mirror of https://github.com/opencv/opencv.git
Merge pull request #13055 from vpisarev:remove_old_haar
commit
3a4bc0d41e
7 changed files with 12 additions and 2863 deletions
@ -1,166 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#ifndef OPENCV_OBJDETECT_C_H |
|
||||||
#define OPENCV_OBJDETECT_C_H |
|
||||||
|
|
||||||
#include "opencv2/core/core_c.h" |
|
||||||
|
|
||||||
#ifdef __cplusplus |
|
||||||
#include <deque> |
|
||||||
#include <vector> |
|
||||||
|
|
||||||
extern "C" { |
|
||||||
#endif |
|
||||||
|
|
||||||
/** @addtogroup objdetect_c
|
|
||||||
@{ |
|
||||||
*/ |
|
||||||
|
|
||||||
/****************************************************************************************\
|
|
||||||
* Haar-like Object Detection functions * |
|
||||||
\****************************************************************************************/ |
|
||||||
|
|
||||||
#define CV_HAAR_MAGIC_VAL 0x42500000 |
|
||||||
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier" |
|
||||||
|
|
||||||
#define CV_IS_HAAR_CLASSIFIER( haar ) \ |
|
||||||
((haar) != NULL && \
|
|
||||||
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL) |
|
||||||
|
|
||||||
#define CV_HAAR_FEATURE_MAX 3 |
|
||||||
#define CV_HAAR_STAGE_MAX 1000 |
|
||||||
|
|
||||||
typedef struct CvHaarFeature |
|
||||||
{ |
|
||||||
int tilted; |
|
||||||
struct |
|
||||||
{ |
|
||||||
CvRect r; |
|
||||||
float weight; |
|
||||||
} rect[CV_HAAR_FEATURE_MAX]; |
|
||||||
} CvHaarFeature; |
|
||||||
|
|
||||||
typedef struct CvHaarClassifier |
|
||||||
{ |
|
||||||
int count; |
|
||||||
CvHaarFeature* haar_feature; |
|
||||||
float* threshold; |
|
||||||
int* left; |
|
||||||
int* right; |
|
||||||
float* alpha; |
|
||||||
} CvHaarClassifier; |
|
||||||
|
|
||||||
typedef struct CvHaarStageClassifier |
|
||||||
{ |
|
||||||
int count; |
|
||||||
float threshold; |
|
||||||
CvHaarClassifier* classifier; |
|
||||||
|
|
||||||
int next; |
|
||||||
int child; |
|
||||||
int parent; |
|
||||||
} CvHaarStageClassifier; |
|
||||||
|
|
||||||
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade; |
|
||||||
|
|
||||||
typedef struct CvHaarClassifierCascade |
|
||||||
{ |
|
||||||
int flags; |
|
||||||
int count; |
|
||||||
CvSize orig_window_size; |
|
||||||
CvSize real_window_size; |
|
||||||
double scale; |
|
||||||
CvHaarStageClassifier* stage_classifier; |
|
||||||
CvHidHaarClassifierCascade* hid_cascade; |
|
||||||
} CvHaarClassifierCascade; |
|
||||||
|
|
||||||
typedef struct CvAvgComp |
|
||||||
{ |
|
||||||
CvRect rect; |
|
||||||
int neighbors; |
|
||||||
} CvAvgComp; |
|
||||||
|
|
||||||
/* Loads haar classifier cascade from a directory.
