Merge pull request #13055 from vpisarev:remove_old_haar

pull/13059/head
Alexander Alekhin 6 years ago
commit 3a4bc0d41e
  1. 166
      modules/objdetect/include/opencv2/objdetect/objdetect_c.h
  2. 69
      modules/objdetect/src/cascadedetect.cpp
  3. 369
      modules/objdetect/src/haar.avx.cpp
  4. 2133
      modules/objdetect/src/haar.cpp
  5. 101
      modules/objdetect/src/haar.hpp
  6. 36
      modules/objdetect/test/test_cascadeandhog.cpp
  7. 1
      modules/objdetect/test/test_precomp.hpp

@ -1,166 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_OBJDETECT_C_H
#define OPENCV_OBJDETECT_C_H
#include "opencv2/core/core_c.h"
#ifdef __cplusplus
#include <deque>
#include <vector>
extern "C" {
#endif
/** @addtogroup objdetect_c
@{
*/
/****************************************************************************************\
* Haar-like Object Detection functions *
\****************************************************************************************/
#define CV_HAAR_MAGIC_VAL 0x42500000
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
#define CV_IS_HAAR_CLASSIFIER( haar ) \
((haar) != NULL && \
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
#define CV_HAAR_FEATURE_MAX 3
#define CV_HAAR_STAGE_MAX 1000
typedef struct CvHaarFeature
{
int tilted;
struct
{
CvRect r;
float weight;
} rect[CV_HAAR_FEATURE_MAX];
} CvHaarFeature;
typedef struct CvHaarClassifier
{
int count;
CvHaarFeature* haar_feature;
float* threshold;
int* left;
int* right;
float* alpha;
} CvHaarClassifier;
typedef struct CvHaarStageClassifier
{
int count;
float threshold;
CvHaarClassifier* classifier;
int next;
int child;
int parent;
} CvHaarStageClassifier;
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
typedef struct CvHaarClassifierCascade
{
int flags;
int count;
CvSize orig_window_size;
CvSize real_window_size;
double scale;
CvHaarStageClassifier* stage_classifier;
CvHidHaarClassifierCascade* hid_cascade;
} CvHaarClassifierCascade;
typedef struct CvAvgComp
{
CvRect rect;
int neighbors;
} CvAvgComp;
/* Loads haar classifier cascade from a directory.
It is obsolete: convert your cascade to xml and use cvLoad instead */
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
const char* directory, CvSize orig_window_size);
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
#define CV_HAAR_DO_CANNY_PRUNING 1
#define CV_HAAR_SCALE_IMAGE 2
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
#define CV_HAAR_DO_ROUGH_SEARCH 8
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
double scale_factor CV_DEFAULT(1.1),
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
/* sets images for haar classifier cascade */
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
const CvArr* sum, const CvArr* sqsum,
const CvArr* tilted_sum, double scale );
/* runs the cascade on the specified window */
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
CvPoint pt, int start_stage CV_DEFAULT(0));
/** @} objdetect_c */
#ifdef __cplusplus
}
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
double scale_factor = 1.1,
int min_neighbors = 3, int flags = 0,
CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0),
bool outputRejectLevels = false );
#endif
#endif /* OPENCV_OBJDETECT_C_H */

@ -44,7 +44,6 @@
#include <iostream>
#include "cascadedetect.hpp"
#include "opencv2/objdetect/objdetect_c.h"
#include "opencl_kernels_objdetect.hpp"
namespace cv
@ -1071,9 +1070,6 @@ public:
};
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
struct getNeighbors { int operator ()(const CvAvgComp& e) const { return e.neighbors; } };
#ifdef HAVE_OPENCL
bool CascadeClassifierImpl::ocl_detectMultiScaleNoGrouping( const std::vector<float>& scales,
