
} // namespace anon
|
||||
|
||||
struct IntelligentScissorsMB::Impl |
||||
{ |
||||
// proposed weights from the article (sum = 1.0)
|
||||
float weight_non_edge = 0.43f; |
||||
float weight_gradient_direction = 0.43f; |
||||
float weight_gradient_magnitude = 0.14f; |
||||
|
||||
enum EdgeFeatureMode { |
||||
FEATURE_ZERO_CROSSING = 0, |
||||
FEATURE_CANNY |
||||
}; |
||||
EdgeFeatureMode edge_mode = FEATURE_ZERO_CROSSING; |
||||
|
||||
// FEATURE_ZERO_CROSSING
|
||||
float edge_gradient_magnitude_min_value = 0.0f; |
||||
|
||||
// FEATURE_CANNY
|
||||
double edge_canny_threshold1 = 10; |
||||
double edge_canny_threshold2 = 100; |
||||
int edge_canny_apertureSize = 3; |
||||
bool edge_canny_L2gradient = false; |
||||
|
||||
|
||||
float gradient_magnitude_threshold_max = 0.0f; // disabled thresholding
|
||||
|
||||
int sobelKernelSize = 3; // 1 or 3
|
||||
int laplacianKernelSize = 3; // 1 or 3
|
||||
|
||||
// image features
|
||||
Mat_<Point2f> gradient_direction; //< I: normalized laplacian x/y components
|
||||
Mat_<float> gradient_magnitude; //< Fg: gradient cost function
|
||||
Mat_<uchar> non_edge_feature; //< Fz: zero-crossing function
|
||||
|
||||
float weight_non_edge_compute = 0.0f; |
||||
|
||||
// encoded paths map (produced by `buildMap()`)
|
||||
Mat_<uchar> optimalPathsMap; |
||||
|
||||
void resetFeatures_() |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
gradient_direction.release(); |
||||
gradient_magnitude.release(); |
||||
non_edge_feature.release(); |
||||
|
||||
weight_non_edge_compute = weight_non_edge; |
||||
|
||||
optimalPathsMap.release(); |
||||
} |
||||
|
||||
Size src_size; |
||||
Mat image_; |
||||
Mat grayscale_; |
||||
void initImage_(InputArray image) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
if (!image_.empty()) |
||||
return; |
||||
CV_CheckType(image.type(), image.type() == CV_8UC1 || image.type() == CV_8UC3 || image.type() == CV_8UC4, ""); |
||||
src_size = image.size(); |
||||
image_ = image.getMat(); |
||||
} |
||||
void initGrayscale_(InputArray image) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
if (!grayscale_.empty()) |
||||
return; |
||||
CV_Assert(!image.empty()); |
||||
CV_CheckType(image.type(), image.type() == CV_8UC1 || image.type() == CV_8UC3 || image.type() == CV_8UC4, ""); |
||||
src_size = image.size(); |
||||
if (image.channels() > 1) |
||||
cvtColor(image, grayscale_, COLOR_BGR2GRAY); |
||||
else |
||||
grayscale_ = image.getMat(); |
||||
} |
||||
Mat Ix_, Iy_; |
||||
void initImageDerives_(InputArray image) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
if (!Ix_.empty()) |
||||
return; |
||||
initGrayscale_(image); |
||||
Sobel(grayscale_, Ix_, CV_32FC1, 1, 0, sobelKernelSize); |
||||
Sobel(grayscale_, Iy_, CV_32FC1, 0, 1, sobelKernelSize); |
||||
} |
||||
Mat image_magnitude_; |
||||
void initImageMagnitude_(InputArray image) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
if (!image_magnitude_.empty()) |
||||
return; |
||||
initImageDerives_(image); |
||||
magnitude(Ix_, Iy_, image_magnitude_); |
||||
} |
||||
|
||||
void cleanupFeaturesTemporaryArrays_() |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
image_.release(); |
||||
grayscale_.release(); |
||||
Ix_.release(); |
||||
Iy_.release(); |
||||
image_magnitude_.release(); |
||||
} |
||||
|
||||
Impl() |
||||
{ |
||||
// nothing
|
||||
CV_TRACE_FUNCTION(); |
||||
} |
||||
|
||||
void setWeights(float weight_non_edge_, float weight_gradient_direction_, float weight_gradient_magnitude_) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
CV_CheckGE(weight_non_edge_, 0.0f, ""); |
||||
CV_CheckGE(weight_gradient_direction_, 0.0f, ""); |
||||
CV_CheckGE(weight_gradient_magnitude_, 0.0f, ""); |
||||
CV_CheckGE(weight_non_edge_ + weight_gradient_direction_ + weight_gradient_magnitude_, FLT_EPSILON, "Sum of weights must be greater than zero"); |
||||
weight_non_edge = weight_non_edge_; |
||||
weight_gradient_direction = weight_gradient_direction_; |
||||
weight_gradient_magnitude = weight_gradient_magnitude_; |
||||
resetFeatures_(); |
||||
} |
||||
|
||||
void setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max_) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
CV_CheckGE(gradient_magnitude_threshold_max_, 0.0f, ""); |
||||
gradient_magnitude_threshold_max = gradient_magnitude_threshold_max_; |
||||
resetFeatures_(); |
||||
} |
||||
|
||||
void setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value_) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
CV_CheckGE(gradient_magnitude_min_value_, 0.0f, ""); |
||||
edge_mode = FEATURE_ZERO_CROSSING; |
||||
edge_gradient_magnitude_min_value = gradient_magnitude_min_value_; |
||||
resetFeatures_(); |
||||
} |
||||
|
||||
void setEdgeFeatureCannyParameters( |
||||
double threshold1, double threshold2, |
||||
int apertureSize = 3, bool L2gradient = false |
||||
) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
CV_CheckGE(threshold1, 0.0, ""); |
||||
CV_CheckGE(threshold2, 0.0, ""); |
||||
edge_mode = FEATURE_CANNY; |
||||
edge_canny_threshold1 = threshold1; |
||||
edge_canny_threshold2 = threshold2; |
||||
edge_canny_apertureSize = apertureSize; |
||||
edge_canny_L2gradient = L2gradient; |
||||
resetFeatures_(); |
||||
} |
||||
|
||||
void applyImageFeatures( |
||||
InputArray non_edge, InputArray gradient_direction_, InputArray gradient_magnitude_, |
||||
InputArray image |
||||
) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
resetFeatures_(); |
||||
cleanupFeaturesTemporaryArrays_(); |
||||
|
||||
src_size = Size(0, 0); |
||||
if (!non_edge.empty()) |
||||
src_size = non_edge.size(); |
||||
if (!gradient_direction_.empty()) |
||||
{ |
||||
Size gradient_direction_size = gradient_direction_.size(); |
||||
if (!src_size.empty()) |
||||
CV_CheckEQ(src_size, gradient_direction_size, ""); |
||||
else |
||||
src_size = gradient_direction_size; |
||||
} |
||||
if (!gradient_magnitude_.empty()) |
||||
{ |
||||
Size gradient_magnitude_size = gradient_magnitude_.size(); |
||||
if (!src_size.empty()) |
||||
CV_CheckEQ(src_size, gradient_magnitude_size, ""); |
||||
else |
||||
src_size = gradient_magnitude_size; |
||||
} |
||||
if (!image.empty()) |
||||
{ |
||||
Size image_size = image.size(); |
||||
if (!src_size.empty()) |
||||
CV_CheckEQ(src_size, image_size, ""); |
||||
else |
||||
src_size = image_size; |
||||
} |
||||
// src_size must be filled
|
||||
CV_Assert(!src_size.empty()); |
||||
|
||||
if (!non_edge.empty()) |
||||
{ |
||||
CV_CheckTypeEQ(non_edge.type(), CV_8UC1, ""); |
||||
non_edge_feature = non_edge.getMat(); |
||||
} |
||||
else |
||||
{ |
||||
if (weight_non_edge == 0.0f) |
||||
{ |
||||
non_edge_feature.create(src_size); |
||||
non_edge_feature.setTo(0); |
||||
} |
||||
else |
||||
{ |
||||
if (image.empty()) |
||||
CV_Error(Error::StsBadArg, "Non-edge feature parameter is missing. Input image parameter is required to extract this feature"); |
||||
extractEdgeFeature_(image); |
||||
} |
||||
} |
||||
|
||||
if (!gradient_direction_.empty()) |
||||
{ |
||||
CV_CheckTypeEQ(gradient_direction_.type(), CV_32FC2, ""); |
||||
gradient_direction = gradient_direction_.getMat(); |
||||
} |
||||
else |
||||
{ |
||||
if (weight_gradient_direction == 0.0f) |
||||
{ |
||||
gradient_direction.create(src_size); |
||||
gradient_direction.setTo(Scalar::all(0)); |
||||
} |
||||
else |
||||
{ |
||||
if (image.empty()) |
||||
CV_Error(Error::StsBadArg, "Gradient direction feature parameter is missing. Input image parameter is required to extract this feature"); |
||||
extractGradientDirection_(image); |
||||
} |
||||
} |
||||
|
||||
if (!gradient_magnitude_.empty()) |
||||
{ |
||||
CV_CheckTypeEQ(gradient_magnitude_.type(), CV_32FC1, ""); |
||||
gradient_magnitude = gradient_magnitude_.getMat(); |
||||
} |
||||
else |
||||
{ |
||||
if (weight_gradient_magnitude == 0.0f) |
||||
{ |
||||
gradient_magnitude.create(src_size); |
||||
gradient_magnitude.setTo(Scalar::all(0)); |
||||
} |
||||
else |
||||
{ |
||||
if (image.empty()) |
||||
CV_Error(Error::StsBadArg, "Gradient magnitude feature parameter is missing. Input image parameter is required to extract this feature"); |
||||
extractGradientMagnitude_(image); |
