|
|
|
@ -35,6 +35,7 @@ |
|
|
|
|
/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */ |
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
#include "opencl_kernels.hpp" |
|
|
|
|
#include <iterator> |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
@ -43,14 +44,86 @@ namespace cv |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
const float HARRIS_K = 0.04f; |
|
|
|
|
const int DESCRIPTOR_SIZE = 32; |
|
|
|
|
|
|
|
|
|
template<typename _Tp> inline void copyVectorToUMat(const std::vector<_Tp>& v, OutputArray um) |
|
|
|
|
{ |
|
|
|
|
if(v.empty()) |
|
|
|
|
um.release(); |
|
|
|
|
Mat(1, (int)(v.size()*sizeof(v[0])), CV_8U, (void*)&v[0]).copyTo(um); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool |
|
|
|
|
ocl_HarrisResponses(const UMat& imgbuf, |
|
|
|
|
const UMat& layerinfo, |
|
|
|
|
const UMat& keypoints, |
|
|
|
|
UMat& responses, |
|
|
|
|
int nkeypoints, int blockSize, float harris_k) |
|
|
|
|
{ |
|
|
|
|
size_t globalSize[] = {nkeypoints}; |
|
|
|
|
|
|
|
|
|
float scale = 1.f/((1 << 2) * blockSize * 255.f); |
|
|
|
|
float scale_sq_sq = scale * scale * scale * scale; |
|
|
|
|
|
|
|
|
|
ocl::Kernel hr_ker("ORB_HarrisResponses", ocl::features2d::orb_oclsrc, |
|
|
|
|
format("-D ORB_RESPONSES -D blockSize=%d -D scale_sq_sq=%.12ef -D HARRIS_K=%.12ff", blockSize, scale_sq_sq, harris_k)); |
|
|
|
|
if( hr_ker.empty() ) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return hr_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(layerinfo), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(keypoints), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(responses), |
|
|
|
|
nkeypoints).run(1, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool |
|
|
|
|
ocl_ICAngles(const UMat& imgbuf, const UMat& layerinfo, |
|
|
|
|
const UMat& keypoints, UMat& responses, |
|
|
|
|
const UMat& umax, int nkeypoints, int half_k) |
|
|
|
|
{ |
|
|
|
|
size_t globalSize[] = {nkeypoints}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel icangle_ker("ORB_ICAngle", ocl::features2d::orb_oclsrc, "-D ORB_ANGLES"); |
|
|
|
|
if( icangle_ker.empty() ) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return icangle_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(layerinfo), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(keypoints), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(responses), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(umax), |
|
|
|
|
nkeypoints, half_k).run(1, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool |
|
|
|
|
ocl_computeOrbDescriptors(const UMat& imgbuf, const UMat& layerInfo, |
|
|
|
|
const UMat& keypoints, UMat& desc, const UMat& pattern, |
|
|
|
|
int nkeypoints, int dsize, int WTA_K) |
|
|
|
|
{ |
|
|
|
|
size_t globalSize[] = {nkeypoints}; |
|
|
|
|
|
|
|
|
|
ocl::Kernel desc_ker("ORB_computeDescriptor", ocl::features2d::orb_oclsrc, |
|
|
|
|
format("-D ORB_DESCRIPTORS -D WTA_K=%d", WTA_K)); |
|
|
|
|
if( desc_ker.empty() ) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return desc_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(layerInfo), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(keypoints), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(desc), |
|
|
|
|
ocl::KernelArg::PtrReadOnly(pattern), |
|
|
|
|
nkeypoints, dsize).run(1, globalSize, 0, true); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Function that computes the Harris responses in a |
|
|
|
|
* blockSize x blockSize patch at given points in an image |
|
|
|
|
* blockSize x blockSize patch at given points in the image |
|
|
|
|
*/ |
|
|
|
|
static void |
|
|
|
|
HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float harris_k) |
|
|
|
|
HarrisResponses(const Mat& img, const std::vector<Rect>& layerinfo, |
|
|
|
|
std::vector<KeyPoint>& pts, int blockSize, float harris_k) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 ); |
|
|
|
|
|
|
|
|
@ -60,8 +133,7 @@ HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float |
|
|
|
|
int step = (int)(img.step/img.elemSize1()); |
|
|
|
|
int r = blockSize/2; |
|
|
|
|
|
|
|
|
|
float scale = (1 << 2) * blockSize * 255.0f; |
|
|
|
|
scale = 1.0f / scale; |
|
|
|
|
float scale = 1.f/((1 << 2) * blockSize * 255.f); |
|
|
|
|
float scale_sq_sq = scale * scale * scale * scale; |
|
|
|
|
|
|
|
|
|
AutoBuffer<int> ofsbuf(blockSize*blockSize); |
|
|
|
@ -72,10 +144,11 @@ HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float |
|
|
|
|
|
|
|
|
|
for( ptidx = 0; ptidx < ptsize; ptidx++ ) |
|
|
|
|
{ |
|
|
|
|
int x0 = cvRound(pts[ptidx].pt.x - r); |
|
|
|
|
int y0 = cvRound(pts[ptidx].pt.y - r); |
|
|
|
|
int x0 = cvRound(pts[ptidx].pt.x); |
|
|
|
|
int y0 = cvRound(pts[ptidx].pt.y); |
|
|
|
|
int z = pts[ptidx].octave; |
|
|
|
|
|
|
|
|
|
const uchar* ptr0 = ptr00 + y0*step + x0; |
|
|
|
|
const uchar* ptr0 = ptr00 + (y0 - r + layerinfo[z].y)*step + x0 - r + layerinfo[z].x; |