std::vector<Rect>& candidates )
@ -1227,24 +1223,6 @@ void* CascadeClassifierImpl::getOldCascade()
return oldCascade;
}
static void detectMultiScaleOldFormat( const Mat& image, Ptr<CvHaarClassifierCascade> oldCascade,
std::vector<Rect>& objects,
std::vector<int>& rejectLevels,
std::vector<double>& levelWeights,
std::vector<CvAvgComp>& vecAvgComp,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels = false )
{
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = cvMat(image);
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
minNeighbors, flags, cvSize(minObjectSize), cvSize(maxObjectSize), outputRejectLevels );
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
objects.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
}
void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
double scaleFactor, Size minObjectSize, Size maxObjectSize,
@ -1374,7 +1352,7 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
std::vector<int>& rejectLevels,
std::vector<double>& levelWeights,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
int /*flags*/, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels )
{
CV_INSTRUMENT_REGION();
@ -1384,26 +1362,16 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
if( empty() )
return;
if( isOldFormatCascade() )
detectMultiScaleNoGrouping( _image, objects, rejectLevels, levelWeights, scaleFactor, minObjectSize, maxObjectSize,
outputRejectLevels );
const double GROUP_EPS = 0.2;
if( outputRejectLevels )
{
Mat image = _image.getMat();
std::vector<CvAvgComp> fakeVecAvgComp;
detectMultiScaleOldFormat( image, oldCascade, objects, rejectLevels, levelWeights, fakeVecAvgComp, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
}
else
{
detectMultiScaleNoGrouping( _image, objects, rejectLevels, levelWeights, scaleFactor, minObjectSize, maxObjectSize,
outputRejectLevels );
const double GROUP_EPS = 0.2;
if( outputRejectLevels )
{
groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
}
else
{
groupRectangles( objects, minNeighbors, GROUP_EPS );
}
groupRectangles( objects, minNeighbors, GROUP_EPS );
}
}
@ -1421,7 +1389,7 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rect>& objects,
std::vector<int>& numDetections, double scaleFactor,
int minNeighbors, int flags, Size minObjectSize,
int minNeighbors, int /*flags*/, Size minObjectSize,
Size maxObjectSize )
{
CV_INSTRUMENT_REGION();
@ -1434,20 +1402,10 @@ void CascadeClassifierImpl::detectMultiScale( InputArray _image, std::vector<Rec
std::vector<int> fakeLevels;
std::vector<double> fakeWeights;
if( isOldFormatCascade() )
{
std::vector<CvAvgComp> vecAvgComp;
detectMultiScaleOldFormat( image, oldCascade, objects, fakeLevels, fakeWeights, vecAvgComp, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize );
numDetections.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), numDetections.begin(), getNeighbors());
}
else
{
detectMultiScaleNoGrouping( image, objects, fakeLevels, fakeWeights, scaleFactor, minObjectSize, maxObjectSize );
const double GROUP_EPS = 0.2;
groupRectangles( objects, numDetections, minNeighbors, GROUP_EPS );
}
detectMultiScaleNoGrouping( image, objects, fakeLevels, fakeWeights, scaleFactor, minObjectSize, maxObjectSize );
const double GROUP_EPS = 0.2;
groupRectangles( objects, numDetections, minNeighbors, GROUP_EPS );
}
@ -1613,9 +1571,6 @@ bool CascadeClassifierImpl::read_(const FileNode& root)
return featureEvaluator->read(fn, data.origWinSize);
}
void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const { cvReleaseHaarClassifierCascade(&obj); }
BaseCascadeClassifier::~BaseCascadeClassifier()
{
}

@ -1,369 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* Haar features calculation */
