generalize number of channels

plus minor edits and fixes
pull/8750/head
Amro 8 years ago
parent 913a2dbdaa
commit 39954cc6af
  1. 2
      modules/photo/include/opencv2/photo.hpp
  2. 96
      modules/photo/src/calibrate.cpp
  3. 3
      modules/photo/src/hdr_common.cpp
  4. 2
      modules/photo/src/hdr_common.hpp
  5. 2
      modules/photo/src/merge.cpp

@ -591,7 +591,7 @@ public:
@param samples number of pixel locations to use
@param lambda smoothness term weight. Greater values produce smoother results, but can alter the
response.
@param random if true sample pixel locations are chosen at random, otherwise the form a
@param random if true sample pixel locations are chosen at random, otherwise they form a
rectangular grid.
*/
CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false);

@ -43,7 +43,6 @@
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
//#include "opencv2/highgui.hpp"
#include "hdr_common.hpp"
namespace cv
@ -57,7 +56,7 @@ public:
samples(_samples),
lambda(_lambda),
random(_random),
w(tringleWeights())
w(triangleWeights())
{
}
@ -65,6 +64,7 @@ public:
{
CV_INSTRUMENT_REGION()
// check inputs
std::vector<Mat> images;
src.getMatVector(images);
Mat times = _times.getMat();
@ -72,62 +72,88 @@ public:
CV_Assert(images.size() == times.total());
checkImageDimensions(images);
CV_Assert(images[0].depth() == CV_8U);
CV_Assert(times.type() == CV_32FC1);
// create output
int channels = images[0].channels();
int CV_32FCC = CV_MAKETYPE(CV_32F, channels);
int rows = images[0].rows;
int cols = images[0].cols;
dst.create(LDR_SIZE, 1, CV_32FCC);
Mat result = dst.getMat();
std::vector<Point> sample_points;
// pick pixel locations (either random or in a rectangular grid)
std::vector<Point> points;
points.reserve(samples);
if(random) {
for(int i = 0; i < samples; i++) {
sample_points.push_back(Point(rand() % images[0].cols, rand() % images[0].rows));
points.push_back(Point(rand() % cols, rand() % rows));
}
} else {
int x_points = static_cast<int>(sqrt(static_cast<double>(samples) * images[0].cols / images[0].rows));
int x_points = static_cast<int>(sqrt(static_cast<double>(samples) * cols / rows));
CV_Assert(0 < x_points && x_points <= cols);
int y_points = samples / x_points;
int step_x = images[0].cols / x_points;
int step_y = images[0].rows / y_points;
CV_Assert(0 < y_points && y_points <= rows);
int step_x = cols / x_points;
int step_y = rows / y_points;
for(int i = 0, x = step_x / 2; i < x_points; i++, x += step_x) {
for(int j = 0, y = step_y / 2; j < y_points; j++, y += step_y) {
if( 0 <= x && x < images[0].cols &&
0 <= y && y < images[0].rows )
sample_points.push_back(Point(x, y));
if( 0 <= x && x < cols && 0 <= y && y < rows ) {
points.push_back(Point(x, y));
}
}
}
// we can have slightly less grid points than specified
//samples = static_cast<int>(points.size());
}
// we need enough equations to ensure a sufficiently overdetermined system
// (maybe only as a warning)
//CV_Assert(points.size() * (images.size() - 1) >= LDR_SIZE);
// solve for imaging system response function, over each channel separately
std::vector<Mat> result_split(channels);
for(int channel = 0; channel < channels; channel++) {
Mat A = Mat::zeros((int)sample_points.size() * (int)images.size() + LDR_SIZE + 1, LDR_SIZE + (int)sample_points.size(), CV_32F);
for(int ch = 0; ch < channels; ch++) {
// initialize system of linear equations
Mat A = Mat::zeros((int)points.size() * (int)images.size() + LDR_SIZE + 1,
LDR_SIZE + (int)points.size(), CV_32F);
Mat B = Mat::zeros(A.rows, 1, CV_32F);
int eq = 0;
for(size_t i = 0; i < sample_points.size(); i++) {
// include the data−fitting equations
int k = 0;
for(size_t i = 0; i < points.size(); i++) {
for(size_t j = 0; j < images.size(); j++) {
int val = images[j].ptr()[3*(sample_points[i].y * images[j].cols + sample_points[i].x) + channel];
A.at<float>(eq, val) = w.at<float>(val);
A.at<float>(eq, LDR_SIZE + (int)i) = -w.at<float>(val);
B.at<float>(eq, 0) = w.at<float>(val) * log(times.at<float>((int)j));
eq++;
// val = images[j].at<Vec3b>(points[i].y, points[i].x)[ch]
int val = images[j].ptr()[channels*(points[i].y * cols + points[i].x) + ch];
float wij = w.at<float>(val);
A.at<float>(k, val) = wij;
A.at<float>(k, LDR_SIZE + (int)i) = -wij;
B.at<float>(k, 0) = wij * log(times.at<float>((int)j));
k++;
}
}
A.at<float>(eq, LDR_SIZE / 2) = 1;
eq++;
for(int i = 0; i < 254; i++) {
A.at<float>(eq, i) = lambda * w.at<float>(i + 1);
A.at<float>(eq, i + 1) = -2 * lambda * w.at<float>(i + 1);
A.at<float>(eq, i + 2) = lambda * w.at<float>(i + 1);
eq++;
// fix the curve by setting its middle value to 0
A.at<float>(k, LDR_SIZE / 2) = 1;
k++;
// include the smoothness equations
for(int i = 0; i < (LDR_SIZE - 2); i++) {
float wi = w.at<float>(i + 1);
A.at<float>(k, i) = lambda * wi;
A.at<float>(k, i + 1) = -2 * lambda * wi;
A.at<float>(k, i + 2) = lambda * wi;
k++;
}
// solve the overdetermined system using SVD (least-squares problem)
Mat solution;
solve(A, B, solution, DECOMP_SVD);
solution.rowRange(0, LDR_SIZE).copyTo(result_split[channel]);
solution.rowRange(0, LDR_SIZE).copyTo(result_split[ch]);
}
// combine log-exposures and take its exponent
merge(result_split, result);
exp(result, result);
}
@ -161,11 +187,11 @@ public:
}
protected:
String name;
int samples;
float lambda;
bool random;
Mat w;
String name; // calibration algorithm identifier
int samples; // number of pixel locations to sample
float lambda; // constant that determines the amount of smoothness
bool random; // whether to sample locations randomly or in a grid shape
Mat w; // weighting function for corresponding pixel values
};
Ptr<CalibrateDebevec> createCalibrateDebevec(int samples, float lambda, bool random)

@ -59,8 +59,9 @@ void checkImageDimensions(const std::vector<Mat>& images)
}
}
Mat tringleWeights()
Mat triangleWeights()
{
// hat function
Mat w(LDR_SIZE, 1, CV_32F);
int half = LDR_SIZE / 2;
for(int i = 0; i < LDR_SIZE; i++) {

@ -50,7 +50,7 @@ namespace cv
void checkImageDimensions(const std::vector<Mat>& images);
Mat tringleWeights();
Mat triangleWeights();
void mapLuminance(Mat src, Mat dst, Mat lum, Mat new_lum, float saturation);

@ -52,7 +52,7 @@ class MergeDebevecImpl : public MergeDebevec
public:
MergeDebevecImpl() :
name("MergeDebevec"),
weights(tringleWeights())
weights(triangleWeights())
{
}

Loading…
Cancel
Save