|
|
|
|
int a = 0, b = 0, c = 0; |
|
|
|
|
|
|
|
|
|
for( int k = 0; k < blockSize*blockSize; k++ ) |
|
|
|
@ -94,158 +167,175 @@ HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
static float IC_Angle(const Mat& image, const int half_k, Point2f pt, |
|
|
|
|
const std::vector<int> & u_max) |
|
|
|
|
static void ICAngles(const Mat& img, const std::vector<Rect>& layerinfo, |
|
|
|
|
std::vector<KeyPoint>& pts, const std::vector<int> & u_max, int half_k) |
|
|
|
|
{ |
|
|
|
|
int m_01 = 0, m_10 = 0; |
|
|
|
|
int step = (int)img.step1(); |
|
|
|
|
size_t ptidx, ptsize = pts.size(); |
|
|
|
|
|
|
|
|
|
const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x)); |
|
|
|
|
for( ptidx = 0; ptidx < ptsize; ptidx++ ) |
|
|
|
|
{ |
|
|
|
|
const Rect& layer = layerinfo[pts[ptidx].octave]; |
|
|
|
|
const uchar* center = &img.at<uchar>(cvRound(pts[ptidx].pt.y) + layer.y, cvRound(pts[ptidx].pt.x) + layer.x); |
|
|
|
|
|
|
|
|
|
// Treat the center line differently, v=0
|
|
|
|
|
for (int u = -half_k; u <= half_k; ++u) |
|
|
|
|
m_10 += u * center[u]; |
|
|
|
|
int m_01 = 0, m_10 = 0; |
|
|
|
|
|
|
|
|
|
// Go line by line in the circular patch
|
|
|
|
|
int step = (int)image.step1(); |
|
|
|
|
for (int v = 1; v <= half_k; ++v) |
|
|
|
|
{ |
|
|
|
|
// Proceed over the two lines
|
|
|
|
|
int v_sum = 0; |
|
|
|
|
int d = u_max[v]; |
|
|
|
|
for (int u = -d; u <= d; ++u) |
|
|
|
|
// Treat the center line differently, v=0
|
|
|
|
|
for (int u = -half_k; u <= half_k; ++u) |
|
|
|
|
m_10 += u * center[u]; |
|
|
|
|
|
|
|
|
|
// Go line by line in the circular patch
|
|
|
|
|
for (int v = 1; v <= half_k; ++v) |
|
|
|
|
{ |
|
|
|
|
int val_plus = center[u + v*step], val_minus = center[u - v*step]; |
|
|
|
|
v_sum += (val_plus - val_minus); |
|
|
|
|
m_10 += u * (val_plus + val_minus); |
|
|
|
|
// Proceed over the two lines
|
|
|
|
|
int v_sum = 0; |
|
|
|
|
int d = u_max[v]; |
|
|
|
|
for (int u = -d; u <= d; ++u) |
|
|
|
|
{ |
|
|
|
|
int val_plus = center[u + v*step], val_minus = center[u - v*step]; |
|
|
|
|
v_sum += (val_plus - val_minus); |
|
|
|
|
m_10 += u * (val_plus + val_minus); |
|
|
|
|
} |
|
|
|
|
m_01 += v * v_sum; |
|
|
|
|
} |
|
|
|
|
m_01 += v * v_sum; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return fastAtan2((float)m_01, (float)m_10); |
|
|
|
|
pts[ptidx].angle = fastAtan2((float)m_01, (float)m_10); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
static void computeOrbDescriptor(const KeyPoint& kpt, |
|
|
|
|
const Mat& img, const Point* pattern, |
|
|
|
|
uchar* desc, int dsize, int WTA_K) |
|
|
|
|
static void |
|
|
|
|
computeOrbDescriptors( const Mat& imagePyramid, const std::vector<Rect>& layerInfo, |
|
|
|
|
const std::vector<float>& layerScale, std::vector<KeyPoint>& keypoints, |
|
|
|
|
Mat& descriptors, const std::vector<Point>& _pattern, int dsize, int WTA_K ) |
|
|
|
|
{ |
|
|
|
|
float angle = kpt.angle; |
|
|
|
|
//angle = cvFloor(angle/12)*12.f;
|
|
|
|
|
angle *= (float)(CV_PI/180.f); |
|
|
|
|
float a = (float)cos(angle), b = (float)sin(angle); |
|
|
|
|
|
|
|
|
|
const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x)); |
|
|
|
|
int step = (int)img.step; |
|
|
|
|
|
|
|
|
|
float x, y; |
|
|
|
|
int ix, iy; |
|
|
|
|
#if 1 |
|
|
|
|
#define GET_VALUE(idx) \ |
|
|
|
|
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
|
|
|
|
y = pattern[idx].x*b + pattern[idx].y*a, \
|
|
|
|
|
ix = cvRound(x), \
|
|
|
|
|
iy = cvRound(y), \
|
|
|
|
|
*(center + iy*step + ix) ) |
|
|
|
|
#else |
|
|
|
|
#define GET_VALUE(idx) \ |
|
|
|
|
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
|
|
|
|
y = pattern[idx].x*b + pattern[idx].y*a, \
|
|
|
|
|
ix = cvFloor(x), iy = cvFloor(y), \
|
|
|
|
|
x -= ix, y -= iy, \
|
|
|
|
|
cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
|
|
|
|
|
center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y)) |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
if( WTA_K == 2 ) |
|
|
|
|
int step = (int)imagePyramid.step; |
|
|
|
|
int j, i, nkeypoints = (int)keypoints.size(); |
|
|
|
|
|
|
|
|
|
for( j = 0; j < nkeypoints; j++ ) |
|
|
|
|
{ |
|
|
|
|
for (int i = 0; i < dsize; ++i, pattern += 16) |
|
|
|
|
const KeyPoint& kpt = keypoints[j]; |
|
|
|
|
const Rect& layer = layerInfo[kpt.octave]; |
|
|
|
|
float scale = 1.f/layerScale[kpt.octave]; |
|
|
|
|
float angle = kpt.angle; |
|
|
|
|
|
|
|
|
|
angle *= (float)(CV_PI/180.f); |
|
|
|
|
float a = (float)cos(angle), b = (float)sin(angle); |
|
|
|
|
|
|
|
|
|
const uchar* center = &imagePyramid.at<uchar>(cvRound(kpt.pt.y*scale) + layer.y, |
|
|
|
|
cvRound(kpt.pt.x*scale) + layer.x); |
|
|
|
|
float x, y; |
|
|
|
|
int ix, iy; |
|
|
|
|
const Point* pattern = &_pattern[0]; |
|
|
|
|
uchar* desc = descriptors.ptr<uchar>(j); |
|
|
|
|
|
|
|
|
|
#if 1 |
|
|
|
|
#define GET_VALUE(idx) \ |
|
|
|
|
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
