commit
3956e42507
57 changed files with 4746 additions and 7431 deletions
@ -0,0 +1,125 @@ |
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace cvtest; |
||||
using namespace testing; |
||||
|
||||
void printOsInfo() |
||||
{ |
||||
#if defined _WIN32 |
||||
# if defined _WIN64 |
||||
cout << "OS: Windows x64 \n" << endl; |
||||
# else |
||||
cout << "OS: Windows x32 \n" << endl; |
||||
# endif |
||||
#elif defined linux |
||||
# if defined _LP64 |
||||
cout << "OS: Linux x64 \n" << endl; |
||||
# else |
||||
cout << "OS: Linux x32 \n" << endl; |
||||
# endif |
||||
#elif defined __APPLE__ |
||||
# if defined _LP64 |
||||
cout << "OS: Apple x64 \n" << endl; |
||||
# else |
||||
cout << "OS: Apple x32 \n" << endl; |
||||
# endif |
||||
#endif |
||||
} |
||||
|
||||
void printCudaInfo() |
||||
{ |
||||
#ifndef HAVE_CUDA |
||||
cout << "OpenCV was built without CUDA support \n" << endl; |
||||
#else |
||||
int driver; |
||||
cudaDriverGetVersion(&driver); |
||||
|
||||
cout << "CUDA Driver version: " << driver << '\n'; |
||||
cout << "CUDA Runtime version: " << CUDART_VERSION << '\n'; |
||||
|
||||
cout << endl; |
||||
|
||||
cout << "GPU module was compiled for the following GPU archs:" << endl; |
||||
cout << " BIN: " << CUDA_ARCH_BIN << '\n'; |
||||
cout << " PTX: " << CUDA_ARCH_PTX << '\n'; |
||||
|
||||
cout << endl; |
||||
|
||||
int deviceCount = getCudaEnabledDeviceCount(); |
||||
cout << "CUDA device count: " << deviceCount << '\n'; |
||||
|
||||
cout << endl; |
||||
|
||||
for (int i = 0; i < deviceCount; ++i) |
||||
{ |
||||
DeviceInfo info(i); |
||||
|
||||
cout << "Device [" << i << "] \n"; |
||||
cout << "\t Name: " << info.name() << '\n'; |
||||
cout << "\t Compute capability: " << info.majorVersion() << '.' << info.minorVersion()<< '\n'; |
||||
cout << "\t Multi Processor Count: " << info.multiProcessorCount() << '\n'; |
||||
cout << "\t Total memory: " << static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0) << " Mb \n"; |
||||
cout << "\t Free memory: " << static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0) << " Mb \n"; |
||||
if (!info.isCompatible()) |
||||
cout << "\t !!! This device is NOT compatible with current GPU module build \n"; |
||||
|
||||
cout << endl; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
CommandLineParser cmd(argc, (const char**) argv, |
||||
"{ print_info_only | print_info_only | false | Print information about system and exit }" |
||||
"{ device | device | 0 | Device on which tests will be executed }" |
||||
"{ cpu | cpu | false | Run tests on cpu }" |
||||
); |
||||
|
||||
printOsInfo(); |
||||
printCudaInfo(); |
||||
|
||||
if (cmd.get<bool>("print_info_only")) |
||||
return 0; |
||||
|
||||
int device = cmd.get<int>("device"); |
||||
bool cpu = cmd.get<bool>("cpu"); |
||||
#ifndef HAVE_CUDA |
||||
cpu = true; |
||||
#endif |
||||
|
||||
if (cpu) |
||||
{ |
||||
runOnGpu = false; |
||||
|
||||
cout << "Run tests on CPU \n" << endl; |
||||
} |
||||
else |
||||
{ |
||||
runOnGpu = true; |
||||
|
||||
if (device < 0 || device >= getCudaEnabledDeviceCount()) |
||||
{ |
||||
cerr << "Incorrect device index - " << device << endl; |
||||
return -1; |
||||
} |
||||
|
||||
DeviceInfo info(device); |
||||
if (!info.isCompatible()) |
||||
{ |
||||
cerr << "Device " << device << " [" << info.name() << "] is NOT compatible with current GPU module build" << endl; |
||||
return -1; |
||||
} |
||||
|
||||
setDevice(device); |
||||
|
||||
cout << "Run tests on device " << device << " [" << info.name() << "] \n" << endl; |
||||
} |
||||
|
||||
InitGoogleTest(&argc, argv); |
||||
perf::TestBase::Init(argc, argv); |
||||
return RUN_ALL_TESTS(); |
||||
} |
File diff suppressed because it is too large
Load Diff
@ -1,209 +1,278 @@ |
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
using namespace std; |
||||
using namespace testing; |
||||
|
||||
namespace { |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SURF
|
||||
|
||||