#include "precomp.hpp"
#include "haar.hpp"
namespace cv_haar_avx
{
// AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
#if CV_HAAR_USE_AVX
double icvEvalHidHaarClassifierAVX(CvHidHaarClassifier* classifier,
double variance_norm_factor, size_t p_offset)
{
int CV_DECL_ALIGNED(32) idxV[8] = { 0,0,0,0,0,0,0,0 };
uchar flags[8] = { 0,0,0,0,0,0,0,0 };
CvHidHaarTreeNode* nodes[8];
double res = 0;
uchar exitConditionFlag = 0;
for (;;)
{
float CV_DECL_ALIGNED(32) tmp[8] = { 0,0,0,0,0,0,0,0 };
nodes[0] = (classifier + 0)->node + idxV[0];
nodes[1] = (classifier + 1)->node + idxV[1];
nodes[2] = (classifier + 2)->node + idxV[2];
nodes[3] = (classifier + 3)->node + idxV[3];
nodes[4] = (classifier + 4)->node + idxV[4];
nodes[5] = (classifier + 5)->node + idxV[5];
nodes[6] = (classifier + 6)->node + idxV[6];
nodes[7] = (classifier + 7)->node + idxV[7];
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor));
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
nodes[6]->threshold,
nodes[5]->threshold,
nodes[4]->threshold,
nodes[3]->threshold,
nodes[2]->threshold,
nodes[1]->threshold,
nodes[0]->threshold));
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset),
calc_sumf(nodes[6]->feature.rect[0], p_offset),
calc_sumf(nodes[5]->feature.rect[0], p_offset),
calc_sumf(nodes[4]->feature.rect[0], p_offset),
calc_sumf(nodes[3]->feature.rect[0], p_offset),
calc_sumf(nodes[2]->feature.rect[0], p_offset),
calc_sumf(nodes[1]->feature.rect[0], p_offset),
calc_sumf(nodes[0]->feature.rect[0], p_offset));
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
nodes[6]->feature.rect[0].weight,
nodes[5]->feature.rect[0].weight,
nodes[4]->feature.rect[0].weight,
nodes[3]->feature.rect[0].weight,
nodes[2]->feature.rect[0].weight,
nodes[1]->feature.rect[0].weight,
nodes[0]->feature.rect[0].weight);
__m256 sum = _mm256_mul_ps(offset, weight);
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset),
calc_sumf(nodes[6]->feature.rect[1], p_offset),
calc_sumf(nodes[5]->feature.rect[1], p_offset),
calc_sumf(nodes[4]->feature.rect[1], p_offset),
calc_sumf(nodes[3]->feature.rect[1], p_offset),
calc_sumf(nodes[2]->feature.rect[1], p_offset),
calc_sumf(nodes[1]->feature.rect[1], p_offset),
calc_sumf(nodes[0]->feature.rect[1], p_offset));
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
nodes[6]->feature.rect[1].weight,
nodes[5]->feature.rect[1].weight,
nodes[4]->feature.rect[1].weight,
nodes[3]->feature.rect[1].weight,
nodes[2]->feature.rect[1].weight,
nodes[1]->feature.rect[1].weight,
nodes[0]->feature.rect[1].weight);
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight));
if (nodes[0]->feature.rect[2].p0)
tmp[0] = calc_sumf(nodes[0]->feature.rect[2], p_offset) * nodes[0]->feature.rect[2].weight;
if (nodes[1]->feature.rect[2].p0)
tmp[1] = calc_sumf(nodes[1]->feature.rect[2], p_offset) * nodes[1]->feature.rect[2].weight;
if (nodes[2]->feature.rect[2].p0)
tmp[2] = calc_sumf(nodes[2]->feature.rect[2], p_offset) * nodes[2]->feature.rect[2].weight;
if (nodes[3]->feature.rect[2].p0)
tmp[3] = calc_sumf(nodes[3]->feature.rect[2], p_offset) * nodes[3]->feature.rect[2].weight;
if (nodes[4]->feature.rect[2].p0)
tmp[4] = calc_sumf(nodes[4]->feature.rect[2], p_offset) * nodes[4]->feature.rect[2].weight;
if (nodes[5]->feature.rect[2].p0)
tmp[5] = calc_sumf(nodes[5]->feature.rect[2], p_offset) * nodes[5]->feature.rect[2].weight;
if (nodes[6]->feature.rect[2].p0)
tmp[6] = calc_sumf(nodes[6]->feature.rect[2], p_offset) * nodes[6]->feature.rect[2].weight;
if (nodes[7]->feature.rect[2].p0)
tmp[7] = calc_sumf(nodes[7]->feature.rect[2], p_offset) * nodes[7]->feature.rect[2].weight;
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp));
