|
|
|
@ -3,7 +3,7 @@ import os |
|
|
|
|
import cv2 as cv |
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
|
from tests_common import NewOpenCVTests, unittest |
|
|
|
|
|
|
|
|
|
def normAssert(test, a, b, lInf=1e-5): |
|
|
|
|
test.assertLess(np.max(np.abs(a - b)), lInf) |
|
|
|
@ -95,7 +95,7 @@ if haveInfEngine: |
|
|
|
|
if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL(): |
|
|
|
|
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL]) |
|
|
|
|
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16]) |
|
|
|
|
if haveInfEngine: |
|
|
|
|
if haveInfEngine: # FIXIT Check Intel iGPU only |
|
|
|
|
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL]) |
|
|
|
|
dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16]) |
|
|
|
|
|
|
|
|
@ -116,8 +116,8 @@ def printParams(backend, target): |
|
|
|
|
|
|
|
|
|
class dnn_test(NewOpenCVTests): |
|
|
|
|
|
|
|
|
|
def find_dnn_file(self, filename): |
|
|
|
|
return self.find_file(filename, [os.environ['OPENCV_DNN_TEST_DATA_PATH']]) |
|
|
|
|
def find_dnn_file(self, filename, required=True): |
|
|
|
|
return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd())], required=required) |
|
|
|
|
|
|
|
|
|
def test_blobFromImage(self): |
|
|
|
|
np.random.seed(324) |
|
|
|
@ -147,8 +147,11 @@ class dnn_test(NewOpenCVTests): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_face_detection(self): |
|
|
|
|
proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt') |
|
|
|
|
model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel') |
|
|
|
|
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False)) |
|
|
|
|
proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt2', required=testdata_required) |
|
|
|
|
model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel', required=testdata_required) |
|
|
|
|
if proto is None or model is None: |
|
|
|
|
raise unittest.SkipTest("Missing DNN test files (dnn/opencv_face_detector.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") |
|
|
|
|
|
|
|
|
|
img = self.get_sample('gpu/lbpcascade/er.png') |
|
|
|
|
blob = cv.dnn.blobFromImage(img, mean=(104, 177, 123), swapRB=False, crop=False) |
|
|
|
|