GPU_PERF_TEST_1(SURF, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GetParam(); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
DEF_PARAM_TEST_1(Image, string); |
||||
|
||||
cv::Mat img_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img_host.empty()); |
||||
PERF_TEST_P(Image, Features2D_SURF, Values<string>("gpu/perf/aloe.jpg")) |
||||
{ |
||||
declare.time(50.0); |
||||
|
||||
cv::gpu::SURF_GPU surf; |
||||
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::gpu::GpuMat img(img_host); |
||||
cv::gpu::GpuMat keypoints, descriptors; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::SURF_GPU d_surf; |
||||
|
||||
surf(img, cv::gpu::GpuMat(), keypoints, descriptors); |
||||
cv::gpu::GpuMat d_img(img); |
||||
cv::gpu::GpuMat d_keypoints, d_descriptors; |
||||
|
||||
declare.time(2.0); |
||||
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_surf(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
surf(img, cv::gpu::GpuMat(), keypoints, descriptors); |
||||
cv::SURF surf; |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
cv::Mat descriptors; |
||||
|
||||
surf(img, cv::noArray(), keypoints, descriptors); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
keypoints.clear(); |
||||
surf(img, cv::noArray(), keypoints, descriptors); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, SURF, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// FAST
|
||||
|
||||
GPU_PERF_TEST_1(FAST, cv::gpu::DeviceInfo) |
||||
PERF_TEST_P(Image, Features2D_FAST, Values<string>("gpu/perf/aloe.jpg")) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GetParam(); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat img_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img_host.empty()); |
||||
|
||||
cv::gpu::FAST_GPU fast(20); |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::FAST_GPU d_fast(20); |
||||
|
||||
cv::gpu::GpuMat img(img_host); |
||||
cv::gpu::GpuMat keypoints; |
||||
cv::gpu::GpuMat d_img(img); |
||||
cv::gpu::GpuMat d_keypoints; |
||||
|
||||
fast(img, cv::gpu::GpuMat(), keypoints); |
||||
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_fast(d_img, cv::gpu::GpuMat(), d_keypoints); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
fast(img, cv::gpu::GpuMat(), keypoints); |
||||
std::vector<cv::KeyPoint> keypoints; |
||||
|
||||
cv::FAST(img, keypoints, 20); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
keypoints.clear(); |
||||
cv::FAST(img, keypoints, 20); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, FAST, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// ORB
|
||||
|
||||
GPU_PERF_TEST_1(ORB, cv::gpu::DeviceInfo) |
||||
PERF_TEST_P(Image, Features2D_ORB, Values<string>("gpu/perf/aloe.jpg")) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GetParam(); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat img_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img_host.empty()); |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::ORB_GPU d_orb(4000); |
||||
|
||||
cv::gpu::ORB_GPU orb(4000); |
||||
cv::gpu::GpuMat d_img(img); |
||||
cv::gpu::GpuMat d_keypoints, d_descriptors; |
||||
|
||||
cv::gpu::GpuMat img(img_host); |
||||
cv::gpu::GpuMat keypoints, descriptors; |
||||
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
orb(img, cv::gpu::GpuMat(), keypoints, descriptors); |
||||
cv::ORB orb(4000); |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
cv::Mat descriptors; |
||||
|
||||
orb(img, cv::noArray(), keypoints, descriptors); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
keypoints.clear(); |
||||
orb(img, cv::noArray(), keypoints, descriptors); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, ORB, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// BruteForceMatcher_match
|
||||
// BFMatch
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(DescriptorSize, int) |
||||
DEF_PARAM_TEST(DescSize_Norm, int, NormType); |
||||
|
||||
GPU_PERF_TEST(BruteForceMatcher_match, cv::gpu::DeviceInfo, DescriptorSize, NormType) |
||||
PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
