pull/2234/head
Konstantin Matskevich 11 years ago
parent 9a62df1650
commit 3ea32b87bb
  1. 94
      modules/objdetect/perf/opencl/perf_hogdetect.cpp
  2. 4
      modules/objdetect/src/hog.cpp
  3. 20
      modules/objdetect/test/opencl/test_hogdetector.cpp

@ -0,0 +1,94 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Fangfang Bai, fangfang@multicorewareinc.com
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#include "opencv2/ts/ocl_perf.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
///////////// HOG////////////////////////
struct RectLess :
public std::binary_function<cv::Rect, cv::Rect, bool>
{
bool operator()(const cv::Rect& a,
const cv::Rect& b) const
{
if (a.x != b.x)
return a.x < b.x;
else if (a.y != b.y)
return a.y < b.y;
else if (a.width != b.width)
return a.width < b.width;
else
return a.height < b.height;
}
};
OCL_PERF_TEST(HOGFixture, HOG)
{
UMat src;
imread(getDataPath("gpu/hog/road.png"), cv::IMREAD_GRAYSCALE).copyTo(src);
CV_Assert(!src.empty());
vector<cv::Rect> found_locations;
declare.in(src).time(5);
HOGDescriptor hog;
hog.setSVMDetector(hog.getDefaultPeopleDetector());
OCL_TEST_CYCLE() hog.detectMultiScale(src, found_locations);
std::sort(found_locations.begin(), found_locations.end(), RectLess());
// SANITY_CHECK(found_locations, 1 + DBL_EPSILON);
}
}
}
#endif

@ -1377,7 +1377,7 @@ void HOGDescriptor::compute(InputArray _img, std::vector<float>& descriptors,
padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height);
Size paddedImgSize(imgSize.width + padding.width*2, imgSize.height + padding.height*2);
if(ocl::useOpenCL() && _img.dims() <= 2 && _img.type() == CV_8UC1 && _img.isUMat() &&
if(ocl::useOpenCL() && _img.dims() <= 2 && _img.type() == CV_8UC1 && _img.isUMat() &&
ocl_compute(_img, winStride, descriptors, DESCR_FORMAT_COL_BY_COL))
return;
@ -1713,7 +1713,7 @@ bool HOGDescriptor::ocl_detect(const UMat& img, std::vector<Point> &hits,
effect_size.width, block_hists, (float)L2HysThreshold)) return false;
size_t descriptor_size = getDescriptorSize();
float free_coef = free_coef = svmDetector.size() > descriptor_size ? svmDetector[descriptor_size] : 0;
float free_coef = svmDetector.size() > descriptor_size ? svmDetector[descriptor_size] : 0;
Size blocks_per_win = numPartsWithin(winSize, blockSize, blockStride);

@ -59,7 +59,7 @@ namespace cvtest {
namespace ocl {
///////////////////// HOG /////////////////////////////
PARAM_TEST_CASE(HOG, Size, MatType)
PARAM_TEST_CASE(HOG, Size, MatType)
{
Size winSize;
int type;
@ -69,7 +69,7 @@ namespace ocl {
{
winSize = GET_PARAM(0);
type = GET_PARAM(1);
img = readImage("C:/opencv_extra/testdata/gpu/hog/road.png", IMREAD_GRAYSCALE);
img = readImage("cascadeandhog/images/image_00000000_0.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
img.copyTo(uimg);
}
@ -90,7 +90,7 @@ OCL_TEST_P(HOG, GetDescriptors)
Mat cpu_desc(cpu_descriptors), gpu_desc(gpu_descriptors);
EXPECT_MAT_SIMILAR(cpu_desc, gpu_desc, 1e-2);
EXPECT_MAT_SIMILAR(cpu_desc, gpu_desc, 1e-1);
}
OCL_TEST_P(HOG, Detect)
@ -110,6 +110,20 @@ OCL_TEST_P(HOG, Detect)
OCL_OFF(hog.detectMultiScale(img, cpu_found, 0, Size(8, 8), Size(0, 0), 1.05, 6));
OCL_ON(hog.detectMultiScale(uimg, gpu_found, 0, Size(8, 8), Size(0, 0), 1.05, 6));
for (size_t i = 0; i < cpu_found.size(); i++)
{
Rect r = cpu_found[i];
rectangle(img, r.tl(), r.br(), Scalar(0, 255, 0), 3);
}
imshow("cpu", img);
Mat imgs(img);
for (size_t i = 0; i < gpu_found.size(); i++)
{
Rect r = cpu_found[i];
rectangle(imgs, r.tl(), r.br(), Scalar(0, 255, 0), 3);
}
imshow("gpu", imgs);
waitKey(0);
EXPECT_LT(checkRectSimilarity(img.size(), cpu_found, gpu_found), 1.0);
}

Loading…
Cancel
Save