|
|
|
|
y = pattern[idx].x*b + pattern[idx].y*a, \
|
|
|
|
|
ix = cvRound(x), \
|
|
|
|
|
iy = cvRound(y), \
|
|
|
|
|
*(center + iy*step + ix) ) |
|
|
|
|
#else |
|
|
|
|
#define GET_VALUE(idx) \ |
|
|
|
|
(x = pattern[idx].x*a - pattern[idx].y*b, \
|
|
|
|
|
y = pattern[idx].x*b + pattern[idx].y*a, \
|
|
|
|
|
ix = cvFloor(x), iy = cvFloor(y), \
|
|
|
|
|
x -= ix, y -= iy, \
|
|
|
|
|
cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
|
|
|
|
|
center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y)) |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
if( WTA_K == 2 ) |
|
|
|
|
{ |
|
|
|
|
int t0, t1, val; |
|
|
|
|
t0 = GET_VALUE(0); t1 = GET_VALUE(1); |
|
|
|
|
val = t0 < t1; |
|
|
|
|
t0 = GET_VALUE(2); t1 = GET_VALUE(3); |
|
|
|
|
val |= (t0 < t1) << 1; |
|
|
|
|
t0 = GET_VALUE(4); t1 = GET_VALUE(5); |
|
|
|
|
val |= (t0 < t1) << 2; |
|
|
|
|
t0 = GET_VALUE(6); t1 = GET_VALUE(7); |
|
|
|
|
val |= (t0 < t1) << 3; |
|
|
|
|
t0 = GET_VALUE(8); t1 = GET_VALUE(9); |
|
|
|
|
val |= (t0 < t1) << 4; |
|
|
|
|
t0 = GET_VALUE(10); t1 = GET_VALUE(11); |
|
|
|
|
val |= (t0 < t1) << 5; |
|
|
|
|
t0 = GET_VALUE(12); t1 = GET_VALUE(13); |
|
|
|
|
val |= (t0 < t1) << 6; |
|
|
|
|
t0 = GET_VALUE(14); t1 = GET_VALUE(15); |
|
|
|
|
val |= (t0 < t1) << 7; |
|
|
|
|
|
|
|
|
|
desc[i] = (uchar)val; |
|
|
|
|
for (i = 0; i < dsize; ++i, pattern += 16) |
|
|
|
|
{ |
|
|
|
|
int t0, t1, val; |
|
|
|
|
t0 = GET_VALUE(0); t1 = GET_VALUE(1); |
|
|
|
|
val = t0 < t1; |
|
|
|
|
t0 = GET_VALUE(2); t1 = GET_VALUE(3); |
|
|
|
|
val |= (t0 < t1) << 1; |
|
|
|
|
t0 = GET_VALUE(4); t1 = GET_VALUE(5); |
|
|
|
|
val |= (t0 < t1) << 2; |
|
|
|
|
t0 = GET_VALUE(6); t1 = GET_VALUE(7); |
|
|
|
|
val |= (t0 < t1) << 3; |
|
|
|
|
t0 = GET_VALUE(8); t1 = GET_VALUE(9); |
|
|
|
|
val |= (t0 < t1) << 4; |
|
|
|
|
t0 = GET_VALUE(10); t1 = GET_VALUE(11); |
|
|
|
|
val |= (t0 < t1) << 5; |
|
|
|
|
t0 = GET_VALUE(12); t1 = GET_VALUE(13); |
|
|
|
|
val |= (t0 < t1) << 6; |
|
|
|
|
t0 = GET_VALUE(14); t1 = GET_VALUE(15); |
|
|
|
|
val |= (t0 < t1) << 7; |
|
|
|
|
|
|
|
|
|
desc[i] = (uchar)val; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else if( WTA_K == 3 ) |
|
|
|
|
{ |
|
|
|
|
for (int i = 0; i < dsize; ++i, pattern += 12) |
|
|
|
|
else if( WTA_K == 3 ) |
|
|
|
|
{ |
|
|
|
|
int t0, t1, t2, val; |
|
|
|
|
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2); |
|
|
|
|
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0); |
|
|
|
|
for (i = 0; i < dsize; ++i, pattern += 12) |
|
|
|
|
{ |
|
|
|
|
int t0, t1, t2, val; |
|
|
|
|
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2); |
|
|
|
|
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0); |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5); |
|
|
|
|
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2; |
|
|
|
|
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5); |
|
|
|
|
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2; |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8); |
|
|
|
|
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4; |
|
|
|
|
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8); |
|
|
|
|
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4; |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11); |
|
|
|
|
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6; |
|
|
|
|
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11); |
|
|
|
|
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6; |
|
|
|
|
|
|
|
|
|
desc[i] = (uchar)val; |
|
|
|
|
desc[i] = (uchar)val; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else if( WTA_K == 4 ) |
|
|
|
|
{ |
|
|
|
|
for (int i = 0; i < dsize; ++i, pattern += 16) |
|
|
|
|
else if( WTA_K == 4 ) |
|
|
|
|
{ |
|
|
|
|
int t0, t1, t2, t3, u, v, k, val; |
|
|
|
|
t0 = GET_VALUE(0); t1 = GET_VALUE(1); |
|
|
|
|
t2 = GET_VALUE(2); t3 = GET_VALUE(3); |
|
|
|
|
u = 0, v = 2; |
|
|
|
|
if( t1 > t0 ) t0 = t1, u = 1; |
|
|
|
|
if( t3 > t2 ) t2 = t3, v = 3; |
|
|
|
|
k = t0 > t2 ? u : v; |
|
|
|
|
val = k; |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(4); t1 = GET_VALUE(5); |
|
|
|
|
t2 = GET_VALUE(6); t3 = GET_VALUE(7); |
|
|
|
|
u = 0, v = 2; |
|
|
|
|
if( t1 > t0 ) t0 = t1, u = 1; |
|
|
|
|
if( t3 > t2 ) t2 = t3, v = 3; |
|
|
|
|
k = t0 > t2 ? u : v; |
|
|
|
|
val |= k << 2; |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(8); t1 = GET_VALUE(9); |
|
|
|
|
t2 = GET_VALUE(10); t3 = GET_VALUE(11); |
|
|
|
|
u = 0, v = 2; |
|
|
|
|
if( t1 > t0 ) t0 = t1, u = 1; |
|
|
|
|
if( t3 > t2 ) t2 = t3, v = 3; |
|
|
|
|
k = t0 > t2 ? u : v; |
|
|
|
|
val |= k << 4; |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(12); t1 = GET_VALUE(13); |
|
|
|
|
t2 = GET_VALUE(14); t3 = GET_VALUE(15); |
|
|
|
|
u = 0, v = 2; |
|
|
|
|
if( t1 > t0 ) t0 = t1, u = 1; |
|
|
|
|
if( t3 > t2 ) t2 = t3, v = 3; |
|
|
|
|
k = t0 > t2 ? u : v; |
|
|
|
|
val |= k << 6; |