||||
} |
||||
} |
||||
|
||||
cleanupFeaturesTemporaryArrays_(); |
||||
} |
||||
|
||||
|
||||
void extractEdgeFeature_(InputArray image) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
if (edge_mode == FEATURE_CANNY) |
||||
{ |
||||
CV_LOG_DEBUG(NULL, "Canny(" << edge_canny_threshold1 << ", " << edge_canny_threshold2 << ")"); |
||||
Mat img_canny; |
||||
Canny(image, img_canny, edge_canny_threshold1, edge_canny_threshold2, edge_canny_apertureSize, edge_canny_L2gradient); |
||||
#if 0 |
||||
threshold(img_canny, non_edge_feature, 254, 1, THRESH_BINARY_INV); |
||||
#else |
||||
// Canny result values are 0 or 255
|
||||
bitwise_not(img_canny, non_edge_feature); |
||||
weight_non_edge_compute = weight_non_edge * (1.0f / 255.0f); |
||||
#endif |
||||
} |
||||
else // if (edge_mode == FEATURE_ZERO_CROSSING)
|
||||
{ |
||||
initGrayscale_(image); |
||||
Mat_<short> laplacian; |
||||
Laplacian(grayscale_, laplacian, CV_16S, laplacianKernelSize); |
||||
Mat_<uchar> zero_crossing(src_size, 1); |
||||
|
||||
const size_t zstep = zero_crossing.step[0]; |
||||
for (int y = 0; y < src_size.height - 1; y++) |
||||
{ |
||||
const short* row0 = laplacian.ptr<short>(y); |
||||
const short* row1 = laplacian.ptr<short>(y + 1); |
||||
uchar* zrow0 = zero_crossing.ptr<uchar>(y); |
||||
//uchar* zrow1 = zero_crossing.ptr<uchar>(y + 1);
|
||||
for (int x = 0; x < src_size.width - 1; x++) |
||||
{ |
||||
const int v = row0[x]; |
||||
const int neg_v = -v; |
||||
// - * 1
|
||||
// 2 3 4
|
||||
const int v1 = row0[x + 1]; |
||||
const int v2 = (x > 0) ? row1[x - 1] : v; |
||||
const int v3 = row1[x + 0]; |
||||
const int v4 = row1[x + 1]; |
||||
if (v < 0) |
||||
{ |
||||
if (v1 > 0) |
||||
{ |
||||
zrow0[x + ((v1 < neg_v) ? 1 : 0)] = 0; |
||||
} |
||||
if (v2 > 0) |
||||
{ |
||||
zrow0[x + ((v2 < neg_v) ? (zstep - 1) : 0)] = 0; |
||||
} |
||||
if (v3 > 0) |
||||
{ |
||||
zrow0[x + ((v3 < neg_v) ? (zstep + 0) : 0)] = 0; |
||||
} |
||||
if (v4 > 0) |
||||
{ |
||||
zrow0[x + ((v4 < neg_v) ? (zstep + 1) : 0)] = 0; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
if (v1 < 0) |
||||
{ |
||||
zrow0[x + ((v1 > neg_v) ? 1 : 0)] = 0; |
||||
} |
||||
if (v2 < 0) |
||||
{ |
||||
zrow0[x + ((v2 > neg_v) ? (zstep - 1) : 0)] = 0; |
||||
} |
||||
if (v3 < 0) |
||||
{ |
||||
zrow0[x + ((v3 > neg_v) ? (zstep + 0) : 0)] = 0; |
||||
} |
||||
if (v4 < 0) |
||||
{ |
||||
zrow0[x + ((v4 > neg_v) ? (zstep + 1) : 0)] = 0; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (edge_gradient_magnitude_min_value > 0) |
||||
{ |
||||
initImageMagnitude_(image); |
||||
Mat mask = image_magnitude_ < edge_gradient_magnitude_min_value; |
||||
zero_crossing.setTo(1, mask); // reset low-amplitude noise
|
||||
} |
||||
|
||||
non_edge_feature = zero_crossing; |
||||
} |
||||
} |
||||
|
||||
|
||||
void extractGradientDirection_(InputArray image) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
initImageMagnitude_(image); // calls internally: initImageDerives_(image);
|
||||
gradient_direction.create(src_size); |
||||
for (int y = 0; y < src_size.height; y++) |
||||
{ |
||||
const float* magnutude_row = image_magnitude_.ptr<float>(y); |
||||
const float* Ix_row = Ix_.ptr<float>(y); |
||||
const float* Iy_row = Iy_.ptr<float>(y); |
||||
Point2f* gradient_direction_row = gradient_direction.ptr<Point2f>(y); |
||||
for (int x = 0; x < src_size.width; x++) |
||||
{ |
||||
const float m = magnutude_row[x]; |
||||
if (m > FLT_EPSILON) |
||||
{ |
||||
float m_inv = 1.0f / m; |
||||
gradient_direction_row[x] = Point2f(Ix_row[x] * m_inv, Iy_row[x] * m_inv); |
||||
} |
||||
else |
||||
{ |
||||
gradient_direction_row[x] = Point2f(0, 0); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void extractGradientMagnitude_(InputArray image) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
initImageMagnitude_(image); // calls internally: initImageDerives_(image);
|
||||
Mat m; |
||||
double max_m = 0; |
||||
if (gradient_magnitude_threshold_max > 0) |
||||
{ |
||||
threshold(image_magnitude_, m, gradient_magnitude_threshold_max, 0, THRESH_TRUNC); |
||||
