|
|
|
@ -652,80 +652,102 @@ HoughLinesProbabilistic( Mat& image, |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
|
|
|
|
|
double min_theta, double max_theta) |
|
|
|
|
static bool ocl_makePointsList(InputArray _src, OutputArray _pointsList, InputOutputArray _counters) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(_src.type() == CV_8UC1); |
|
|
|
|
|
|
|
|
|
if (max_theta < 0 || max_theta > CV_PI ) { |
|
|
|
|
CV_Error( CV_StsBadArg, "max_theta must fall between 0 and pi" ); |
|
|
|
|
} |
|
|
|
|
if (min_theta < 0 || min_theta > max_theta ) { |
|
|
|
|
CV_Error( CV_StsBadArg, "min_theta must fall between 0 and max_theta" ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
UMat src = _src.getUMat(); |
|
|
|
|
|
|
|
|
|
float irho = (float) (1 / rho); |
|
|
|
|
int numangle = cvRound((max_theta - min_theta) / theta); |
|
|
|
|
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); |
|
|
|
|
_pointsList.create(1, (int) src.total(), CV_32SC1); |
|
|
|
|
UMat pointsList = _pointsList.getUMat(); |
|
|
|
|
UMat counters = _counters.getUMat(); |
|
|
|
|
ocl::Device dev = ocl::Device::getDefault(); |
|
|
|
|
|
|
|
|
|
// make list of nonzero points
|
|
|
|
|
const int pixelsPerWI = 8; |
|
|
|
|
const int pixelsPerWI = 16; |
|
|
|
|
int workgroup_size = min((int) dev.maxWorkGroupSize(), (src.cols + pixelsPerWI - 1)/pixelsPerWI); |
|
|
|
|
ocl::Kernel pointListKernel("make_point_list", ocl::imgproc::hough_lines_oclsrc,
|
|
|
|
|
format("-D MAKE_POINTS_LIST -D GROUP_SIZE=%d -D LOCAL_SIZE=%d", workgroup_size, src.cols)); |
|
|
|
|
if (pointListKernel.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
UMat pointsList(1, (int) src.total(), CV_32SC1); |
|
|
|
|
UMat counters(1, 2, CV_32SC1, Scalar::all(0)); |
|
|
|
|
pointListKernel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(pointsList), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(counters)); |
|
|
|
|
|
|
|
|
|
size_t localThreads[2] = { workgroup_size, 1 }; |
|
|
|
|
size_t globalThreads[2] = { workgroup_size, src.rows }; |
|
|
|
|
|
|
|
|
|
if (!pointListKernel.run(2, globalThreads, localThreads, false)) |
|
|
|
|
return false; |
|
|
|
|
return pointListKernel.run(2, globalThreads, localThreads, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0); |
|
|
|
|
if (total_points <= 0) |
|
|
|
|
{ |
|
|
|
|
_lines.assign(UMat(0,0,CV_32FC2)); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
static bool ocl_fillAccum(InputArray _pointsList, OutputArray _accum, int total_points, double rho, double theta, int numrho, int numangle) |
|
|
|
|
{ |
|
|
|
|
UMat pointsList = _pointsList.getUMat(); |
|
|
|
|
_accum.create(numangle + 2, numrho + 2, CV_32SC1); |
|
|
|
|
UMat accum = _accum.getUMat(); |
|
|
|
|
ocl::Device dev = ocl::Device::getDefault(); |
|
|
|
|
|
|
|
|
|
float irho = (float) (1 / rho); |
|
|
|
|
int workgroup_size = min((int) dev.maxWorkGroupSize(), total_points); |
|
|
|
|
|
|
|
|
|
// convert src image to hough space
|
|
|
|
|
UMat accum(numangle + 2, numrho + 2, CV_32SC1); |
|
|
|
|
workgroup_size = min((int) dev.maxWorkGroupSize(), total_points); |
|
|
|
|
ocl::Kernel fillAccumKernel; |
|
|
|
|
size_t* fillAccumLT = NULL; |
|
|
|
|
size_t localThreads[2]; |
|
|
|
|
size_t globalThreads[2]; |
|
|
|
|
|
|
|
|
|
int local_memory_needed = (numrho + 2)*sizeof(int); |
|
|
|
|
if (local_memory_needed > dev.localMemSize()) |
|
|
|
|
{ |
|
|
|
|
accum.setTo(Scalar::all(0)); |
|
|
|
|
fillAccumKernel.create("fill_accum_global", ocl::imgproc::hough_lines_oclsrc, |
|
|
|
|
format("-D FILL_ACCUM_GLOBAL")); |
|
|
|
|
if (fillAccumKernel.empty()) |
|
|
|
|
return false; |
|
|
|
|
globalThreads[0] = workgroup_size; globalThreads[1] = numangle; |
|
|
|
|
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnly(accum), |
|
|
|
|
total_points, irho, (float) theta, numrho, numangle); |
|
|
|
|
return fillAccumKernel.run(2, globalThreads, NULL, false); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
fillAccumKernel.create("fill_accum_local", ocl::imgproc::hough_lines_oclsrc, |
|
|
|
|
