From 81567a9d3e61cd83c458b158444b3d7c7536d91e Mon Sep 17 00:00:00 2001 From: hyrodium Date: Wed, 26 May 2021 00:21:10 +0900 Subject: [PATCH] fix latex script in the docs --- .../py_features_harris/py_features_harris.markdown | 8 ++++---- .../py_feature2d/py_shi_tomasi/py_shi_tomasi.markdown | 4 ++-- .../py_feature2d/py_sift_intro/py_sift_intro.markdown | 2 +- 3 files changed, 7 insertions(+), 7 deletions(-) diff --git a/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.markdown b/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.markdown index e24e692087..60e5686934 100644 --- a/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.markdown +++ b/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.markdown @@ -40,12 +40,12 @@ using **cv.Sobel()**). Then comes the main part. After this, they created a score, basically an equation, which determines if a window can contain a corner or not. -\f[R = det(M) - k(trace(M))^2\f] +\f[R = \det(M) - k(\operatorname{trace}(M))^2\f] where - - \f$det(M) = \lambda_1 \lambda_2\f$ - - \f$trace(M) = \lambda_1 + \lambda_2\f$ - - \f$\lambda_1\f$ and \f$\lambda_2\f$ are the eigenvalues of M + - \f$\det(M) = \lambda_1 \lambda_2\f$ + - \f$\operatorname{trace}(M) = \lambda_1 + \lambda_2\f$ + - \f$\lambda_1\f$ and \f$\lambda_2\f$ are the eigenvalues of \f$M\f$ So the magnitudes of these eigenvalues decide whether a region is a corner, an edge, or flat. diff --git a/doc/py_tutorials/py_feature2d/py_shi_tomasi/py_shi_tomasi.markdown b/doc/py_tutorials/py_feature2d/py_shi_tomasi/py_shi_tomasi.markdown index 1229581ce6..c5d29493e4 100644 --- a/doc/py_tutorials/py_feature2d/py_shi_tomasi/py_shi_tomasi.markdown +++ b/doc/py_tutorials/py_feature2d/py_shi_tomasi/py_shi_tomasi.markdown @@ -20,7 +20,7 @@ Harris Corner Detector. The scoring function in Harris Corner Detector was given Instead of this, Shi-Tomasi proposed: -\f[R = min(\lambda_1, \lambda_2)\f] +\f[R = \min(\lambda_1, \lambda_2)\f] If it is a greater than a threshold value, it is considered as a corner. If we plot it in \f$\lambda_1 - \lambda_2\f$ space as we did in Harris Corner Detector, we get an image as below: @@ -28,7 +28,7 @@ If it is a greater than a threshold value, it is considered as a corner. If we p ![image](images/shitomasi_space.png) From the figure, you can see that only when \f$\lambda_1\f$ and \f$\lambda_2\f$ are above a minimum value, -\f$\lambda_{min}\f$, it is considered as a corner(green region). +\f$\lambda_{\min}\f$, it is considered as a corner(green region). Code ---- diff --git a/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.markdown b/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.markdown index dee4df774a..bbbae6a3e6 100644 --- a/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.markdown +++ b/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.markdown @@ -156,7 +156,7 @@ sift = cv.SIFT_create() kp, des = sift.detectAndCompute(gray,None) @endcode Here kp will be a list of keypoints and des is a numpy array of shape -\f$Number\_of\_Keypoints \times 128\f$. +\f$\text{(Number of Keypoints)} \times 128\f$. So we got keypoints, descriptors etc. Now we want to see how to match keypoints in different images. That we will learn in coming chapters.