int desc_size = GET_PARAM(1); |
||||
int normType = GET_PARAM(2); |
||||
int desc_size = GET_PARAM(0); |
||||
int normType = GET_PARAM(1); |
||||
|
||||
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
||||
|
||||
cv::Mat query_host(3000, desc_size, type); |
||||
fill(query_host, 0.0, 10.0); |
||||
|
||||
cv::Mat train_host(3000, desc_size, type); |
||||
fill(train_host, 0.0, 10.0); |
||||
cv::Mat query(3000, desc_size, type); |
||||
fillRandom(query); |
||||
|
||||
cv::gpu::BFMatcher_GPU matcher(normType); |
||||
cv::Mat train(3000, desc_size, type); |
||||
fillRandom(train); |
||||
|
||||
cv::gpu::GpuMat query(query_host); |
||||
cv::gpu::GpuMat train(train_host); |
||||
cv::gpu::GpuMat trainIdx, distance; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::BFMatcher_GPU d_matcher(normType); |
||||
|
||||
matcher.matchSingle(query, train, trainIdx, distance); |
||||
cv::gpu::GpuMat d_query(query); |
||||
cv::gpu::GpuMat d_train(train); |
||||
cv::gpu::GpuMat d_trainIdx, d_distance; |
||||
|
||||
declare.time(3.0); |
||||
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
matcher.matchSingle(query, train, trainIdx, distance); |
||||
cv::BFMatcher matcher(normType); |
||||
|
||||
std::vector<cv::DMatch> matches; |
||||
|
||||
matcher.match(query, train, matches); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
matcher.match(query, train, matches); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_match, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
||||
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// BruteForceMatcher_knnMatch
|
||||
// BFKnnMatch
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(K, int) |
||||
DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType); |
||||
|
||||
GPU_PERF_TEST(BruteForceMatcher_knnMatch, cv::gpu::DeviceInfo, DescriptorSize, K, NormType) |
||||
PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine( |
||||
Values(64, 128, 256), |
||||
Values(2, 3), |
||||
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(30.0); |
||||
|
||||
int desc_size = GET_PARAM(1); |
||||
int k = GET_PARAM(2); |
||||
int normType = GET_PARAM(3); |
||||
int desc_size = GET_PARAM(0); |
||||
int k = GET_PARAM(1); |
||||
int normType = GET_PARAM(2); |
||||
|
||||
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
||||
|
||||
cv::Mat query_host(3000, desc_size, type); |
||||
fill(query_host, 0.0, 10.0); |
||||
|
||||
cv::Mat train_host(3000, desc_size, type); |
||||
fill(train_host, 0.0, 10.0); |
||||
cv::Mat query(3000, desc_size, type); |
||||
fillRandom(query); |
||||
|
||||
cv::gpu::BFMatcher_GPU matcher(normType); |
||||
cv::Mat train(3000, desc_size, type); |
||||
fillRandom(train); |
||||
|
||||
cv::gpu::GpuMat query(query_host); |
||||
cv::gpu::GpuMat train(train_host); |
||||
cv::gpu::GpuMat trainIdx, distance, allDist; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::BFMatcher_GPU d_matcher(normType); |
||||
|
||||
matcher.knnMatchSingle(query, train, trainIdx, distance, allDist, k); |
||||
cv::gpu::GpuMat d_query(query); |
||||
cv::gpu::GpuMat d_train(train); |
||||
cv::gpu::GpuMat d_trainIdx, d_distance, d_allDist; |
||||
|
||||
declare.time(3.0); |
||||
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
matcher.knnMatchSingle(query, train, trainIdx, distance, allDist, k); |
||||
cv::BFMatcher matcher(normType); |
||||
|
||||
std::vector< std::vector<cv::DMatch> > matches; |
||||
|
||||
matcher.knnMatch(query, train, matches, k); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
matcher.knnMatch(query, train, matches, k); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_knnMatch, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
||||
testing::Values(K(2), K(3)), |
||||
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// BruteForceMatcher_radiusMatch
|
||||
// BFRadiusMatch
|
||||
|
||||
GPU_PERF_TEST(BruteForceMatcher_radiusMatch, cv::gpu::DeviceInfo, DescriptorSize, NormType) |
||||
PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(30.0); |