__m256 left = _mm256_set_ps(static_cast<float>(nodes[7]->left), static_cast<float>(nodes[6]->left),
static_cast<float>(nodes[5]->left), static_cast<float>(nodes[4]->left),
static_cast<float>(nodes[3]->left), static_cast<float>(nodes[2]->left),
static_cast<float>(nodes[1]->left), static_cast<float>(nodes[0]->left));
__m256 right = _mm256_set_ps(static_cast<float>(nodes[7]->right), static_cast<float>(nodes[6]->right),
static_cast<float>(nodes[5]->right), static_cast<float>(nodes[4]->right),
static_cast<float>(nodes[3]->right), static_cast<float>(nodes[2]->right),
static_cast<float>(nodes[1]->right), static_cast<float>(nodes[0]->right));
_mm256_store_si256((__m256i*)idxV, _mm256_cvttps_epi32(_mm256_blendv_ps(right, left, _mm256_cmp_ps(sum, t, _CMP_LT_OQ))));
for (int i = 0; i < 8; i++)
{
if (idxV[i] <= 0)
{
if (!flags[i])
{
exitConditionFlag++;
flags[i] = 1;
res += (classifier + i)->alpha[-idxV[i]];
}
idxV[i] = 0;
}
}
if (exitConditionFlag == 8)
return res;
}
}
double icvEvalHidHaarStumpClassifierAVX(CvHidHaarClassifier* classifier,
double variance_norm_factor, size_t p_offset)
{
float CV_DECL_ALIGNED(32) tmp[8] = { 0,0,0,0,0,0,0,0 };
CvHidHaarTreeNode* nodes[8];
nodes[0] = classifier[0].node;
nodes[1] = classifier[1].node;
nodes[2] = classifier[2].node;
nodes[3] = classifier[3].node;
nodes[4] = classifier[4].node;
nodes[5] = classifier[5].node;
nodes[6] = classifier[6].node;
nodes[7] = classifier[7].node;
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor));
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
nodes[6]->threshold,
nodes[5]->threshold,
nodes[4]->threshold,
nodes[3]->threshold,
nodes[2]->threshold,
nodes[1]->threshold,
nodes[0]->threshold));
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset),
calc_sumf(nodes[6]->feature.rect[0], p_offset),
calc_sumf(nodes[5]->feature.rect[0], p_offset),
calc_sumf(nodes[4]->feature.rect[0], p_offset),
calc_sumf(nodes[3]->feature.rect[0], p_offset),
calc_sumf(nodes[2]->feature.rect[0], p_offset),
calc_sumf(nodes[1]->feature.rect[0], p_offset),
calc_sumf(nodes[0]->feature.rect[0], p_offset));
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
nodes[6]->feature.rect[0].weight,
nodes[5]->feature.rect[0].weight,
nodes[4]->feature.rect[0].weight,
nodes[3]->feature.rect[0].weight,
nodes[2]->feature.rect[0].weight,
nodes[1]->feature.rect[0].weight,
nodes[0]->feature.rect[0].weight);
__m256 sum = _mm256_mul_ps(offset, weight);
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset),
calc_sumf(nodes[6]->feature.rect[1], p_offset),
calc_sumf(nodes[5]->feature.rect[1], p_offset),
calc_sumf(nodes[4]->feature.rect[1], p_offset),
calc_sumf(nodes[3]->feature.rect[1], p_offset),
calc_sumf(nodes[2]->feature.rect[1], p_offset),
calc_sumf(nodes[1]->feature.rect[1], p_offset),
calc_sumf(nodes[0]->feature.rect[1], p_offset));
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
nodes[6]->feature.rect[1].weight,
nodes[5]->feature.rect[1].weight,
nodes[4]->feature.rect[1].weight,
nodes[3]->feature.rect[1].weight,
nodes[2]->feature.rect[1].weight,
nodes[1]->feature.rect[1].weight,
nodes[0]->feature.rect[1].weight);
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight));
if (nodes[0]->feature.rect[2].p0)
tmp[0] = calc_sumf(nodes[0]->feature.rect[2], p_offset) * nodes[0]->feature.rect[2].weight;
if (nodes[1]->feature.rect[2].p0)
tmp[1] = calc_sumf(nodes[1]->feature.rect[2], p_offset) * nodes[1]->feature.rect[2].weight;
if (nodes[2]->feature.rect[2].p0)
tmp[2] = calc_sumf(nodes[2]->feature.rect[2], p_offset) * nodes[2]->feature.rect[2].weight;
if (nodes[3]->feature.rect[2].p0)
tmp[3] = calc_sumf(nodes[3]->feature.rect[2], p_offset) * nodes[3]->feature.rect[2].weight;