|
|
||||||
It is obsolete: convert your cascade to xml and use cvLoad instead */ |
|
||||||
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade( |
|
||||||
const char* directory, CvSize orig_window_size); |
|
||||||
|
|
||||||
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade ); |
|
||||||
|
|
||||||
#define CV_HAAR_DO_CANNY_PRUNING 1 |
|
||||||
#define CV_HAAR_SCALE_IMAGE 2 |
|
||||||
#define CV_HAAR_FIND_BIGGEST_OBJECT 4 |
|
||||||
#define CV_HAAR_DO_ROUGH_SEARCH 8 |
|
||||||
|
|
||||||
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image, |
|
||||||
CvHaarClassifierCascade* cascade, CvMemStorage* storage, |
|
||||||
double scale_factor CV_DEFAULT(1.1), |
|
||||||
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), |
|
||||||
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0))); |
|
||||||
|
|
||||||
/* sets images for haar classifier cascade */ |
|
||||||
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade, |
|
||||||
const CvArr* sum, const CvArr* sqsum, |
|
||||||
const CvArr* tilted_sum, double scale ); |
|
||||||
|
|
||||||
/* runs the cascade on the specified window */ |
|
||||||
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade, |
|
||||||
CvPoint pt, int start_stage CV_DEFAULT(0)); |
|
||||||
|
|
||||||
/** @} objdetect_c */ |
|
||||||
|
|
||||||
#ifdef __cplusplus |
|
||||||
} |
|
||||||
|
|
||||||
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image, |
|
||||||
CvHaarClassifierCascade* cascade, CvMemStorage* storage, |
|
||||||
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds, |
|
||||||
double scale_factor = 1.1, |
|
||||||
int min_neighbors = 3, int flags = 0, |
|
||||||
CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0), |
|
||||||
bool outputRejectLevels = false ); |
|
||||||
|
|
||||||
#endif |
|
||||||
|
|
||||||
#endif /* OPENCV_OBJDETECT_C_H */ |
|
@ -1,369 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// Intel License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
/* Haar features calculation */ |
|
||||||
|
|
||||||
#include "precomp.hpp" |
|
||||||
#include "haar.hpp" |
|
||||||
|
|
||||||
namespace cv_haar_avx |
|
||||||
{ |
|
||||||
|
|
||||||
// AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
|
|
||||||
#if CV_HAAR_USE_AVX |
|
||||||
double icvEvalHidHaarClassifierAVX(CvHidHaarClassifier* classifier, |
|
||||||
double variance_norm_factor, size_t p_offset) |
|
||||||
{ |
|
||||||
int CV_DECL_ALIGNED(32) idxV[8] = { 0,0,0,0,0,0,0,0 }; |
|
||||||
uchar flags[8] = { 0,0,0,0,0,0,0,0 }; |
|
||||||
CvHidHaarTreeNode* nodes[8]; |
|
||||||
double res = 0; |
|
||||||
uchar exitConditionFlag = 0; |
|
||||||
for (;;) |
|
||||||
{ |
|
||||||
float CV_DECL_ALIGNED(32) tmp[8] = { 0,0,0,0,0,0,0,0 }; |
|
||||||
nodes[0] = (classifier + 0)->node + idxV[0]; |
|
||||||
nodes[1] = (classifier + 1)->node + idxV[1]; |
|
||||||
nodes[2] = (classifier + 2)->node + idxV[2]; |
|
||||||
nodes[3] = (classifier + 3)->node + idxV[3]; |
|
||||||
nodes[4] = (classifier + 4)->node + idxV[4]; |
|
||||||
nodes[5] = (classifier + 5)->node + idxV[5]; |
|
||||||
nodes[6] = (classifier + 6)->node + idxV[6]; |
|
||||||
nodes[7] = (classifier + 7)->node + idxV[7]; |
|
||||||
|
|
||||||
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor)); |
|
||||||
|
|
||||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold, |
|
||||||
nodes[6]->threshold, |
|
||||||
nodes[5]->threshold, |
|
||||||
nodes[4]->threshold, |
|
||||||
nodes[3]->threshold, |
|
||||||
nodes[2]->threshold, |
|
||||||
nodes[1]->threshold, |
|
||||||
nodes[0]->threshold)); |
|
||||||
|
|
||||||