||||
|
||||
int desc_size = GET_PARAM(1); |
||||
int normType = GET_PARAM(2); |
||||
int desc_size = GET_PARAM(0); |
||||
int normType = GET_PARAM(1); |
||||
|
||||
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
||||
|
||||
cv::Mat query_host(3000, desc_size, type); |
||||
fill(query_host, 0.0, 1.0); |
||||
|
||||
cv::Mat train_host(3000, desc_size, type); |
||||
fill(train_host, 0.0, 1.0); |
||||
cv::Mat query(3000, desc_size, type); |
||||
fillRandom(query, 0.0, 1.0); |
||||
|
||||
cv::gpu::BFMatcher_GPU matcher(normType); |
||||
cv::Mat train(3000, desc_size, type); |
||||
fillRandom(train, 0.0, 1.0); |
||||
|
||||
cv::gpu::GpuMat query(query_host); |
||||
cv::gpu::GpuMat train(train_host); |
||||
cv::gpu::GpuMat trainIdx, nMatches, distance; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::BFMatcher_GPU d_matcher(normType); |
||||
|
||||
matcher.radiusMatchSingle(query, train, trainIdx, distance, nMatches, 2.0); |
||||
cv::gpu::GpuMat d_query(query); |
||||
cv::gpu::GpuMat d_train(train); |
||||
cv::gpu::GpuMat d_trainIdx, d_nMatches, d_distance; |
||||
|
||||
declare.time(3.0); |
||||
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, 2.0); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
matcher.radiusMatchSingle(query, train, trainIdx, distance, nMatches, 2.0); |
||||
cv::BFMatcher matcher(normType); |
||||
|
||||
std::vector< std::vector<cv::DMatch> > matches; |
||||
|
||||
matcher.radiusMatch(query, train, matches, 2.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
matcher.radiusMatch(query, train, matches, 2.0); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_radiusMatch, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
||||
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
||||
|
||||
#endif |
||||
} // namespace
|
||||
|
@ -1,308 +1,379 @@ |
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
using namespace std; |
||||
using namespace testing; |
||||
|
||||
namespace { |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Blur
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(KernelSize, int) |
||||
DEF_PARAM_TEST(Sz_Type_KernelSz, cv::Size, MatType, int); |
||||
|
||||
GPU_PERF_TEST(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
PERF_TEST_P(Sz_Type_KernelSz, Filters_Blur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), Values(3, 5, 7))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
int ksize = GET_PARAM(2); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
|
||||
cv::gpu::blur(src, dst, cv::Size(ksize, ksize)); |
||||
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize)); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::blur(d_src, d_dst, cv::Size(ksize, ksize)); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::blur(src, dst, cv::Size(ksize, ksize)); |
||||
cv::Mat dst; |
||||
|
||||
cv::blur(src, dst, cv::Size(ksize, ksize)); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::blur(src, dst, cv::Size(ksize, ksize)); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Blur, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)), |
||||
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Sobel
|
||||
|
||||
GPU_PERF_TEST(Sobel, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
PERF_TEST_P(Sz_Type_KernelSz, Filters_Sobel, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
int ksize = GET_PARAM(2); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat buf; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
cv::gpu::Sobel(src, dst, -1, 1, 1, buf, ksize); |
||||
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::Sobel(d_src, d_dst, -1, 1, 1, d_buf, ksize); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::Sobel(src, dst, -1, 1, 1, buf, ksize); |
||||
cv::Mat dst; |
||||
|
||||
cv::Sobel(src, dst, -1, 1, 1, ksize); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::Sobel(src, dst, -1, 1, 1, ksize); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Sobel, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)), |