max_m = gradient_magnitude_threshold_max; |
||||
} |
||||
else |
||||
{ |
||||
m = image_magnitude_; |
||||
minMaxLoc(m, 0, &max_m); |
||||
} |
||||
if (max_m <= FLT_EPSILON) |
||||
{ |
||||
CV_LOG_INFO(NULL, "IntelligentScissorsMB: input image gradient is almost zero") |
||||
gradient_magnitude.create(src_size); |
||||
gradient_magnitude.setTo(0); |
||||
} |
||||
else |
||||
{ |
||||
m.convertTo(gradient_magnitude, CV_32F, -1.0 / max_m, 1.0); // normalize and inverse to range 0..1
|
||||
} |
||||
} |
||||
|
||||
void applyImage(InputArray image) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
CV_CheckType(image.type(), image.type() == CV_8UC1 || image.type() == CV_8UC3 || image.type() == CV_8UC4, ""); |
||||
|
||||
resetFeatures_(); |
||||
cleanupFeaturesTemporaryArrays_(); |
||||
extractEdgeFeature_(image); |
||||
extractGradientDirection_(image); |
||||
extractGradientMagnitude_(image); |
||||
cleanupFeaturesTemporaryArrays_(); |
||||
} |
||||
|
||||
|
||||
// details: see section 3.1 of the article
|
||||
const float* acos_table = getAcosTable(); |
||||
float local_cost(const Point& p, const Point& q) const |
||||
{ |
||||
const bool isDiag = (p.x != q.x) && (p.y != q.y); |
||||
|
||||
float fG = gradient_magnitude.at<float>(q); |
||||
|
||||
const Point2f diff((float)(q.x - p.x), (float)(q.y - p.y)); |
||||
|
||||
const Point2f Ip = gradient_direction(p); |
||||
const Point2f Iq = gradient_direction(q); |
||||
|
||||
const Point2f Dp(Ip.y, -Ip.x); // D(p) - 90 degrees clockwise
|
||||
const Point2f Dq(Iq.y, -Iq.x); // D(q) - 90 degrees clockwise
|
||||
|
||||
float dp = Dp.dot(diff); // dp(p, q)
|
||||
float dq = Dq.dot(diff); // dq(p, q)
|
||||
if (dp < 0) |
||||
{ |
||||
dp = -dp; // ensure dp >= 0
|
||||
dq = -dq; |
||||
} |
||||
|
||||
const float sqrt2_inv = 0.7071067811865475f; // 1.0 / sqrt(2)
|
||||
if (isDiag) |
||||
{ |
||||
dp *= sqrt2_inv; // normalize length of (q - p)
|
||||
dq *= sqrt2_inv; // normalize length of (q - p)
|
||||
} |
||||
else |
||||
{ |
||||
fG *= sqrt2_inv; |
||||
} |
||||
|
||||
#if 1 |
||||
int dp_i = cvFloor(dp * ACOS_TABLE_SIZE); // dp is in range 0..1
|
||||
dp_i = std::min(ACOS_TABLE_SIZE, std::max(0, dp_i)); |
||||
int dq_i = cvFloor(dq * ACOS_TABLE_SIZE); // dq is in range -1..1
|
||||
dq_i = std::min(ACOS_TABLE_SIZE, std::max(-ACOS_TABLE_SIZE, dq_i)); |
||||
const float fD = acos_table[dp_i + ACOS_TABLE_SIZE] + acos_table[dq_i + ACOS_TABLE_SIZE]; |
||||
#else |
||||
const float CV_PI_inv = static_cast<float>(1.0 / CV_PI); |
||||
const float fD = (acosf(dp) + acosf(dq)) * CV_PI_inv; // TODO optimize acos calls (through tables)
|
||||
#endif |
||||
|
||||
float cost = |
||||
weight_non_edge_compute * non_edge_feature.at<uchar>(q) + |
||||
weight_gradient_direction * fD + |
||||
weight_gradient_magnitude * fG; |
||||
return cost; |
||||
} |
||||
|
||||
struct Pix |
||||
{ |
||||
Point pt; |
||||
float cost; // NOTE: do not remove cost from here through replacing by cost(pt) map access
|
||||
|
||||
inline bool operator > (const Pix &b) const |
||||
{ |
||||
return cost > b.cost; |
||||
} |
||||
}; |
||||
|
||||
void buildMap(const Point& start_point) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
CV_Assert(!src_size.empty()); |
||||
CV_Assert(!gradient_magnitude.empty() && "Features are missing. applyImage() must be called first"); |
||||
|
||||
CV_CheckGE(weight_non_edge + weight_gradient_direction + weight_gradient_magnitude, FLT_EPSILON, ""); |
||||
|
||||
#if 0 // debug
|
||||
Rect wholeImage(0, 0, src_size.width, src_size.height); |
||||
Rect roi = Rect(start_point.x - 5, start_point.y - 5, 11, 11) & wholeImage; |
||||
std::cout << roi << std::endl; |
||||
std::cout << gradient_magnitude(roi) << std::endl; |
||||
std::cout << gradient_direction(roi) << std::endl; |
||||
std::cout << non_edge_feature(roi) << std::endl; |
||||
#endif |
||||
|
||||
optimalPathsMap.release(); |
||||
optimalPathsMap.create(src_size); |
||||
optimalPathsMap.setTo(0); // optimalPathsMap(start_point) = 0;
|
||||
|
||||
//
|
||||
// Section 3.2
|
||||
// Live-Wire 2-D DP graph search.
