parent
2990f23e0c
commit
3cfa6949d7
2 changed files with 89 additions and 0 deletions
After Width: | Height: | Size: 704 KiB |
@ -0,0 +1,89 @@ |
||||
import numpy as np |
||||
import cv2 |
||||
import itertools as it |
||||
|
||||
''' |
||||
from scipy.io import loadmat |
||||
|
||||
m = loadmat('ex4data1.mat') |
||||
X = m['X'].reshape(-1, 20, 20) |
||||
X = np.transpose(X, (0, 2, 1)) |
||||
img = np.vstack(map(np.hstack, X.reshape(-1, 100, 20, 20))) |
||||
img = np.uint8(np.clip(img, 0, 1)*255) |
||||
cv2.imwrite('digits.png', img) |
||||
''' |
||||
|
||||
def unroll_responses(responses, class_n): |
||||
sample_n = len(responses) |
||||
new_responses = np.zeros((sample_n, class_n), np.float32) |
||||
new_responses[np.arange(sample_n), responses] = 1 |
||||
return new_responses |
||||
|
||||
|
||||
SZ = 20 |
||||
digits_img = cv2.imread('digits.png', 0) |
||||
|
||||
h, w = digits_img.shape |
||||
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)] |
||||
digits = np.float32(digits).reshape(-1, SZ*SZ) |
||||
N = len(digits) |
||||
labels = np.repeat(np.arange(10), N/10) |
||||
|
||||
shuffle = np.random.permutation(N) |
||||
train_n = int(0.9*N) |
||||
|
||||
digits_train, digits_test = np.split(digits[shuffle], [train_n]) |
||||
labels_train, labels_test = np.split(labels[shuffle], [train_n]) |
||||
|
||||
labels_train_unrolled = unroll_responses(labels_train, 10) |
||||
|
||||
model = cv2.ANN_MLP() |
||||
layer_sizes = np.int32([SZ*SZ, 25, 10]) |
||||
model.create(layer_sizes) |
||||
|
||||
# CvANN_MLP_TrainParams::BACKPROP,0.001 |
||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01), |
||||
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP, |
||||
bp_dw_scale = 0.001, |
||||
bp_moment_scale = 0.0 ) |
||||
print 'training...' |
||||
model.train(digits_train, labels_train_unrolled, None, params=params) |
||||
model.save('dig_nn.dat') |
||||
model.load('dig_nn.dat') |
||||
|
||||
ret, resp = model.predict(digits_test) |
||||
resp = resp.argmax(-1) |
||||
error_mask = (resp == labels_test) |
||||
print error_mask.mean() |
||||
|
||||
def grouper(n, iterable, fillvalue=None): |
||||
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" |
||||
args = [iter(iterable)] * n |
||||
return it.izip_longest(fillvalue=fillvalue, *args) |
||||
|
||||
def mosaic(w, imgs): |
||||
imgs = iter(imgs) |
||||
img0 = imgs.next() |
||||
pad = np.zeros_like(img0) |
||||
imgs = it.chain([img0], imgs) |
||||
rows = grouper(w, imgs, pad) |
||||
return np.vstack(map(np.hstack, rows)) |
||||
|
||||
test_img = np.uint8(digits_test).reshape(-1, SZ, SZ) |
||||
|
||||
def vis_resp(img, flag): |
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
||||
if not flag: |
||||
img[...,:2] = 0 |
||||
return img |
||||
|
||||
test_img = mosaic(25, it.starmap(vis_resp, it.izip(test_img, error_mask))) |
||||
cv2.imshow('test', test_img) |
||||
cv2.waitKey() |
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in new issue