||||
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Scharr
|
||||
|
||||
GPU_PERF_TEST(Scharr, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
PERF_TEST_P(Sz_Type, Filters_Scharr, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat buf; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
cv::gpu::Scharr(src, dst, -1, 1, 0, buf); |
||||
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::Scharr(d_src, d_dst, -1, 1, 0, d_buf); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::Scharr(src, dst, -1, 1, 0, buf); |
||||
cv::Mat dst; |
||||
|
||||
cv::Scharr(src, dst, -1, 1, 0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::Scharr(src, dst, -1, 1, 0); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Scharr, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// GaussianBlur
|
||||
|
||||
GPU_PERF_TEST(GaussianBlur, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
PERF_TEST_P(Sz_Type_KernelSz, Filters_GaussianBlur, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1), Values(3, 5, 7, 9, 11, 13, 15))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
int ksize = GET_PARAM(2); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat buf; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
cv::gpu::GaussianBlur(src, dst, cv::Size(ksize, ksize), buf, 0.5); |
||||
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::GaussianBlur(d_src, d_dst, cv::Size(ksize, ksize), d_buf, 0.5); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::GaussianBlur(src, dst, cv::Size(ksize, ksize), buf, 0.5); |
||||
cv::Mat dst; |
||||
|
||||
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, GaussianBlur, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)), |
||||
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Laplacian
|
||||
|
||||
GPU_PERF_TEST(Laplacian, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
PERF_TEST_P(Sz_Type_KernelSz, Filters_Laplacian, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(1, 3))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
int ksize = GET_PARAM(2); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
|
||||
cv::gpu::Laplacian(src, dst, -1, ksize); |
||||
cv::gpu::Laplacian(d_src, d_dst, -1, ksize); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::Laplacian(d_src, d_dst, -1, ksize); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::Laplacian(src, dst, -1, ksize); |
||||
cv::Mat dst; |
||||
|
||||
cv::Laplacian(src, dst, -1, ksize); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::Laplacian(src, dst, -1, ksize); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Laplacian, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)), |
||||
testing::Values(KernelSize(1), KernelSize(3)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Erode
|
||||
|
||||
GPU_PERF_TEST(Erode, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
PERF_TEST_P(Sz_Type, Filters_Erode, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat buf; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
cv::gpu::erode(src, dst, ker, buf); |
||||
cv::gpu::erode(d_src, d_dst, ker, d_buf); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::erode(d_src, d_dst, ker, d_buf); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::erode(src, dst, ker, buf); |
||||
cv::Mat dst; |
||||
|
||||
cv::erode(src, dst, ker); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::erode(src, dst, ker); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Erode, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Dilate
|
||||
|
||||
GPU_PERF_TEST(Dilate, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
PERF_TEST_P(Sz_Type, Filters_Dilate, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat buf; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::GpuMat d_buf; |
||||
|
||||
cv::gpu::dilate(src, dst, ker, buf); |
||||
cv::gpu::dilate(d_src, d_dst, ker, d_buf); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::dilate(d_src, d_dst, ker, d_buf); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::dilate(src, dst, ker, buf); |