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[6]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[5]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[4]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[3]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[2]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[1]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[0]->feature.rect[0], p_offset)); |
|
||||||
|
|
||||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, |
|
||||||
nodes[6]->feature.rect[0].weight, |
|
||||||
nodes[5]->feature.rect[0].weight, |
|
||||||
nodes[4]->feature.rect[0].weight, |
|
||||||
nodes[3]->feature.rect[0].weight, |
|
||||||
nodes[2]->feature.rect[0].weight, |
|
||||||
nodes[1]->feature.rect[0].weight, |
|
||||||
nodes[0]->feature.rect[0].weight); |
|
||||||
|
|
||||||
__m256 sum = _mm256_mul_ps(offset, weight); |
|
||||||
|
|
||||||
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[6]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[5]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[4]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[3]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[2]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[1]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[0]->feature.rect[1], p_offset)); |
|
||||||
|
|
||||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, |
|
||||||
nodes[6]->feature.rect[1].weight, |
|
||||||
nodes[5]->feature.rect[1].weight, |
|
||||||
nodes[4]->feature.rect[1].weight, |
|
||||||
nodes[3]->feature.rect[1].weight, |
|
||||||
nodes[2]->feature.rect[1].weight, |
|
||||||
nodes[1]->feature.rect[1].weight, |
|
||||||
nodes[0]->feature.rect[1].weight); |
|
||||||
|
|
||||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight)); |
|
||||||
|
|
||||||
if (nodes[0]->feature.rect[2].p0) |
|
||||||
tmp[0] = calc_sumf(nodes[0]->feature.rect[2], p_offset) * nodes[0]->feature.rect[2].weight; |
|
||||||
if (nodes[1]->feature.rect[2].p0) |
|
||||||
tmp[1] = calc_sumf(nodes[1]->feature.rect[2], p_offset) * nodes[1]->feature.rect[2].weight; |
|
||||||
if (nodes[2]->feature.rect[2].p0) |
|
||||||
tmp[2] = calc_sumf(nodes[2]->feature.rect[2], p_offset) * nodes[2]->feature.rect[2].weight; |
|
||||||
if (nodes[3]->feature.rect[2].p0) |
|
||||||
tmp[3] = calc_sumf(nodes[3]->feature.rect[2], p_offset) * nodes[3]->feature.rect[2].weight; |
|
||||||
if (nodes[4]->feature.rect[2].p0) |
|
||||||
tmp[4] = calc_sumf(nodes[4]->feature.rect[2], p_offset) * nodes[4]->feature.rect[2].weight; |
|
||||||
if (nodes[5]->feature.rect[2].p0) |
|
||||||
tmp[5] = calc_sumf(nodes[5]->feature.rect[2], p_offset) * nodes[5]->feature.rect[2].weight; |
|
||||||
if (nodes[6]->feature.rect[2].p0) |
|
||||||
tmp[6] = calc_sumf(nodes[6]->feature.rect[2], p_offset) * nodes[6]->feature.rect[2].weight; |
|
||||||
if (nodes[7]->feature.rect[2].p0) |
|
||||||
tmp[7] = calc_sumf(nodes[7]->feature.rect[2], p_offset) * nodes[7]->feature.rect[2].weight; |
|
||||||
|
|
||||||
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp)); |
|
||||||
|
|
||||||
__m256 left = _mm256_set_ps(static_cast<float>(nodes[7]->left), static_cast<float>(nodes[6]->left), |
|
||||||
static_cast<float>(nodes[5]->left), static_cast<float>(nodes[4]->left), |
|
||||||
static_cast<float>(nodes[3]->left), static_cast<float>(nodes[2]->left), |
|
||||||
static_cast<float>(nodes[1]->left), static_cast<float>(nodes[0]->left)); |
|
||||||
__m256 right = _mm256_set_ps(static_cast<float>(nodes[7]->right), static_cast<float>(nodes[6]->right), |
|
||||||
static_cast<float>(nodes[5]->right), static_cast<float>(nodes[4]->right), |
|
||||||
static_cast<float>(nodes[3]->right), static_cast<float>(nodes[2]->right), |
|
||||||
static_cast<float>(nodes[1]->right), static_cast<float>(nodes[0]->right)); |
|
||||||
|
|
||||||
_mm256_store_si256((__m256i*)idxV, _mm256_cvttps_epi32(_mm256_blendv_ps(right, left, _mm256_cmp_ps(sum, t, _CMP_LT_OQ)))); |