|
|
|
|
|
|
|
|
|
desc[i] = (uchar)val; |
|
|
|
|
for (i = 0; i < dsize; ++i, pattern += 16) |
|
|
|
|
{ |
|
|
|
|
int t0, t1, t2, t3, u, v, k, val; |
|
|
|
|
t0 = GET_VALUE(0); t1 = GET_VALUE(1); |
|
|
|
|
t2 = GET_VALUE(2); t3 = GET_VALUE(3); |
|
|
|
|
u = 0, v = 2; |
|
|
|
|
if( t1 > t0 ) t0 = t1, u = 1; |
|
|
|
|
if( t3 > t2 ) t2 = t3, v = 3; |
|
|
|
|
k = t0 > t2 ? u : v; |
|
|
|
|
val = k; |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(4); t1 = GET_VALUE(5); |
|
|
|
|
t2 = GET_VALUE(6); t3 = GET_VALUE(7); |
|
|
|
|
u = 0, v = 2; |
|
|
|
|
if( t1 > t0 ) t0 = t1, u = 1; |
|
|
|
|
if( t3 > t2 ) t2 = t3, v = 3; |
|
|
|
|
k = t0 > t2 ? u : v; |
|
|
|
|
val |= k << 2; |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(8); t1 = GET_VALUE(9); |
|
|
|
|
t2 = GET_VALUE(10); t3 = GET_VALUE(11); |
|
|
|
|
u = 0, v = 2; |
|
|
|
|
if( t1 > t0 ) t0 = t1, u = 1; |
|
|
|
|
if( t3 > t2 ) t2 = t3, v = 3; |
|
|
|
|
k = t0 > t2 ? u : v; |
|
|
|
|
val |= k << 4; |
|
|
|
|
|
|
|
|
|
t0 = GET_VALUE(12); t1 = GET_VALUE(13); |
|
|
|
|
t2 = GET_VALUE(14); t3 = GET_VALUE(15); |
|
|
|
|
u = 0, v = 2; |
|
|
|
|
if( t1 > t0 ) t0 = t1, u = 1; |
|
|
|
|
if( t3 > t2 ) t2 = t3, v = 3; |
|
|
|
|
k = t0 > t2 ? u : v; |
|
|
|
|
val |= k << 6; |
|
|
|
|
|
|
|
|
|
desc[i] = (uchar)val; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
CV_Error( Error::StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." ); |
|
|
|
|
#undef GET_VALUE |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
CV_Error( Error::StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." ); |
|
|
|
|
|
|
|
|
|
#undef GET_VALUE |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -591,21 +681,37 @@ void ORB::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& k |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/** Compute the ORB keypoint orientations
|
|
|
|
|
* @param image the image to compute the features and descriptors on |
|
|
|
|
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower) |
|
|
|
|
* @param scale the scale at which we compute the orientation |
|
|
|
|
* @param keypoints the resulting keypoints |
|
|
|
|
*/ |
|
|
|
|
static void computeOrientation(const Mat& image, std::vector<KeyPoint>& keypoints, |
|
|
|
|
int halfPatchSize, const std::vector<int>& umax) |
|
|
|
|
static void uploadORBKeypoints(const std::vector<KeyPoint>& src, std::vector<Vec3i>& buf, OutputArray dst) |
|
|
|
|
{ |
|
|
|
|
size_t i, n = src.size(); |
|
|
|
|
buf.resize(std::max(buf.size(), n)); |
|
|
|
|
for( i = 0; i < n; i++ ) |
|
|
|
|
buf[i] = Vec3i(cvRound(src[i].pt.x), cvRound(src[i].pt.y), src[i].octave); |
|
|
|
|
copyVectorToUMat(buf, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
typedef union if32_t |
|
|
|
|
{ |
|
|
|
|
// Process each keypoint
|
|
|
|
|
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(), |
|
|
|
|
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) |
|
|
|
|
int i; |
|
|
|
|
float f; |
|
|
|
|
} |
|
|
|
|
if32_t; |
|
|
|
|
|
|
|
|
|
static void uploadORBKeypoints(const std::vector<KeyPoint>& src, |
|
|
|
|
const std::vector<float>& layerScale, |
|
|
|
|
std::vector<Vec4i>& buf, OutputArray dst) |
|
|
|
|
{ |
|
|
|
|
size_t i, n = src.size(); |
|
|
|
|
buf.resize(std::max(buf.size(), n)); |
|
|
|
|
for( i = 0; i < n; i++ ) |
|
|
|
|
{ |
|
|
|
|
keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax); |
|
|
|
|
int z = src[i].octave; |
|
|
|
|
float scale = 1.f/layerScale[z]; |
|
|
|
|
if32_t angle; |
|
|
|
|
angle.f = src[i].angle; |
|
|
|
|
buf[i] = Vec4i(cvRound(src[i].pt.x*scale), cvRound(src[i].pt.y*scale), z, angle.i); |
|
|
|
|
} |
|
|
|
|
copyVectorToUMat(buf, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -614,13 +720,18 @@ static void computeOrientation(const Mat& image, std::vector<KeyPoint>& keypoint |
|
|
|
|
* @param mask_pyramid the masks to apply at every level |
|
|
|
|
* @param keypoints the resulting keypoints, clustered per level |
|
|
|
|
*/ |
|
|
|
|
static void computeKeyPoints(const std::vector<Mat>& imagePyramid, |
|
|
|
|
const std::vector<Mat>& maskPyramid, |
|
|
|
|
std::vector<std::vector<KeyPoint> >& allKeypoints, |
|
|
|
|
int nfeatures, int firstLevel, double scaleFactor, |
|
|
|
|
int edgeThreshold, int patchSize, int scoreType ) |
|
|
|
|
static void computeKeyPoints(const Mat& imagePyramid, |
|
|
|
|
const UMat& uimagePyramid, |
|
|
|
|
const Mat& maskPyramid, |
|
|
|
|
const std::vector<Rect>& layerInfo, |
|
|
|
|
const UMat& ulayerInfo, |
|
|
|
|
const std::vector<float>& layerScale, |
|
|
|
|
std::vector<KeyPoint>& allKeypoints, |
|
|
|
|
int nfeatures, double scaleFactor, |
|
|
|
|
int edgeThreshold, int patchSize, int scoreType, |
|
|
|
|
bool useOCL ) |
|
|
|
|
{ |
|
|
|
|
int nlevels = (int)imagePyramid.size(); |
|
|
|
|
int i, nkeypoints, level, nlevels = (int)layerInfo.size(); |
|
|
|
|
std::vector<int> nfeaturesPerLevel(nlevels); |