if (nodes[4]->feature.rect[2].p0)
tmp[4] = calc_sumf(nodes[4]->feature.rect[2], p_offset) * nodes[4]->feature.rect[2].weight;
if (nodes[5]->feature.rect[2].p0)
tmp[5] = calc_sumf(nodes[5]->feature.rect[2], p_offset) * nodes[5]->feature.rect[2].weight;
if (nodes[6]->feature.rect[2].p0)
tmp[6] = calc_sumf(nodes[6]->feature.rect[2], p_offset) * nodes[6]->feature.rect[2].weight;
if (nodes[7]->feature.rect[2].p0)
tmp[7] = calc_sumf(nodes[7]->feature.rect[2], p_offset) * nodes[7]->feature.rect[2].weight;
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp));
__m256 alpha0 = _mm256_set_ps(classifier[7].alpha[0],
classifier[6].alpha[0],
classifier[5].alpha[0],
classifier[4].alpha[0],
classifier[3].alpha[0],
classifier[2].alpha[0],
classifier[1].alpha[0],
classifier[0].alpha[0]);
__m256 alpha1 = _mm256_set_ps(classifier[7].alpha[1],
classifier[6].alpha[1],
classifier[5].alpha[1],
classifier[4].alpha[1],
classifier[3].alpha[1],
classifier[2].alpha[1],
classifier[1].alpha[1],
classifier[0].alpha[1]);
__m256 outBuf = _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ));
outBuf = _mm256_hadd_ps(outBuf, outBuf);
outBuf = _mm256_hadd_ps(outBuf, outBuf);
_mm256_store_ps(tmp, outBuf);
return (tmp[0] + tmp[4]);
}
double icvEvalHidHaarStumpClassifierTwoRectAVX(CvHidHaarClassifier* classifier,
double variance_norm_factor, size_t p_offset)
{
float CV_DECL_ALIGNED(32) buf[8];
CvHidHaarTreeNode* nodes[8];
nodes[0] = classifier[0].node;
nodes[1] = classifier[1].node;
nodes[2] = classifier[2].node;
nodes[3] = classifier[3].node;
nodes[4] = classifier[4].node;
nodes[5] = classifier[5].node;
nodes[6] = classifier[6].node;
nodes[7] = classifier[7].node;
__m256 t = _mm256_set1_ps(static_cast<float>(variance_norm_factor));
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,
nodes[6]->threshold,
nodes[5]->threshold,
nodes[4]->threshold,
nodes[3]->threshold,
nodes[2]->threshold,
nodes[1]->threshold,
nodes[0]->threshold));
__m256 offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[0], p_offset),
calc_sumf(nodes[6]->feature.rect[0], p_offset),
calc_sumf(nodes[5]->feature.rect[0], p_offset),
calc_sumf(nodes[4]->feature.rect[0], p_offset),
calc_sumf(nodes[3]->feature.rect[0], p_offset),
calc_sumf(nodes[2]->feature.rect[0], p_offset),
calc_sumf(nodes[1]->feature.rect[0], p_offset),
calc_sumf(nodes[0]->feature.rect[0], p_offset));
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight,
nodes[6]->feature.rect[0].weight,
nodes[5]->feature.rect[0].weight,
nodes[4]->feature.rect[0].weight,
nodes[3]->feature.rect[0].weight,
nodes[2]->feature.rect[0].weight,
nodes[1]->feature.rect[0].weight,
nodes[0]->feature.rect[0].weight);
__m256 sum = _mm256_mul_ps(offset, weight);
offset = _mm256_set_ps(calc_sumf(nodes[7]->feature.rect[1], p_offset),
calc_sumf(nodes[6]->feature.rect[1], p_offset),
calc_sumf(nodes[5]->feature.rect[1], p_offset),
calc_sumf(nodes[4]->feature.rect[1], p_offset),
calc_sumf(nodes[3]->feature.rect[1], p_offset),
calc_sumf(nodes[2]->feature.rect[1], p_offset),
calc_sumf(nodes[1]->feature.rect[1], p_offset),
calc_sumf(nodes[0]->feature.rect[1], p_offset));
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight,
nodes[6]->feature.rect[1].weight,
nodes[5]->feature.rect[1].weight,
nodes[4]->feature.rect[1].weight,
nodes[3]->feature.rect[1].weight,
nodes[2]->feature.rect[1].weight,
nodes[1]->feature.rect[1].weight,
nodes[0]->feature.rect[1].weight);
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset, weight));
__m256 alpha0 = _mm256_set_ps(classifier[7].alpha[0],
classifier[6].alpha[0],
classifier[5].alpha[0],
classifier[4].alpha[0],
classifier[3].alpha[0],
classifier[2].alpha[0],
classifier[1].alpha[0],