|
||||||
|
|
||||||
for (int i = 0; i < 8; i++) |
|
||||||
{ |
|
||||||
if (idxV[i] <= 0) |
|
||||||
{ |
|
||||||
if (!flags[i]) |
|
||||||
{ |
|
||||||
exitConditionFlag++; |
|
||||||
flags[i] = 1; |
|
||||||
res += (classifier + i)->alpha[-idxV[i]]; |
|
||||||
} |
|
||||||
idxV[i] = 0; |
|
||||||
} |
|
||||||
} |
|
||||||
if (exitConditionFlag == 8) |
|
||||||
return res; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
double icvEvalHidHaarStumpClassifierAVX(CvHidHaarClassifier* classifier, |
|
||||||
double variance_norm_factor, size_t p_offset) |
|
||||||
{ |
|
||||||
float CV_DECL_ALIGNED(32) tmp[8] = { 0,0,0,0,0,0,0,0 }; |
|
||||||
CvHidHaarTreeNode* nodes[8]; |
|
||||||
|
|
||||||
nodes[0] = classifier[0].node; |
|
||||||
nodes[1] = classifier[1].node; |
|
||||||
nodes[2] = classifier[2].node; |
|
||||||
nodes[3] = classifier[3].node; |
|
||||||
nodes[4] = classifier[4].node; |
|
||||||
nodes[5] = classifier[5].node; |
|
||||||
nodes[6] = classifier[6].node; |
|
||||||
nodes[7] = classifier[7].node; |
|
||||||
|
|
||||||
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor)); |
|
||||||
|
|
||||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold, |
|
||||||
nodes[6]->threshold, |
|
||||||
nodes[5]->threshold, |
|
||||||
nodes[4]->threshold, |
|
||||||
nodes[3]->threshold, |
|
||||||
nodes[2]->threshold, |
|
||||||
nodes[1]->threshold, |
|
||||||
nodes[0]->threshold)); |
|
||||||
|
|
||||||
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[6]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[5]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[4]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[3]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[2]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[1]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[0]->feature.rect[0], p_offset)); |
|
||||||
|
|
||||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, |
|
||||||
nodes[6]->feature.rect[0].weight, |
|
||||||
nodes[5]->feature.rect[0].weight, |
|
||||||
nodes[4]->feature.rect[0].weight, |
|
||||||
nodes[3]->feature.rect[0].weight, |
|
||||||
nodes[2]->feature.rect[0].weight, |
|
||||||
nodes[1]->feature.rect[0].weight, |
|
||||||
nodes[0]->feature.rect[0].weight); |
|
||||||
|
|
||||||
__m256 sum = _mm256_mul_ps(offset, weight); |
|
||||||
|
|
||||||
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[6]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[5]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[4]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[3]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[2]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[1]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[0]->feature.rect[1], p_offset)); |
|
||||||
|
|
||||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, |
|
||||||
nodes[6]->feature.rect[1].weight, |
|
||||||
nodes[5]->feature.rect[1].weight, |
|
||||||
nodes[4]->feature.rect[1].weight, |
|
||||||
nodes[3]->feature.rect[1].weight, |
|
||||||
nodes[2]->feature.rect[1].weight, |
|
||||||
nodes[1]->feature.rect[1].weight, |
|
||||||
nodes[0]->feature.rect[1].weight); |
|
||||||
|
|
||||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight)); |
|
||||||
|
|
||||||
if (nodes[0]->feature.rect[2].p0) |
|
||||||
tmp[0] = calc_sumf(nodes[0]->feature.rect[2], p_offset) * nodes[0]->feature.rect[2].weight; |
|
||||||
if (nodes[1]->feature.rect[2].p0) |
|
||||||
tmp[1] = calc_sumf(nodes[1]->feature.rect[2], p_offset) * nodes[1]->feature.rect[2].weight; |
|
||||||
if (nodes[2]->feature.rect[2].p0) |
|
||||||
tmp[2] = calc_sumf(nodes[2]->feature.rect[2], p_offset) * nodes[2]->feature.rect[2].weight; |
|
||||||
if (nodes[3]->feature.rect[2].p0) |