|
|
|
|
|
|
|
|
|
// fill the extractors and descriptors for the corresponding scales
|
|
|
|
@ -628,7 +739,7 @@ static void computeKeyPoints(const std::vector<Mat>& imagePyramid, |
|
|
|
|
float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)std::pow((double)factor, (double)nlevels)); |
|
|
|
|
|
|
|
|
|
int sumFeatures = 0; |
|
|
|
|
for( int level = 0; level < nlevels-1; level++ ) |
|
|
|
|
for( level = 0; level < nlevels-1; level++ ) |
|
|
|
|
{ |
|
|
|
|
nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale); |
|
|
|
|
sumFeatures += nfeaturesPerLevel[level]; |
|
|
|
@ -657,66 +768,116 @@ static void computeKeyPoints(const std::vector<Mat>& imagePyramid, |
|
|
|
|
++v0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
allKeypoints.resize(nlevels); |
|
|
|
|
allKeypoints.clear(); |
|
|
|
|
std::vector<KeyPoint> keypoints; |
|
|
|
|
std::vector<int> counters(nlevels); |
|
|
|
|
keypoints.reserve(nfeaturesPerLevel[0]*2); |
|
|
|
|
|
|
|
|
|
for (int level = 0; level < nlevels; ++level) |
|
|
|
|
for( level = 0; level < nlevels; level++ ) |
|
|
|
|
{ |
|
|
|
|
int featuresNum = nfeaturesPerLevel[level]; |
|
|
|
|
allKeypoints[level].reserve(featuresNum*2); |
|
|
|
|
|
|
|
|
|
std::vector<KeyPoint> & keypoints = allKeypoints[level]; |
|
|
|
|
Mat img = imagePyramid(layerInfo[level]); |
|
|
|
|
Mat mask = maskPyramid.empty() ? Mat() : maskPyramid(layerInfo[level]); |
|
|
|
|
|
|
|
|
|
// Detect FAST features, 20 is a good threshold
|
|
|
|
|
FastFeatureDetector fd(20, true); |
|
|
|
|
fd.detect(imagePyramid[level], keypoints, maskPyramid[level]); |
|
|
|
|
fd.detect(img, keypoints, mask); |
|
|
|
|
|
|
|
|
|
// Remove keypoints very close to the border
|
|
|
|
|
KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold); |
|
|
|
|
KeyPointsFilter::runByImageBorder(keypoints, img.size(), edgeThreshold); |
|
|
|
|
|
|
|
|
|
if( scoreType == ORB::HARRIS_SCORE ) |
|
|
|
|
{ |
|
|
|
|
// Keep more points than necessary as FAST does not give amazing corners
|
|
|
|
|
KeyPointsFilter::retainBest(keypoints, 2 * featuresNum); |
|
|
|
|
// Keep more points than necessary as FAST does not give amazing corners
|
|
|
|
|
KeyPointsFilter::retainBest(keypoints, scoreType == ORB::HARRIS_SCORE ? 2 * featuresNum : featuresNum); |
|
|
|
|
|
|
|
|
|
nkeypoints = (int)keypoints.size(); |
|
|
|
|
counters[level] = nkeypoints; |
|
|
|
|
|
|
|
|
|
// Compute the Harris cornerness (better scoring than FAST)
|
|
|
|
|
HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K); |
|
|
|
|
float sf = layerScale[level]; |
|
|
|
|
for( i = 0; i < nkeypoints; i++ ) |
|
|
|
|
{ |
|
|
|
|
keypoints[i].octave = level; |
|
|
|
|
keypoints[i].size = patchSize*sf; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//cull to the final desired level, using the new Harris scores or the original FAST scores.
|
|
|
|
|
KeyPointsFilter::retainBest(keypoints, featuresNum); |
|
|
|
|
std::copy(keypoints.begin(), keypoints.end(), std::back_inserter(allKeypoints)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::vector<Vec3i> ukeypoints_buf; |
|
|
|
|
|
|
|
|
|
float sf = getScale(level, firstLevel, scaleFactor); |
|
|
|
|
nkeypoints = (int)allKeypoints.size(); |
|
|
|
|
Mat responses; |
|
|
|
|
UMat ukeypoints, uresponses(1, nkeypoints, CV_32F); |
|
|
|
|
|
|
|
|
|
// Set the level of the coordinates
|
|
|
|
|
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(), |
|
|
|
|
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) |
|
|
|
|
// Select best features using the Harris cornerness (better scoring than FAST)
|
|
|
|
|
if( scoreType == ORB::HARRIS_SCORE ) |
|
|
|
|
{ |
|
|
|
|
if( useOCL ) |
|
|
|
|
{ |
|
|
|
|
keypoint->octave = level; |
|
|
|
|
keypoint->size = patchSize*sf; |
|
|
|
|
uploadORBKeypoints(allKeypoints, ukeypoints_buf, ukeypoints); |
|
|
|
|
useOCL = ocl_HarrisResponses( uimagePyramid, ulayerInfo, ukeypoints, |
|
|
|
|
uresponses, nkeypoints, 7, HARRIS_K ); |
|
|
|
|
if( useOCL ) |
|
|
|
|
{ |
|
|
|
|
uresponses.copyTo(responses); |
|
|
|
|
for( i = 0; i < nkeypoints; i++ ) |
|
|
|
|
allKeypoints[i].response = responses.at<float>(i); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax); |
|
|
|
|
if( !useOCL ) |
|
|
|
|
HarrisResponses(imagePyramid, layerInfo, allKeypoints, 7, HARRIS_K); |
|
|
|
|
|
|
|
|
|
std::vector<KeyPoint> newAllKeypoints; |
|
|
|
|
newAllKeypoints.reserve(nfeaturesPerLevel[0]*nlevels); |
|
|
|
|
|
|
|
|
|
int offset = 0; |
|
|
|
|
for( level = 0; level < nlevels; level++ ) |
|
|
|
|
{ |
|
|
|
|
int featuresNum = nfeaturesPerLevel[level]; |
|
|
|
|
nkeypoints = counters[level]; |
|
|
|
|
keypoints.resize(nkeypoints); |
|
|
|
|
std::copy(allKeypoints.begin() + offset, |
|
|
|
|
allKeypoints.begin() + offset + nkeypoints, |
|
|
|
|
keypoints.begin()); |
|
|
|
|
offset += nkeypoints; |
|
|
|
|
|
|
|
|
|
//cull to the final desired level, using the new Harris scores.
