mirror of https://github.com/opencv/opencv.git
parent
b4dafa6b58
commit
3b55e0d4e9
1 changed files with 44 additions and 0 deletions
@ -0,0 +1,44 @@ |
||||
''' |
||||
K-means clusterization sample. |
||||
Usage: |
||||
kmeans.py |
||||
|
||||
Keyboard shortcuts: |
||||
ESC - exit |
||||
space - generate new distribution |
||||
''' |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
from gaussian_mix import make_gaussians |
||||
|
||||
if __name__ == '__main__': |
||||
cluster_n = 5 |
||||
img_size = 512 |
||||
|
||||
print __doc__ |
||||
|
||||
# generating bright palette |
||||
colors = np.zeros((1, cluster_n, 3), np.uint8) |
||||
colors[0,:] = 255 |
||||
colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n) |
||||
colors = cv2.cvtColor(colors, cv2.COLOR_HSV2BGR)[0] |
||||
|
||||
while True: |
||||
print 'sampling distributions...' |
||||
points, _ = make_gaussians(cluster_n, img_size) |
||||
|
||||
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1) |
||||
ret, labels, centers = cv2.kmeans(points, cluster_n, term_crit, 10, 0) |
||||
|
||||
img = np.zeros((img_size, img_size, 3), np.uint8) |
||||
for (x, y), label in zip(np.int32(points), labels.ravel()): |
||||
c = map(int, colors[label]) |
||||
cv2.circle(img, (x, y), 1, c, -1) |
||||
|
||||
cv2.imshow('gaussian mixture', img) |
||||
ch = 0xFF & cv2.waitKey(0) |
||||
if ch == 27: |
||||
break |
||||
cv2.destroyAllWindows() |
Loading…
Reference in new issue