||||
cv::Mat dst; |
||||
|
||||
cv::dilate(src, dst, ker); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::dilate(src, dst, ker); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Dilate, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// MorphologyEx
|
||||
|
||||
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT) |
||||
#define ALL_MORPH_OPS testing::Values(MorphOp(cv::MORPH_OPEN), MorphOp(cv::MORPH_CLOSE), MorphOp(cv::MORPH_GRADIENT), MorphOp(cv::MORPH_TOPHAT), MorphOp(cv::MORPH_BLACKHAT)) |
||||
#define ALL_MORPH_OPS ValuesIn(MorphOp::all()) |
||||
|
||||
GPU_PERF_TEST(MorphologyEx, cv::gpu::DeviceInfo, cv::Size, MatType, MorphOp) |
||||
DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, MorphOp); |
||||
|
||||
PERF_TEST_P(Sz_Type_Op, Filters_MorphologyEx, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4), ALL_MORPH_OPS)) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int morphOp = GET_PARAM(3); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
int morphOp = GET_PARAM(2); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
cv::gpu::GpuMat buf1; |
||||
cv::gpu::GpuMat buf2; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
cv::gpu::GpuMat d_buf1; |
||||
cv::gpu::GpuMat d_buf2; |
||||
|
||||
cv::gpu::morphologyEx(src, dst, morphOp, ker, buf1, buf2); |
||||
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::morphologyEx(d_src, d_dst, morphOp, ker, d_buf1, d_buf2); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::morphologyEx(src, dst, morphOp, ker, buf1, buf2); |
||||
cv::Mat dst; |
||||
|
||||
cv::morphologyEx(src, dst, morphOp, ker); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::morphologyEx(src, dst, morphOp, ker); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, MorphologyEx, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)), |
||||
ALL_MORPH_OPS)); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Filter2D
|
||||
|
||||
GPU_PERF_TEST(Filter2D, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
PERF_TEST_P(Sz_Type_KernelSz, Filters_Filter2D, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(3, 5, 7, 9, 11, 13, 15))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
declare.time(20.0); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
cv::Size size = GET_PARAM(0); |
||||
int type = GET_PARAM(1); |
||||
int ksize = GET_PARAM(2); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0.0, 255.0); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::Mat kernel(ksize, ksize, CV_32FC1); |
||||
fill(kernel, 0.0, 1.0); |
||||
fillRandom(kernel, 0.0, 1.0); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
|
||||
cv::gpu::filter2D(src, dst, -1, kernel); |
||||
cv::gpu::filter2D(d_src, d_dst, -1, kernel); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::filter2D(d_src, d_dst, -1, kernel); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::filter2D(src, dst, -1, kernel); |
||||
cv::Mat dst; |
||||
|
||||
cv::filter2D(src, dst, -1, kernel); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::filter2D(src, dst, -1, kernel); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Filter2D, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)), |
||||
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15)))); |
||||
|
||||
#endif |
||||
} // namespace
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,75 +1,136 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistributions in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
using namespace std; |
||||
using namespace testing; |
||||
|
||||
namespace { |
||||
|
||||
GPU_PERF_TEST(ConnectedComponents, cv::gpu::DeviceInfo, cv::Size) |
||||
DEF_PARAM_TEST_1(Image, string); |
||||
|
||||
struct GreedyLabeling |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
struct dot |
||||
{ |
||||
int x; |
||||
int y; |
||||
|
||||
static dot make(int i, int j) |
||||
{ |
||||
dot d; d.x = i; d.y = j; |
||||
return d; |
||||
} |