|
||||||
tmp[3] = calc_sumf(nodes[3]->feature.rect[2], p_offset) * nodes[3]->feature.rect[2].weight; |
|
||||||
if (nodes[4]->feature.rect[2].p0) |
|
||||||
tmp[4] = calc_sumf(nodes[4]->feature.rect[2], p_offset) * nodes[4]->feature.rect[2].weight; |
|
||||||
if (nodes[5]->feature.rect[2].p0) |
|
||||||
tmp[5] = calc_sumf(nodes[5]->feature.rect[2], p_offset) * nodes[5]->feature.rect[2].weight; |
|
||||||
if (nodes[6]->feature.rect[2].p0) |
|
||||||
tmp[6] = calc_sumf(nodes[6]->feature.rect[2], p_offset) * nodes[6]->feature.rect[2].weight; |
|
||||||
if (nodes[7]->feature.rect[2].p0) |
|
||||||
tmp[7] = calc_sumf(nodes[7]->feature.rect[2], p_offset) * nodes[7]->feature.rect[2].weight; |
|
||||||
|
|
||||||
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp)); |
|
||||||
|
|
||||||
__m256 alpha0 = _mm256_set_ps(classifier[7].alpha[0], |
|
||||||
classifier[6].alpha[0], |
|
||||||
classifier[5].alpha[0], |
|
||||||
classifier[4].alpha[0], |
|
||||||
classifier[3].alpha[0], |
|
||||||
classifier[2].alpha[0], |
|
||||||
classifier[1].alpha[0], |
|
||||||
classifier[0].alpha[0]); |
|
||||||
__m256 alpha1 = _mm256_set_ps(classifier[7].alpha[1], |
|
||||||
classifier[6].alpha[1], |
|
||||||
classifier[5].alpha[1], |
|
||||||
classifier[4].alpha[1], |
|
||||||
classifier[3].alpha[1], |
|
||||||
classifier[2].alpha[1], |
|
||||||
classifier[1].alpha[1], |
|
||||||
classifier[0].alpha[1]); |
|
||||||
|
|
||||||
__m256 outBuf = _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ)); |
|
||||||
outBuf = _mm256_hadd_ps(outBuf, outBuf); |
|
||||||
outBuf = _mm256_hadd_ps(outBuf, outBuf); |
|
||||||
_mm256_store_ps(tmp, outBuf); |
|
||||||
return (tmp[0] + tmp[4]); |
|
||||||
} |
|
||||||
|
|
||||||
double icvEvalHidHaarStumpClassifierTwoRectAVX(CvHidHaarClassifier* classifier, |
|
||||||
double variance_norm_factor, size_t p_offset) |
|
||||||
{ |
|
||||||
float CV_DECL_ALIGNED(32) buf[8]; |
|
||||||
CvHidHaarTreeNode* nodes[8]; |
|
||||||
nodes[0] = classifier[0].node; |
|
||||||
nodes[1] = classifier[1].node; |
|
||||||
nodes[2] = classifier[2].node; |
|
||||||
nodes[3] = classifier[3].node; |
|
||||||
nodes[4] = classifier[4].node; |
|
||||||
nodes[5] = classifier[5].node; |
|
||||||
nodes[6] = classifier[6].node; |
|
||||||
nodes[7] = classifier[7].node; |
|
||||||
|
|
||||||
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor)); |
|
||||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold, |
|
||||||
nodes[6]->threshold, |
|
||||||
nodes[5]->threshold, |
|
||||||
nodes[4]->threshold, |
|
||||||
nodes[3]->threshold, |
|
||||||
nodes[2]->threshold, |
|
||||||
nodes[1]->threshold, |
|
||||||
nodes[0]->threshold)); |
|
||||||
|
|
||||||
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[6]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[5]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[4]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[3]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[2]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[1]->feature.rect[0], p_offset), |
|
||||||
calc_sumf(nodes[0]->feature.rect[0], p_offset)); |
|
||||||
|
|
||||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, |
|
||||||
nodes[6]->feature.rect[0].weight, |
|
||||||
nodes[5]->feature.rect[0].weight, |
|
||||||
nodes[4]->feature.rect[0].weight, |
|
||||||
nodes[3]->feature.rect[0].weight, |
|
||||||
nodes[2]->feature.rect[0].weight, |
|
||||||
nodes[1]->feature.rect[0].weight, |
|
||||||
nodes[0]->feature.rect[0].weight); |
|
||||||
|
|
||||||
__m256 sum = _mm256_mul_ps(offset, weight); |
|
||||||
|
|
||||||