|
|
|
|
|
KeyPointsFilter::retainBest(keypoints, featuresNum); |
|
|
|
|
|
|
|
|
|
std::copy(keypoints.begin(), keypoints.end(), std::back_inserter(newAllKeypoints)); |
|
|
|
|
} |
|
|
|
|
std::swap(allKeypoints, newAllKeypoints); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
nkeypoints = (int)allKeypoints.size(); |
|
|
|
|
if( useOCL ) |
|
|
|
|
{ |
|
|
|
|
UMat uumax; |
|
|
|
|
if( useOCL ) |
|
|
|
|
copyVectorToUMat(umax, uumax); |
|
|
|
|
|
|
|
|
|
/** Compute the ORB decriptors
|
|
|
|
|
* @param image the image to compute the features and descriptors on |
|
|
|
|
* @param integral_image the integral image of the image (can be empty, but the computation will be slower) |
|
|
|
|
* @param level the scale at which we compute the orientation |
|
|
|
|
* @param keypoints the keypoints to use |
|
|
|
|
* @param descriptors the resulting descriptors |
|
|
|
|
*/ |
|
|
|
|
static void computeDescriptors(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors, |
|
|
|
|
const std::vector<Point>& pattern, int dsize, int WTA_K) |
|
|
|
|
{ |
|
|
|
|
//convert to grayscale if more than one color
|
|
|
|
|
CV_Assert(image.type() == CV_8UC1); |
|
|
|
|
//create the descriptor mat, keypoints.size() rows, BYTES cols
|
|
|
|
|
descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1); |
|
|
|
|
uploadORBKeypoints(allKeypoints, ukeypoints_buf, ukeypoints); |
|
|
|
|
useOCL = ocl_ICAngles(uimagePyramid, ulayerInfo, ukeypoints, uresponses, uumax, |
|
|
|
|
nkeypoints, halfPatchSize); |
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < keypoints.size(); i++) |
|
|
|
|
computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K); |
|
|
|
|
if( useOCL ) |
|
|
|
|
{ |
|
|
|
|
uresponses.copyTo(responses); |
|
|
|
|
for( i = 0; i < nkeypoints; i++ ) |
|
|
|
|
allKeypoints[i].angle = responses.at<float>(i); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( !useOCL ) |
|
|
|
|
{ |
|
|
|
|
ICAngles(imagePyramid, layerInfo, allKeypoints, umax, halfPatchSize); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( i = 0; i < nkeypoints; i++ ) |
|
|
|
|
{ |
|
|
|
|
float scale = layerScale[allKeypoints[i].octave]; |
|
|
|
|
allKeypoints[i].pt *= scale; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -728,8 +889,8 @@ static void computeDescriptors(const Mat& image, std::vector<KeyPoint>& keypoint |
|
|
|
|
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input |
|
|
|
|
* @param do_descriptors if true, also computes the descriptors |
|
|
|
|
*/ |
|
|
|
|
void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& _keypoints, |
|
|
|
|
OutputArray _descriptors, bool useProvidedKeypoints) const |
|
|
|
|
void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, |
|
|
|
|
OutputArray _descriptors, bool useProvidedKeypoints ) const |
|
|
|
|
{ |
|
|
|
|
CV_Assert(patchSize >= 2); |
|
|
|
|
|
|
|
|
@ -744,11 +905,14 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint> |
|
|
|
|
int halfPatchSize = patchSize / 2; |
|
|
|
|
int border = std::max(edgeThreshold, std::max(halfPatchSize, HARRIS_BLOCK_SIZE/2))+1; |
|
|
|
|
|
|
|
|
|
bool useOCL = ocl::useOpenCL(); |
|
|
|
|
|
|
|
|
|
Mat image = _image.getMat(), mask = _mask.getMat(); |
|
|
|
|
if( image.type() != CV_8UC1 ) |
|
|
|
|
cvtColor(_image, image, COLOR_BGR2GRAY); |
|
|
|
|
|
|
|
|
|
int levelsNum = this->nlevels; |
|
|
|
|
int i, level, nLevels = this->nlevels, nkeypoints = (int)keypoints.size(); |
|
|
|
|
bool sortedByLevel = true; |
|
|
|
|
|
|
|
|
|
if( !do_keypoints ) |
|
|
|
|
{ |
|
|
|
@ -761,129 +925,145 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint> |
|
|
|
|
//
|
|
|
|
|
// In short, ultimately the descriptor should
|
|
|
|
|
// ignore octave parameter and deal only with the keypoint size.
|
|
|
|
|
levelsNum = 0; |
|
|
|
|
for( size_t i = 0; i < _keypoints.size(); i++ ) |
|
|
|
|
levelsNum = std::max(levelsNum, std::max(_keypoints[i].octave, 0)); |
|
|
|
|
levelsNum++; |
|
|
|
|
nLevels = 0; |
|
|
|
|
for( i = 0; i < nkeypoints; i++ ) |
|
|
|
|
{ |
|
|
|
|
level = keypoints[i].octave; |
|
|
|
|
CV_Assert(level >= 0); |
|
|
|
|
if( i > 0 && level < keypoints[i-1].octave ) |
|
|
|
|
sortedByLevel = false; |
|
|
|
|
nLevels = std::max(nLevels, level); |
|
|
|
|
} |
|
|
|
|
nLevels++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::vector<Rect> layerInfo(nLevels); |
|
|
|
|
std::vector<int> layerOfs(nLevels); |
|
|
|
|
std::vector<float> layerScale(nLevels); |
|
|
|
|
Mat imagePyramid, maskPyramid; |
|
|
|
|
UMat uimagePyramid, ulayerInfo; |
|
|
|
|
|
|
|
|
|
int level_dy = image.rows + border*2; |
|
|
|
|
Point level_ofs(0,0); |
|
|
|
|
Size bufSize((image.cols + border*2 + 15) & -16, 0); |
|
|
|
|
|
|
|
|
|
for( level = 0; level < nLevels; level++ ) |
|
|
|
|
{ |
|
|
|
|
float scale = getScale(level, firstLevel, scaleFactor); |
|
|
|
|
layerScale[level] = scale; |
|
|
|
|
Size sz(cvRound(image.cols/scale), cvRound(image.rows/scale)); |
|
|
|
|
Size wholeSize(sz.width + border*2, sz.height + border*2); |
|
|
|
|
if( level_ofs.x + wholeSize.width > bufSize.width ) |
|
|
|
|
{ |
|
|
|
|
level_ofs = Point(0, level_ofs.y + level_dy); |
|
|
|
|