||||
}; |
||||
|
||||
struct InInterval |
||||
{ |
||||
InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {}; |
||||
const int lo, hi; |
||||
|
||||
bool operator() (const unsigned char a, const unsigned char b) const |
||||
{ |
||||
int d = a - b; |
||||
return lo <= d && d <= hi; |
||||
} |
||||
}; |
||||
|
||||
GreedyLabeling(cv::Mat img) |
||||
: image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {stack = new dot[image.cols * image.rows];} |
||||
|
||||
~GreedyLabeling(){delete[] stack;} |
||||
|
||||
void operator() (cv::Mat labels) const |
||||
{ |
||||
labels.setTo(cv::Scalar::all(-1)); |
||||
InInterval inInt(0, 2); |
||||
int cc = -1; |
||||
|
||||
int* dist_labels = (int*)labels.data; |
||||
int pitch = labels.step1(); |
||||
|
||||
unsigned char* source = (unsigned char*)image.data; |
||||
int width = image.cols; |
||||
int height = image.rows; |
||||
|
||||
for (int j = 0; j < image.rows; ++j) |
||||
for (int i = 0; i < image.cols; ++i) |
||||
{ |
||||
if (dist_labels[j * pitch + i] != -1) continue; |
||||
|
||||
dot* top = stack; |
||||
dot p = dot::make(i, j); |
||||
cc++; |
||||
|
||||
cv::Mat image = readImage("gpu/labeling/aloe-disp.png", cv::IMREAD_GRAYSCALE); |
||||
dist_labels[j * pitch + i] = cc; |
||||
|
||||
// cv::threshold(image, image, 150, 255, CV_THRESH_BINARY);
|
||||
while (top >= stack) |
||||
{ |
||||
int* dl = &dist_labels[p.y * pitch + p.x]; |
||||
unsigned char* sp = &source[p.y * image.step1() + p.x]; |
||||
|
||||
cv::gpu::GpuMat mask; |
||||
mask.create(image.rows, image.cols, CV_8UC1); |
||||
dl[0] = cc; |
||||
|
||||
cv::gpu::GpuMat components; |
||||
components.create(image.rows, image.cols, CV_32SC1); |
||||
//right
|
||||
if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1])) |
||||
*top++ = dot::make(p.x + 1, p.y); |
||||
|
||||
cv::gpu::connectivityMask(cv::gpu::GpuMat(image), mask, cv::Scalar::all(0), cv::Scalar::all(2)); |
||||
//left
|
||||
if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1])) |
||||
*top++ = dot::make(p.x - 1, p.y); |
||||
|
||||
ASSERT_NO_THROW(cv::gpu::labelComponents(mask, components)); |
||||
//bottom
|
||||
if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+image.step1()])) |
||||
*top++ = dot::make(p.x, p.y + 1); |
||||
|
||||
//top
|
||||
if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-image.step1()])) |
||||
*top++ = dot::make(p.x, p.y - 1); |
||||
|
||||
p = *--top; |
||||
} |
||||
} |
||||
} |
||||
|
||||
cv::Mat image; |
||||
cv::Mat _labels; |
||||
dot* stack; |
||||
}; |
||||
|
||||
PERF_TEST_P(Image, Labeling_ConnectedComponents, Values<string>("gpu/labeling/aloe-disp.png")) |
||||
{ |
||||
declare.time(1.0); |
||||
|
||||
TEST_CYCLE() |
||||
cv::Mat image = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
||||
|
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat mask; |
||||
mask.create(image.rows, image.cols, CV_8UC1); |
||||
|
||||
cv::gpu::GpuMat components; |
||||
components.create(image.rows, image.cols, CV_32SC1); |
||||
|
||||
cv::gpu::connectivityMask(cv::gpu::GpuMat(image), mask, cv::Scalar::all(0), cv::Scalar::all(2)); |
||||
|
||||
ASSERT_NO_THROW(cv::gpu::labelComponents(mask, components)); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::gpu::labelComponents(mask, components); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::gpu::labelComponents(mask, components); |
||||
GreedyLabeling host(image); |
||||
|
||||
host(host._labels); |
||||
|
||||
declare.time(1.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
host(host._labels); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Labeling, ConnectedComponents, testing::Combine(ALL_DEVICES, testing::Values(cv::Size(261, 262)))); |
||||
|
||||
#endif |
||||
} // namespace
|
||||
|
@ -1,20 +0,0 @@ |
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
testing::InitGoogleTest(&argc, argv); |
||||
perf::TestBase::Init(argc, argv); |
||||
return RUN_ALL_TESTS(); |
||||
} |
||||
|
||||
#else |
||||
|
||||
int main() |
||||
{ |