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[6]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[5]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[4]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[3]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[2]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[1]->feature.rect[1], p_offset), |
|
||||||
calc_sumf(nodes[0]->feature.rect[1], p_offset)); |
|
||||||
|
|
||||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, |
|
||||||
nodes[6]->feature.rect[1].weight, |
|
||||||
nodes[5]->feature.rect[1].weight, |
|
||||||
nodes[4]->feature.rect[1].weight, |
|
||||||
nodes[3]->feature.rect[1].weight, |
|
||||||
nodes[2]->feature.rect[1].weight, |
|
||||||
nodes[1]->feature.rect[1].weight, |
|
||||||
nodes[0]->feature.rect[1].weight); |
|
||||||
|
|
||||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight)); |
|
||||||
|
|
||||||
__m256 alpha0 = _mm256_set_ps(classifier[7].alpha[0], |
|
||||||
classifier[6].alpha[0], |
|
||||||
classifier[5].alpha[0], |
|
||||||
classifier[4].alpha[0], |
|
||||||
classifier[3].alpha[0], |
|
||||||
classifier[2].alpha[0], |
|
||||||
classifier[1].alpha[0], |
|
||||||
classifier[0].alpha[0]); |
|
||||||
__m256 alpha1 = _mm256_set_ps(classifier[7].alpha[1], |
|
||||||
classifier[6].alpha[1], |
|
||||||
classifier[5].alpha[1], |
|
||||||
classifier[4].alpha[1], |
|
||||||
classifier[3].alpha[1], |
|
||||||
classifier[2].alpha[1], |
|
||||||
classifier[1].alpha[1], |
|
||||||
classifier[0].alpha[1]); |
|
||||||
|
|
||||||
_mm256_store_ps(buf, _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ))); |
|
||||||
return (buf[0] + buf[1] + buf[2] + buf[3] + buf[4] + buf[5] + buf[6] + buf[7]); |
|
||||||
} |
|
||||||
|
|
||||||
#endif //CV_HAAR_USE_AVX
|
|
||||||
|
|
||||||
} |
|
||||||
|
|
||||||
/* End of file. */ |
|
File diff suppressed because it is too large
Load Diff
@ -1,101 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// Intel License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
/* Haar features calculation */ |
|
||||||
|
|
||||||
#ifndef OPENCV_OBJDETECT_HAAR_HPP |
|
||||||
#define OPENCV_OBJDETECT_HAAR_HPP |
|
||||||
|
|
||||||
#define CV_HAAR_FEATURE_MAX_LOCAL 3 |
|
||||||
|
|
||||||
typedef int sumtype; |
|
||||||
typedef double sqsumtype; |
|
||||||
|
|
||||||
typedef struct CvHidHaarFeature |
|
||||||
{ |
|
||||||
struct
|
|
||||||
{ |
|
||||||
sumtype *p0, *p1, *p2, *p3; |
|
||||||
float weight; |
|
||||||
} |
|
||||||
rect[CV_HAAR_FEATURE_MAX_LOCAL]; |
|
||||||
} CvHidHaarFeature; |
|
||||||
|
|
||||||
|
|
||||||
typedef struct CvHidHaarTreeNode |
|
||||||
{ |
|
||||||
CvHidHaarFeature feature; |
|
||||||
float threshold; |
|
||||||
int left; |
|
||||||
int right; |
|
||||||
} CvHidHaarTreeNode; |
|
||||||
|
|
||||||
|
|
||||||
typedef struct CvHidHaarClassifier |
|
||||||
{ |
|
||||||
int count; |
|
||||||
//CvHaarFeature* orig_feature;
|
|
||||||
CvHidHaarTreeNode* node; |
|
||||||
float* alpha; |
|
||||||
} CvHidHaarClassifier; |
|
||||||
|
|
||||||
#define calc_sumf(rect,offset) \ |
|
||||||
static_cast<float>((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) |
|
||||||
|
|
||||||
namespace cv_haar_avx |
|
||||||
{ |
|
||||||
#if 0 /*CV_TRY_AVX*/
|
|
||||||
#define CV_HAAR_USE_AVX 1 |
|
||||||
#else |
|
||||||
#define CV_HAAR_USE_AVX 0 |
|
||||||
#endif |
|
||||||
|
|
||||||
#if CV_HAAR_USE_AVX |
|
||||||
// AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
|
|
||||||
double icvEvalHidHaarClassifierAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset); |
|
||||||
double icvEvalHidHaarStumpClassifierAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset); |
|
||||||
double icvEvalHidHaarStumpClassifierTwoRectAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset); |
|
||||||
#endif |
|
||||||
} |
|
||||||
|
|
||||||
#endif |
|
||||||
|
|
||||||
/* End of file. */ |
|
Loading…
Reference in new issue