|
||||
//
|
||||
|
||||
Mat_<float> cost_map(src_size, FLT_MAX); // g(q)
|
||||
Mat_<uchar> processed(src_size, (uchar)0); // e(q)
|
||||
|
||||
// Note: std::vector is faster than std::deque
|
||||
// TODO check std::set
|
||||
std::priority_queue< Pix, std::vector<Pix>, std::greater<Pix> > L; |
||||
|
||||
cost_map(start_point) = 0; |
||||
L.emplace(Pix{ start_point, 0/*cost*/ }); |
||||
|
||||
while (!L.empty()) |
||||
{ |
||||
Pix pix = L.top(); L.pop(); |
||||
Point q = pix.pt; // 'q' from the article
|
||||
if (processed(q)) |
||||
continue; // already processed (with lower cost, see note below)
|
||||
processed(q) = 1; |
||||
#if 1 |
||||
const float cost_q = pix.cost; |
||||
#else |
||||
const float cost_q = cost_map(q); |
||||
CV_Assert(cost_q == pix.cost); |
||||
#endif |
||||
for (int n = 0; n < 8; n++) // scan neighbours
|
||||
{ |
||||
Point r(q.x + neighbors[n][0], q.y + neighbors[n][1]); // 'r' from the article
|
||||
if (r.x < 0 || r.x >= src_size.width || r.y < 0 || r.y >= src_size.height) |
||||
continue; // out of range
|
||||
|
||||
#if !defined(__EMSCRIPTEN__) // slower in JS
|
||||
float& cost_r = cost_map(r); |
||||
if (cost_r < cost_q) |
||||
continue; // already processed
|
||||
#else |
||||
if (processed(r)) |
||||
continue; // already processed
|
||||
|
||||
float& cost_r = cost_map(r); |
||||
CV_DbgCheckLE(cost_q, cost_r, "INTERNAL ERROR: sorted queue is corrupted"); |
||||
#endif |
||||
|
||||
float cost = cost_q + local_cost(q, r); // TODO(opt): compute partially until cost < cost_r
|
||||
if (cost < cost_r) |
||||
{ |
||||
#if 0 // avoid compiler warning
|
||||
if (cost_r != FLT_MAX) |
||||
{ |
||||
// In article the point 'r' is removed from the queue L
|
||||
// to be re-inserted again with sorting against new optimized cost.
|
||||
// We can do nothing, because "new point" will be placed before in the sorted queue.
|
||||
// Old point will be skipped through "if (processed(q))" check above after processing of new optimal candidate.
|
||||
//
|
||||
// This approach leads to some performance impact, however it is much smaller than element removal from the sorted queue.
|
||||
// So, do nothing.