format("-D FILL_ACCUM_LOCAL -D LOCAL_SIZE=%d -D BUFFER_SIZE=%d", workgroup_size, numrho + 2)); |
|
|
|
|
if (fillAccumKernel.empty()) |
|
|
|
|
return false; |
|
|
|
|
localThreads[0] = workgroup_size; localThreads[1] = 1; |
|
|
|
|
globalThreads[0] = workgroup_size; globalThreads[1] = numangle+2; |
|
|
|
|
fillAccumLT = localThreads; |
|
|
|
|
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnly(accum), |
|
|
|
|
total_points, irho, (float) theta, numrho, numangle); |
|
|
|
|
return fillAccumKernel.run(2, globalThreads, localThreads, false); |
|
|
|
|
} |
|
|
|
|
if (fillAccumKernel.empty()) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
|
|
|
|
|
double min_theta, double max_theta) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(_src.type() == CV_8UC1); |
|
|
|
|
|
|
|
|
|
if (max_theta < 0 || max_theta > CV_PI ) { |
|
|
|
|
CV_Error( CV_StsBadArg, "max_theta must fall between 0 and pi" ); |
|
|
|
|
} |
|
|
|
|
if (min_theta < 0 || min_theta > max_theta ) { |
|
|
|
|
CV_Error( CV_StsBadArg, "min_theta must fall between 0 and max_theta" ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
UMat src = _src.getUMat(); |
|
|
|
|
int numangle = cvRound((max_theta - min_theta) / theta); |
|
|
|
|
int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); |
|
|
|
|
|
|
|
|
|
UMat pointsList; |
|
|
|
|
UMat counters(1, 2, CV_32SC1, Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
if (!ocl_makePointsList(src, pointsList, counters)) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnly(accum), |
|
|
|
|
total_points, irho, (float) theta, numrho, numangle); |
|
|
|
|
int total_points = counters.getMat(ACCESS_READ).at<int>(0, 0); |
|
|
|
|
if (total_points <= 0) |
|
|
|
|
{ |
|
|
|
|
_lines.assign(UMat(0,0,CV_32FC2)); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (!fillAccumKernel.run(2, globalThreads, fillAccumLT, false)) |
|
|
|
|
UMat accum; |
|
|
|
|
if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle)) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
const int pixPerWI = 8; |
|
|
|
@ -741,7 +763,7 @@ static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, doub |
|
|
|
|
getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::WriteOnlyNoSize(lines), |
|
|
|
|
ocl::KernelArg::PtrWriteOnly(counters), linesMax, threshold, (float) rho, (float) theta); |
|
|
|
|
|
|
|
|
|
globalThreads[0] = (numrho + pixPerWI - 1)/pixPerWI; globalThreads[1] = numangle; |
|
|
|
|
size_t globalThreads[2] = { (numrho + pixPerWI - 1)/pixPerWI, numangle }; |
|
|
|
|
if (!getLinesKernel.run(2, globalThreads, NULL, false)) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
@ -753,13 +775,23 @@ static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, doub |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, double theta, int threshold,
|
|
|
|
|
double minLineLength, double maxGap) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(_src.type() == CV_8UC1); |
|
|
|
|
|
|
|
|
|
UMat src = _src.getUMat(); |
|
|
|
|
|
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::HoughLines( InputArray _image, OutputArray _lines, |
|
|
|
|
double rho, double theta, int threshold, |
|
|
|
|
double srn, double stn, double min_theta, double max_theta ) |
|
|
|
|
{ |
|
|
|
|
CV_OCL_RUN(srn == 0 && stn == 0 && _lines.isUMat(),
|
|
|
|
|
CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && _lines.isUMat(),
|
|
|
|
|
ocl_HoughLines(_image, _lines, rho, theta, threshold, min_theta, max_theta)); |
|
|
|
|
|
|
|
|
|
Mat image = _image.getMat(); |
|
|
|
@ -778,6 +810,8 @@ void cv::HoughLinesP(InputArray _image, OutputArray _lines, |
|
|
|
|
double rho, double theta, int threshold, |
|
|
|
|
double minLineLength, double maxGap ) |
|
|
|
|
{ |
|
|
|
|
CV_OCL_RUN(_image.isUMat() && _lines.isUMat(), ocl_HoughLinesP(_image, _lines, rho, theta, threshold, minLineLength, maxGap)); |
|
|
|
|
|
|
|
|
|
Mat image = _image.getMat(); |
|
|
|
|
std::vector<Vec4i> lines; |
|
|
|
|
HoughLinesProbabilistic(image, (float)rho, (float)theta, threshold, cvRound(minLineLength), cvRound(maxGap), lines, INT_MAX); |
|
|
|
|