added asift.py sample

pull/2/head
Alexander Mordvintsev 13 years ago
parent 99e404fe86
commit 3ce5b01543
  1. 143
      samples/python2/asift.py
  2. BIN
      samples/python2/data/t4_0deg.png
  3. BIN
      samples/python2/data/t4_60deg.png
  4. 5
      samples/python2/find_obj.py

@ -0,0 +1,143 @@
'''
Affine invariant feature-based image matching sample.
This sample is similar to find_obj.py, but uses the affine transformation
space sampling technique, called ASIFT [1]. While the original implementation
is based on SIFT, can try to use SURF or ORB detectors instead. Homography RANSAC
is used to reject outliers. Threaing is used for faster affine sampling.
[1] http://www.ipol.im/pub/algo/my_affine_sift/
USAGE
find_obj.py [--feature=<sift|surf|orb>[-flann]] [ <image1> <image2> ]
--feature - Feature to use. Can be sift, surf of orb. Append '-flann' to feature name
to use Flann-based matcher instead bruteforce.
Press left mouse button on a feature point to see its mathcing point.
'''
import numpy as np
import cv2
import itertools as it
from multiprocessing.pool import ThreadPool
from common import Timer
from find_obj import init_feature, filter_matches, explore_match
def affine_skew(tilt, phi, img, mask=None):
'''
affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai
Ai - is an affine transform matrix from skew_img to img
'''
h, w = img.shape[:2]
if mask is None:
mask = np.zeros((h, w), np.uint8)
mask[:] = 255
A = np.float32([[1, 0, 0], [0, 1, 0]])
if phi != 0.0:
phi = np.deg2rad(phi)
s, c = np.sin(phi), np.cos(phi)
A = np.float32([[c,-s], [ s, c]])
corners = [[0, 0], [w, 0], [w, h], [0, h]]
tcorners = np.int32( np.dot(corners, A.T) )
x, y, w, h = cv2.boundingRect(tcorners.reshape(1,-1,2))
A = np.hstack([A, [[-x], [-y]]])
img = cv2.warpAffine(img, A, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)
if tilt != 1.0:
s = 0.8*np.sqrt(tilt*tilt-1)
img = cv2.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
img = cv2.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv2.INTER_NEAREST)
A[0] /= tilt
if phi != 0.0 or tilt != 1.0:
h, w = img.shape[:2]
mask = cv2.warpAffine(mask, A, (w, h), flags=cv2.INTER_NEAREST)
Ai = cv2.invertAffineTransform(A)
return img, mask, Ai
def affine_detect(detector, img, mask=None, pool=None):
'''
affine_detect(detector, img, mask=None, pool=None) -> keypoints, descrs
Apply a set of affine transormations to the image, detect keypoints and
reproject them into initial image coordinates.
See http://www.ipol.im/pub/algo/my_affine_sift/ for the details.
ThreadPool object may be passed to speedup the computation.
'''
params = [(1.0, 0.0)]
for t in 2**(0.5*np.arange(1,6)):
for phi in np.arange(0, 180, 72.0 / t):
params.append((t, phi))
def f(p):
t, phi = p
timg, tmask, Ai = affine_skew(t, phi, img)
keypoints, descrs = detector.detectAndCompute(timg, tmask)
for kp in keypoints:
x, y = kp.pt
kp.pt = tuple( np.dot(Ai, (x, y, 1)) )
if descrs is None:
descrs = []
return keypoints, descrs
keypoints, descrs = [], []
if pool is None:
ires = it.imap(f, params)
else:
ires = pool.imap(f, params)
for i, (k, d) in enumerate(ires):
print 'affine sampling: %d / %d\r' % (i+1, len(params)),
keypoints.extend(k)
descrs.extend(d)
print
return keypoints, np.array(descrs)
if __name__ == '__main__':
print __doc__
import sys, getopt
opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
opts = dict(opts)
feature_name = opts.get('--feature', 'sift')
try: fn1, fn2 = args
except:
fn1 = 'data/t4_0deg.png'
fn2 = 'data/t4_60deg.png'
img1 = cv2.imread(fn1, 0)
img2 = cv2.imread(fn2, 0)
detector, matcher = init_feature(feature_name)
if detector != None:
print 'using', feature_name
else:
print 'unknown feature:', feature_name
sys.exit(1)
pool=ThreadPool(processes = cv2.getNumberOfCPUs())
kp1, desc1 = affine_detect(detector, img1, pool=pool)
kp2, desc2 = affine_detect(detector, img2, pool=pool)
print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2))
def match_and_draw(win):
with Timer('matching'):
raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
if len(p1) >= 4:
H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
print '%d / %d inliers/matched' % (np.sum(status), len(status))
# do not draw outliers (there will be a lot of them)
kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag]
else:
H, status = None, None
print '%d matches found, not enough for homography estimation' % len(p1)
vis = explore_match(win, img1, img2, kp_pairs, None, H)
match_and_draw('find_obj')
cv2.waitKey()
cv2.destroyAllWindows()

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 129 KiB

@ -8,7 +8,6 @@ USAGE
to use Flann-based matcher instead bruteforce.
Press left mouse button on a feature point to see its mathcing point.
'''
import numpy as np
@ -26,10 +25,10 @@ def init_feature(name):
detector = cv2.SIFT()
norm = cv2.NORM_L2
elif chunks[0] == 'surf':
detector = cv2.SURF(1000)
detector = cv2.SURF(800)
norm = cv2.NORM_L2
elif chunks[0] == 'orb':
detector = cv2.ORB(500)
detector = cv2.ORB(400)
norm = cv2.NORM_HAMMING
if 'flann' in chunks:
if norm == cv2.NORM_L2:

Loading…
Cancel
Save