level_dy = wholeSize.height; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Rect linfo(level_ofs.x + border, level_ofs.y + border, sz.width, sz.height); |
|
|
|
|
layerInfo[level] = linfo; |
|
|
|
|
layerOfs[level] = linfo.y*bufSize.width + linfo.x; |
|
|
|
|
level_ofs.x += wholeSize.width; |
|
|
|
|
} |
|
|
|
|
bufSize.height = level_ofs.y + level_dy; |
|
|
|
|
|
|
|
|
|
imagePyramid.create(bufSize, CV_8U); |
|
|
|
|
if( !mask.empty() ) |
|
|
|
|
maskPyramid.create(bufSize, CV_8U); |
|
|
|
|
|
|
|
|
|
Mat prevImg = image, prevMask = mask; |
|
|
|
|
|
|
|
|
|
// Pre-compute the scale pyramids
|
|
|
|
|
std::vector<Mat> imagePyramid(levelsNum), maskPyramid(levelsNum); |
|
|
|
|
for (int level = 0; level < levelsNum; ++level) |
|
|
|
|
for (level = 0; level < nLevels; ++level) |
|
|
|
|
{ |
|
|
|
|
float scale = 1/getScale(level, firstLevel, scaleFactor); |
|
|
|
|
Size sz(cvRound(image.cols*scale), cvRound(image.rows*scale)); |
|
|
|
|
Rect linfo = layerInfo[level]; |
|
|
|
|
Size sz(linfo.width, linfo.height); |
|
|
|
|
Size wholeSize(sz.width + border*2, sz.height + border*2); |
|
|
|
|
Mat temp(wholeSize, image.type()), masktemp; |
|
|
|
|
imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height)); |
|
|
|
|
Rect wholeLinfo = Rect(linfo.x - border, linfo.y - border, wholeSize.width, wholeSize.height); |
|
|
|
|
Mat extImg = imagePyramid(wholeLinfo), extMask; |
|
|
|
|
Mat currImg = extImg(Rect(border, border, sz.width, sz.height)), currMask; |
|
|
|
|
|
|
|
|
|
if( !mask.empty() ) |
|
|
|
|
{ |
|
|
|
|
masktemp = Mat(wholeSize, mask.type()); |
|
|
|
|
maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height)); |
|
|
|
|
extMask = maskPyramid(wholeLinfo); |
|
|
|
|
currMask = extMask(Rect(border, border, sz.width, sz.height)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Compute the resized image
|
|
|
|
|
if( level != firstLevel ) |
|
|
|
|
{ |
|
|
|
|
if( level < firstLevel ) |
|
|
|
|
resize(prevImg, currImg, sz, 0, 0, INTER_LINEAR); |
|
|
|
|
if( !mask.empty() ) |
|
|
|
|
{ |
|
|
|
|
resize(image, imagePyramid[level], sz, 0, 0, INTER_LINEAR); |
|
|
|
|
if (!mask.empty()) |
|
|
|
|
resize(mask, maskPyramid[level], sz, 0, 0, INTER_LINEAR); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
resize(imagePyramid[level-1], imagePyramid[level], sz, 0, 0, INTER_LINEAR); |
|
|
|
|
if (!mask.empty()) |
|
|
|
|
{ |
|
|
|
|
resize(maskPyramid[level-1], maskPyramid[level], sz, 0, 0, INTER_LINEAR); |
|
|
|
|
threshold(maskPyramid[level], maskPyramid[level], 254, 0, THRESH_TOZERO); |
|
|
|
|
} |
|
|
|
|
resize(prevMask, currMask, sz, 0, 0, INTER_LINEAR); |
|
|
|
|
if( level > firstLevel ) |
|
|
|
|
threshold(currMask, currMask, 254, 0, THRESH_TOZERO); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
copyMakeBorder(imagePyramid[level], temp, border, border, border, border, |
|
|
|
|
copyMakeBorder(currImg, extImg, border, border, border, border, |
|
|
|
|
BORDER_REFLECT_101+BORDER_ISOLATED); |
|
|
|
|
if (!mask.empty()) |
|
|
|
|
copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border, |
|
|
|
|
copyMakeBorder(currMask, extMask, border, border, border, border, |
|
|
|
|
BORDER_CONSTANT+BORDER_ISOLATED); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
copyMakeBorder(image, temp, border, border, border, border, |
|
|
|
|
copyMakeBorder(image, extImg, border, border, border, border, |
|
|
|
|
BORDER_REFLECT_101); |
|
|
|
|
if( !mask.empty() ) |
|
|
|
|
copyMakeBorder(mask, masktemp, border, border, border, border, |
|
|
|
|
copyMakeBorder(mask, extMask, border, border, border, border, |
|
|
|
|
BORDER_CONSTANT+BORDER_ISOLATED); |
|
|
|
|
} |
|
|
|
|
prevImg = currImg; |
|
|
|
|
prevMask = currMask; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
|
|
|
|
|
std::vector < std::vector<KeyPoint> > allKeypoints; |
|
|
|
|
if( useOCL ) |
|
|
|
|
copyVectorToUMat(layerOfs, ulayerInfo); |
|
|
|
|
|
|
|
|
|
if( do_keypoints ) |
|
|
|
|
{ |
|
|
|
|
// Get keypoints, those will be far enough from the border that no check will be required for the descriptor
|
|
|
|
|
computeKeyPoints(imagePyramid, maskPyramid, allKeypoints, |
|
|
|
|
nfeatures, firstLevel, scaleFactor, |
|
|
|
|
edgeThreshold, patchSize, scoreType); |
|
|
|
|
|
|
|
|
|
// make sure we have the right number of keypoints keypoints
|
|
|
|
|
/*std::vector<KeyPoint> temp;
|
|
|
|
|
|
|
|
|
|
for (int level = 0; level < n_levels; ++level) |
|
|
|
|
{ |
|
|
|
|
std::vector<KeyPoint>& keypoints = all_keypoints[level]; |
|
|
|
|
temp.insert(temp.end(), keypoints.begin(), keypoints.end()); |
|
|
|
|
keypoints.clear(); |
|
|
|
|
} |
|
|
|
|
if( useOCL ) |
|
|
|
|
imagePyramid.copyTo(uimagePyramid); |
|
|
|
|
|
|
|
|
|
KeyPoint::retainBest(temp, n_features_); |
|
|
|
|
|
|
|
|
|
for (std::vector<KeyPoint>::iterator keypoint = temp.begin(), |
|
|
|
|
keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint) |
|
|
|
|
all_keypoints[keypoint->octave].push_back(*keypoint);*/ |
|
|
|
|
// Get keypoints, those will be far enough from the border that no check will be required for the descriptor
|
|
|
|
|
computeKeyPoints(imagePyramid, uimagePyramid, maskPyramid, |
|
|
|
|