|
||||
} |
||||
#endif |
||||
cost_r = cost; |
||||
L.emplace(Pix{ r, cost }); |
||||
optimalPathsMap(r) = (uchar)neighbors_encode[n]; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void getContour(const Point& target, OutputArray contour_, bool backward) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
CV_Assert(!optimalPathsMap.empty() && "buildMap() must be called before getContour()"); |
||||
|
||||
const int cols = optimalPathsMap.cols; |
||||
const int rows = optimalPathsMap.rows; |
||||
|
||||
std::vector<Point> result; result.reserve(512); |
||||
|
||||
size_t loop_check = 4096; |
||||
Point pt = target; |
||||
for (size_t i = 0; i < (size_t)rows * cols; i++) // don't hang on invalid maps
|
||||
{ |
||||
CV_CheckLT(pt.x, cols, ""); |
||||
CV_CheckLT(pt.y, rows, ""); |
||||
result.push_back(pt); |
||||
int direction = (int)optimalPathsMap(pt); |
||||
if (direction == 0) |
||||
break; // stop, start point is reached
|
||||
CV_CheckLT(direction, 9, "Map is invalid"); |
||||
Point next(pt.x + neighbors[direction - 1][0], pt.y + neighbors[direction - 1][1]); |
||||
pt = next; |
||||
|
||||
if (result.size() == loop_check) // optional sanity check of invalid maps with loops (don't eat huge amount of memory)
|
||||
{ |
||||
loop_check *= 4; // next limit for loop check
|
||||
for (const auto& pt_check : result) |
||||
{ |
||||
CV_CheckNE(pt_check, pt, "Map is invalid. Contour loop is detected"); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (backward) |
||||
{ |
||||
_InputArray(result).copyTo(contour_); |
||||
} |
||||
else |
||||
{ |
||||
const int N = (int)result.size(); |
||||
const int sz[1] = { N }; |
||||
contour_.create(1, sz, CV_32SC2); |
||||
Mat_<Point> contour = contour_.getMat(); |
||||
for (int i = 0; i < N; i++) |
||||
{ |
||||
contour.at<Point>(i) = result[N - (i + 1)]; |
||||
} |
||||
} |
||||
} |
||||
}; |
||||
|
||||
|
||||
|
||||
IntelligentScissorsMB::IntelligentScissorsMB() |
||||
: impl(std::make_shared<Impl>()) |
||||
{ |
||||
// nothing
|
||||
} |
||||
|
||||
IntelligentScissorsMB& IntelligentScissorsMB::setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude) |
||||
{ |
||||
CV_DbgAssert(impl); |
||||
impl->setWeights(weight_non_edge, weight_gradient_direction, weight_gradient_magnitude); |
||||
return *this; |
||||
} |
||||
|
||||
IntelligentScissorsMB& IntelligentScissorsMB::setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max) |
||||
{ |
||||
CV_DbgAssert(impl); |
||||
impl->setGradientMagnitudeMaxLimit(gradient_magnitude_threshold_max); |
||||
return *this; |
||||
} |
||||
|
||||
IntelligentScissorsMB& IntelligentScissorsMB::setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value) |
||||
{ |
||||
CV_DbgAssert(impl); |
||||
impl->setEdgeFeatureZeroCrossingParameters(gradient_magnitude_min_value); |
||||
return *this; |
||||
} |
||||
|
||||
IntelligentScissorsMB& IntelligentScissorsMB::setEdgeFeatureCannyParameters( |
||||
double threshold1, double threshold2, |
||||
int apertureSize, bool L2gradient |
||||
) |
||||
{ |
||||
CV_DbgAssert(impl); |
||||
impl->setEdgeFeatureCannyParameters(threshold1, threshold2, apertureSize, L2gradient); |
||||
return *this; |
||||
} |
||||
|
||||
IntelligentScissorsMB& IntelligentScissorsMB::applyImage(InputArray image) |
||||
{ |
||||
CV_DbgAssert(impl); |
||||
impl->applyImage(image); |
||||
return *this; |
||||
} |
||||
|
||||
IntelligentScissorsMB& IntelligentScissorsMB::applyImageFeatures( |
||||
InputArray non_edge, InputArray gradient_direction, InputArray gradient_magnitude, |
||||
InputArray image |
||||
) |
||||
{ |
||||
CV_DbgAssert(impl); |
||||
impl->applyImageFeatures(non_edge, gradient_direction, gradient_magnitude, image); |
||||
return *this; |
||||
} |
||||
|
||||
void IntelligentScissorsMB::buildMap(const Point& pt) |
||||
{ |
||||
CV_DbgAssert(impl); |
||||
impl->buildMap(pt); |
||||
} |
||||
|
||||
void IntelligentScissorsMB::getContour(const Point& target, OutputArray contour, bool backward) const |
||||
{ |
||||
CV_DbgAssert(impl); |
||||
impl->getContour(target, contour, backward); |
||||
} |
||||
|
||||
}} // namespace
|
@ -0,0 +1,467 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "test_precomp.hpp" |
||||
//#include "opencv2/imgproc/segmentation.hpp"
|
||||
|
||||
namespace opencv_test { namespace { |
||||
|
||||
|
||||
Mat getTestImageGray() |
||||
{ |
||||
static Mat m; |
||||
if (m.empty()) |
||||
{ |
||||
m = imread(findDataFile("shared/lena.png"), IMREAD_GRAYSCALE); |
||||
} |
||||
return m.clone(); |
||||
} |
||||
|
||||
Mat getTestImageColor() |
||||
{ |
||||
static Mat m; |
||||
if (m.empty()) |
||||
{ |
||||
m = imread(findDataFile("shared/lena.png"), IMREAD_COLOR); |
||||
} |
||||
return m.clone(); |
||||
} |
||||
|
||||
Mat getTestImage1() |
||||
{ |
||||
static Mat m; |
||||
if (m.empty()) |
||||
{ |
||||
m.create(Size(200, 100), CV_8UC1); |
||||
m.setTo(Scalar::all(128)); |
||||
Rect roi(50, 30, 100, 40); |
||||
m(roi).setTo(Scalar::all(0)); |
||||
#if 0 |
||||
imshow("image", m); |