classifier[0].alpha[0]);
__m256 alpha1 = _mm256_set_ps(classifier[7].alpha[1],
classifier[6].alpha[1],
classifier[5].alpha[1],
classifier[4].alpha[1],
classifier[3].alpha[1],
classifier[2].alpha[1],
classifier[1].alpha[1],
classifier[0].alpha[1]);
_mm256_store_ps(buf, _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ)));
return (buf[0] + buf[1] + buf[2] + buf[3] + buf[4] + buf[5] + buf[6] + buf[7]);
}
#endif //CV_HAAR_USE_AVX
}
/* End of file. */

File diff suppressed because it is too large Load Diff

@ -1,101 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* Haar features calculation */
#ifndef OPENCV_OBJDETECT_HAAR_HPP
#define OPENCV_OBJDETECT_HAAR_HPP
#define CV_HAAR_FEATURE_MAX_LOCAL 3
typedef int sumtype;
typedef double sqsumtype;
typedef struct CvHidHaarFeature
{
struct
{
sumtype *p0, *p1, *p2, *p3;
float weight;
}
rect[CV_HAAR_FEATURE_MAX_LOCAL];
} CvHidHaarFeature;
typedef struct CvHidHaarTreeNode
{
CvHidHaarFeature feature;
float threshold;
int left;
int right;
} CvHidHaarTreeNode;
typedef struct CvHidHaarClassifier
{
int count;
//CvHaarFeature* orig_feature;
CvHidHaarTreeNode* node;
float* alpha;
} CvHidHaarClassifier;
#define calc_sumf(rect,offset) \
static_cast<float>((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
namespace cv_haar_avx
{
#if 0 /*CV_TRY_AVX*/
#define CV_HAAR_USE_AVX 1
#else
#define CV_HAAR_USE_AVX 0
#endif
#if CV_HAAR_USE_AVX
// AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
double icvEvalHidHaarClassifierAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
double icvEvalHidHaarStumpClassifierAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
double icvEvalHidHaarStumpClassifierTwoRectAVX(CvHidHaarClassifier* classifier, double variance_norm_factor, size_t p_offset);
#endif
}
#endif
/* End of file. */

@ -404,7 +404,6 @@ protected:
virtual void readDetector( const FileNode& fn );
virtual void writeDetector( FileStorage& fs, int di );
virtual int detectMultiScale( int di, const Mat& img, vector<Rect>& objects );
virtual int detectMultiScale_C( const string& filename, int di, const Mat& img, vector<Rect>& objects );
vector<int> flags;
};
@ -434,36 +433,6 @@ void CV_CascadeDetectorTest::writeDetector( FileStorage& fs, int di )
fs << C_SCALE_CASCADE << sc;
}
int CV_CascadeDetectorTest::detectMultiScale_C( const string& filename,
int di, const Mat& img,
vector<Rect>& objects )
{
Ptr<CvHaarClassifierCascade> c_cascade(cvLoadHaarClassifierCascade(filename.c_str(), cvSize(0,0)));
Ptr<CvMemStorage> storage(cvCreateMemStorage());
if( !c_cascade )
{
ts->printf( cvtest::TS::LOG, "cascade %s can not be opened");
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
Mat grayImg;
cvtColor( img, grayImg, COLOR_BGR2GRAY );
equalizeHist( grayImg, grayImg );
CvMat c_gray = cvMat(grayImg);
CvSeq* rs = cvHaarDetectObjects(&c_gray, c_cascade, storage, 1.1, 3, flags[di] );
objects.clear();
for( int i = 0; i < rs->total; i++ )
{
Rect r = *(Rect*)cvGetSeqElem(rs, i);
objects.push_back(r);
}
return cvtest::TS::OK;
}
int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img,
vector<Rect>& objects)
{
@ -471,11 +440,6 @@ int CV_CascadeDetectorTest::detectMultiScale( int di, const Mat& img,
filename = dataPath + detectorFilenames[di];
const string pattern = "haarcascade_frontalface_default.xml";
if( filename.size() >= pattern.size() &&
strcmp(filename.c_str() + (filename.size() - pattern.size()),
pattern.c_str()) == 0 )
return detectMultiScale_C(filename, di, img, objects);
CascadeClassifier cascade( filename );
if( cascade.empty() )
{

@ -6,6 +6,5 @@
#include "opencv2/ts.hpp"
#include "opencv2/objdetect.hpp"
#include "opencv2/objdetect/objdetect_c.h"
#endif

Loading…
Cancel
Save