layerInfo, ulayerInfo, layerScale, keypoints, |
|
|
|
|
nfeatures, scaleFactor, edgeThreshold, patchSize, scoreType, useOCL); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
// Remove keypoints very close to the border
|
|
|
|
|
KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold); |
|
|
|
|
|
|
|
|
|
// Cluster the input keypoints depending on the level they were computed at
|
|
|
|
|
allKeypoints.resize(levelsNum); |
|
|
|
|
for (std::vector<KeyPoint>::iterator keypoint = _keypoints.begin(), |
|
|
|
|
keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint) |
|
|
|
|
allKeypoints[keypoint->octave].push_back(*keypoint); |
|
|
|
|
KeyPointsFilter::runByImageBorder(keypoints, image.size(), edgeThreshold); |
|
|
|
|
|
|
|
|
|
// Make sure we rescale the coordinates
|
|
|
|
|
for (int level = 0; level < levelsNum; ++level) |
|
|
|
|
if( !sortedByLevel ) |
|
|
|
|
{ |
|
|
|
|
if (level == firstLevel) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
std::vector<KeyPoint> & keypoints = allKeypoints[level]; |
|
|
|
|
float scale = 1/getScale(level, firstLevel, scaleFactor); |
|
|
|
|
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(), |
|
|
|
|
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) |
|
|
|
|
keypoint->pt *= scale; |
|
|
|
|
std::vector<std::vector<KeyPoint> > allKeypoints(nLevels); |
|
|
|
|
nkeypoints = (int)keypoints.size(); |
|
|
|
|
for( i = 0; i < nkeypoints; i++ ) |
|
|
|
|
{ |
|
|
|
|
level = keypoints[i].octave; |
|
|
|
|
CV_Assert(0 <= level); |
|
|
|
|
allKeypoints[level].push_back(keypoints[i]); |
|
|
|
|
} |
|
|
|
|
keypoints.clear(); |
|
|
|
|
for( level = 0; level < nLevels; level++ ) |
|
|
|
|
std::copy(allKeypoints[level].begin(), allKeypoints[level].end(), std::back_inserter(keypoints)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat descriptors; |
|
|
|
|
std::vector<Point> pattern; |
|
|
|
|
|
|
|
|
|
if( do_descriptors ) |
|
|
|
|
{ |
|
|
|
|
int nkeypoints = 0; |
|
|
|
|
for (int level = 0; level < levelsNum; ++level) |
|
|
|
|
nkeypoints += (int)allKeypoints[level].size(); |
|
|
|
|
int dsize = descriptorSize(); |
|
|
|
|
|
|
|
|
|
nkeypoints = (int)keypoints.size(); |
|
|
|
|
if( nkeypoints == 0 ) |
|
|
|
|
_descriptors.release(); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
_descriptors.create(nkeypoints, descriptorSize(), CV_8U); |
|
|
|
|
descriptors = _descriptors.getMat(); |
|
|
|
|
_descriptors.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
_descriptors.create(nkeypoints, dsize, CV_8U); |
|
|
|
|
std::vector<Point> pattern; |
|
|
|
|
|
|
|
|
|
const int npoints = 512; |
|
|
|
|
Point patternbuf[npoints]; |
|
|
|
|
const Point* pattern0 = (const Point*)bit_pattern_31_; |
|
|
|
@ -903,43 +1083,36 @@ void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint> |
|
|
|
|
int ntuples = descriptorSize()*4; |
|
|
|
|
initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
_keypoints.clear(); |
|
|
|
|
int offset = 0; |
|
|
|
|
for (int level = 0; level < levelsNum; ++level) |
|
|
|
|
{ |
|
|
|
|
// Get the features and compute their orientation
|
|
|
|
|
std::vector<KeyPoint>& keypoints = allKeypoints[level]; |
|
|
|
|
int nkeypoints = (int)keypoints.size(); |
|
|
|
|
|
|
|
|
|
// Compute the descriptors
|
|
|
|
|
if (do_descriptors) |
|
|
|
|
for( level = 0; level < nLevels; level++ ) |
|
|
|
|
{ |
|
|
|
|
Mat desc; |
|
|
|
|
if (!descriptors.empty()) |
|
|
|
|
{ |
|
|
|
|
desc = descriptors.rowRange(offset, offset + nkeypoints); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
offset += nkeypoints; |
|
|
|
|
// preprocess the resized image
|
|
|
|
|
Mat& workingMat = imagePyramid[level]; |
|
|
|
|
Mat workingMat = imagePyramid(layerInfo[level]); |
|
|
|
|
|
|
|
|
|
//boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
|
|
|
|
|
GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101); |
|
|
|
|
computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Copy to the output data
|
|
|
|
|
if (level != firstLevel) |
|
|
|
|
if( useOCL ) |
|
|
|
|
{ |
|
|
|
|
imagePyramid.copyTo(uimagePyramid); |
|
|
|
|
std::vector<Vec4i> kptbuf; |
|
|
|
|
UMat ukeypoints, upattern; |
|
|
|
|
copyVectorToUMat(pattern, upattern); |
|
|
|
|
uploadORBKeypoints(keypoints, layerScale, kptbuf, ukeypoints); |
|
|
|
|
|
|
|
|
|
UMat udescriptors = _descriptors.getUMat(); |
|
|
|
|
useOCL = ocl_computeOrbDescriptors(uimagePyramid, ulayerInfo, |
|
|
|
|
ukeypoints, udescriptors, upattern, |
|
|
|
|
nkeypoints, dsize, WTA_K); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( !useOCL ) |
|
|
|
|
{ |
|
|
|
|
float scale = getScale(level, firstLevel, scaleFactor); |
|
|
|
|
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(), |
|
|
|
|
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) |
|
|
|
|
keypoint->pt *= scale; |
|
|
|
|
Mat descriptors = _descriptors.getMat(); |
|
|
|
|
computeOrbDescriptors(imagePyramid, layerInfo, layerScale, |
|
|
|
|
keypoints, descriptors, pattern, dsize, WTA_K); |
|
|
|
|
} |
|
|
|
|
// And add the keypoints to the output
|
|
|
|
|
_keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end()); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|