||||
waitKey(); |
||||
#endif |
||||
} |
||||
return m.clone(); |
||||
} |
||||
|
||||
Mat getTestImage2() |
||||
{ |
||||
static Mat m; |
||||
if (m.empty()) |
||||
{ |
||||
m.create(Size(200, 100), CV_8UC1); |
||||
m.setTo(Scalar::all(128)); |
||||
Rect roi(40, 30, 100, 40); |
||||
m(roi).setTo(Scalar::all(255)); |
||||
#if 0 |
||||
imshow("image", m); |
||||
waitKey(); |
||||
#endif |
||||
} |
||||
return m.clone(); |
||||
} |
||||
|
||||
Mat getTestImage3() |
||||
{ |
||||
static Mat m; |
||||
if (m.empty()) |
||||
{ |
||||
m.create(Size(200, 100), CV_8UC1); |
||||
m.setTo(Scalar::all(128)); |
||||
Scalar color(0,0,0,0); |
||||
line(m, Point(30, 50), Point(50, 50), color, 1); |
||||
line(m, Point(50, 50), Point(80, 30), color, 1); |
||||
line(m, Point(150, 50), Point(80, 30), color, 1); |
||||
line(m, Point(150, 50), Point(180, 50), color, 1); |
||||
|
||||
line(m, Point(80, 10), Point(80, 90), Scalar::all(200), 1); |
||||
line(m, Point(100, 10), Point(100, 90), Scalar::all(200), 1); |
||||
line(m, Point(120, 10), Point(120, 90), Scalar::all(200), 1); |
||||
#if 0 |
||||
imshow("image", m); |
||||
waitKey(); |
||||
#endif |
||||
} |
||||
return m.clone(); |
||||
} |
||||
|
||||
Mat getTestImage4() |
||||
{ |
||||
static Mat m; |
||||
if (m.empty()) |
||||
{ |
||||
m.create(Size(200, 100), CV_8UC1); |
||||
for (int y = 0; y < m.rows; y++) |
||||
{ |
||||
for (int x = 0; x < m.cols; x++) |
||||
{ |
||||
float dx = (float)(x - 100); |
||||
float dy = (float)(y - 100); |
||||
float d = sqrtf(dx * dx + dy * dy); |
||||
m.at<uchar>(y, x) = saturate_cast<uchar>(100 + 100 * sin(d / 10 * CV_PI)); |
||||
} |
||||
} |
||||
#if 0 |
||||
imshow("image", m); |
||||
waitKey(); |
||||
#endif |
||||
} |
||||
return m.clone(); |
||||
} |
||||
|
||||
Mat getTestImage5() |
||||
{ |
||||
static Mat m; |
||||
if (m.empty()) |
||||
{ |
||||
m.create(Size(200, 100), CV_8UC1); |
||||
for (int y = 0; y < m.rows; y++) |
||||
{ |
||||
for (int x = 0; x < m.cols; x++) |
||||
{ |
||||
float dx = (float)(x - 100); |
||||
float dy = (float)(y - 100); |
||||
float d = sqrtf(dx * dx + dy * dy); |
||||
m.at<uchar>(y, x) = saturate_cast<uchar>(x / 2 + 100 * sin(d / 10 * CV_PI)); |
||||
} |
||||
} |
||||
#if 0 |
||||
imshow("image", m); |
||||
waitKey(); |
||||
#endif |
||||
} |
||||
return m.clone(); |
||||
} |
||||
|
||||
void show(const Mat& img, const std::vector<Point> pts) |
||||
{ |
||||
if (cvtest::debugLevel >= 10) |
||||
{ |
||||
Mat dst = img.clone(); |
||||
std::vector< std::vector<Point> > contours; |
||||
contours.push_back(pts); |
||||
polylines(dst, contours, false, Scalar::all(255)); |
||||
imshow("dst", dst); |
||||
waitKey(); |
||||
} |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, rect) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
|
||||
tool.applyImage(getTestImage1()); |
||||
|
||||
Point source_point(50, 30); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(100, 30); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
tool.applyImage(getTestImage2()); |
||||
|
||||
tool.buildMap(source_point); |
||||
|
||||
std::vector<Point> pts2; |
||||
tool.getContour(target_point, pts2, true/*backward*/); |
||||
|
||||
EXPECT_EQ(pts.size(), pts2.size()); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, lines) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
Mat image = getTestImage3(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(30, 50); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(150, 50); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
EXPECT_EQ((size_t)121, pts.size()); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, circles) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
tool.setGradientMagnitudeMaxLimit(10); |
||||
|
||||
Mat image = getTestImage4(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(50, 50); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(150, 50); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
EXPECT_EQ((size_t)101, pts.size()); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, circles_gradient) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
Mat image = getTestImage5(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(50, 50); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(150, 50); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
EXPECT_EQ((size_t)101, pts.size()); |
||||
show(image, pts); |
||||
} |
||||
|
||||
#define PTS_SIZE_EPS 2 |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, grayscale) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
|
||||
Mat image = getTestImageGray(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 206; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, check_features_grayscale_1_0_0_zerro_crossing_with_limit) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
tool.setEdgeFeatureZeroCrossingParameters(64); |
||||
tool.setWeights(1.0f, 0.0f, 0.0f); |
||||
|
||||
Mat image = getTestImageGray(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 207; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, check_features_grayscale_1_0_0_canny) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
tool.setEdgeFeatureCannyParameters(50, 100); |
||||
tool.setWeights(1.0f, 0.0f, 0.0f); |
||||
|
||||
Mat image = getTestImageGray(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 201; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, check_features_grayscale_0_1_0) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
tool.setWeights(0.0f, 1.0f, 0.0f); |
||||
|
||||
Mat image = getTestImageGray(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 166; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, check_features_grayscale_0_0_1) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
tool.setWeights(0.0f, 0.0f, 1.0f); |
||||
|
||||
Mat image = getTestImageGray(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 197; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, color) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
|
||||
Mat image = getTestImageColor(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 205; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, color_canny) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
tool.setEdgeFeatureCannyParameters(32, 100); |
||||
|
||||
Mat image = getTestImageColor(); |
||||
tool.applyImage(image); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 200; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, color_custom_features_invalid) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
ASSERT_ANY_THROW(tool.applyImageFeatures(noArray(), noArray(), noArray())); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, color_custom_features_edge) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
|
||||
Mat image = getTestImageColor(); |
||||
|
||||
Mat canny_edges; |
||||
Canny(image, canny_edges, 32, 100, 5); |
||||
Mat binary_edge_feature; |
||||
cv::threshold(canny_edges, binary_edge_feature, 254, 1, THRESH_BINARY_INV); |
||||
tool.applyImageFeatures(binary_edge_feature, noArray(), noArray(), image); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 201; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, color_custom_features_all) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
|
||||
tool.setWeights(0.9f, 0.0f, 0.1f); |
||||
|
||||
Mat image = getTestImageColor(); |
||||
|
||||
Mat canny_edges; |
||||
Canny(image, canny_edges, 50, 100, 5); |
||||
Mat binary_edge_feature; // 0, 1 values
|
||||
cv::threshold(canny_edges, binary_edge_feature, 254, 1, THRESH_BINARY_INV); |
||||
|
||||
Mat_<Point2f> gradient_direction(image.size(), Point2f(0, 0)); // normalized
|
||||
Mat_<float> gradient_magnitude(image.size(), 0); // cost function
|
||||
tool.applyImageFeatures(binary_edge_feature, gradient_direction, gradient_magnitude); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 201; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
TEST(Imgproc_IntelligentScissorsMB, color_custom_features_edge_magnitude) |
||||
{ |
||||
segmentation::IntelligentScissorsMB tool; |
||||
|
||||
tool.setWeights(0.9f, 0.0f, 0.1f); |
||||
|
||||
Mat image = getTestImageColor(); |
||||
|
||||
Mat canny_edges; |
||||
Canny(image, canny_edges, 50, 100, 5); |
||||
Mat binary_edge_feature; // 0, 1 values
|
||||
cv::threshold(canny_edges, binary_edge_feature, 254, 1, THRESH_BINARY_INV); |
||||
|
||||
Mat_<float> gradient_magnitude(image.size(), 0); // cost function
|
||||
tool.applyImageFeatures(binary_edge_feature, noArray(), gradient_magnitude); |
||||
|
||||
Point source_point(275, 63); |
||||
tool.buildMap(source_point); |
||||
|
||||
Point target_point(413, 155); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
|
||||
size_t gold = 201; |
||||
EXPECT_GE(pts.size(), gold - PTS_SIZE_EPS); |
||||
EXPECT_LE(pts.size(), gold + PTS_SIZE_EPS); |
||||
show(image, pts); |
||||
} |
||||
|
||||
|
||||
}} // namespace
|
@ -0,0 +1,35 @@ |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/imgproc/segmentation.hpp" |
||||
|
||||
using namespace cv; |
||||
|
||||
static |
||||
void usage_example_intelligent_scissors() |
||||
{ |
||||
Mat image(Size(1920, 1080), CV_8UC3, Scalar::all(128)); |
||||
|
||||
//! [usage_example_intelligent_scissors]
|
||||
segmentation::IntelligentScissorsMB tool; |
||||
tool.setEdgeFeatureCannyParameters(16, 100) // using Canny() as edge feature extractor
|
||||
.setGradientMagnitudeMaxLimit(200); |
||||
|
||||
// calculate image features
|
||||
tool.applyImage(image); |
||||
|
||||
// calculate map for specified source point
|
||||
Point source_point(200, 100); |
||||
tool.buildMap(source_point); |
||||
|
||||
// fast fetching of contours
|
||||
// for specified target point and the pre-calculated map (stored internally)
|
||||
Point target_point(400, 300); |
||||
std::vector<Point> pts; |
||||
tool.getContour(target_point, pts); |
||||
//! [usage_example_intelligent_scissors]
|
||||
} |
||||
|
||||
int main() |
||||
{ |
||||
usage_example_intelligent_scissors(); |
||||
return 0; |
||||
} |
Loading…
Reference in new issue