||||
printf("OpenCV was built without CUDA support\n"); |
||||
return 0; |
||||
} |
||||
|
||||
#endif |
@ -1,141 +1,169 @@ |
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
using namespace std; |
||||
using namespace testing; |
||||
|
||||
namespace { |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SetTo
|
||||
|
||||
GPU_PERF_TEST(SetTo, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
cv::Size size = GET_PARAM(0); |
||||
int depth = GET_PARAM(1); |
||||
int channels = GET_PARAM(2); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int type = CV_MAKE_TYPE(depth, channels); |
||||
|
||||
cv::gpu::GpuMat src(size, type); |
||||
cv::Scalar val(1, 2, 3, 4); |
||||
|
||||
src.setTo(val); |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(size, type); |
||||
|
||||
d_src.setTo(val); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_src.setTo(val); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat src(size, type); |
||||
|
||||
src.setTo(val); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
src.setTo(val); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, SetTo, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4), |
||||
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SetToMasked
|
||||
|
||||
GPU_PERF_TEST(SetToMasked, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
cv::Size size = GET_PARAM(0); |
||||
int depth = GET_PARAM(1); |
||||
int channels = GET_PARAM(2); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int type = CV_MAKE_TYPE(depth, channels); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0, 255); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::Mat mask_host(size, CV_8UC1); |
||||
fill(mask_host, 0, 2); |
||||
cv::Mat mask(size, CV_8UC1); |
||||
fillRandom(mask, 0, 2); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::Scalar val(1, 2, 3, 4); |
||||
cv::gpu::GpuMat mask(mask_host); |
||||
|
||||
src.setTo(val, mask); |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_mask(mask); |
||||
|
||||
d_src.setTo(val, d_mask); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_src.setTo(val, d_mask); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
src.setTo(val, mask); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
src.setTo(val, mask); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, SetToMasked, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4), |
||||
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CopyToMasked
|
||||
|
||||
GPU_PERF_TEST(CopyToMasked, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
cv::Size size = GET_PARAM(0); |
||||
int depth = GET_PARAM(1); |
||||
int channels = GET_PARAM(2); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int type = CV_MAKE_TYPE(depth, channels); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0, 255); |
||||
cv::Mat src(size, type); |
||||
fillRandom(src); |
||||
|
||||
cv::Mat mask_host(size, CV_8UC1); |
||||
fill(mask_host, 0, 2); |
||||
cv::Mat mask(size, CV_8UC1); |
||||
fillRandom(mask, 0, 2); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat mask(mask_host); |
||||
cv::gpu::GpuMat dst; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_mask(mask); |
||||
cv::gpu::GpuMat d_dst; |
||||
|
||||
src.copyTo(dst, mask); |
||||
d_src.copyTo(d_dst, d_mask); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_src.copyTo(d_dst, d_mask); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
src.copyTo(dst, mask); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
src.copyTo(dst, mask); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, CopyToMasked, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4), |
||||
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// ConvertTo
|
||||
|
||||
GPU_PERF_TEST(ConvertTo, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
DEF_PARAM_TEST(Sz_2Depth, cv::Size, MatDepth, MatDepth); |
||||
|
||||
cv::Size size = GET_PARAM(1); |
||||
int depth1 = GET_PARAM(2); |
||||
int depth2 = GET_PARAM(3); |
||||
PERF_TEST_P(Sz_2Depth, MatOp_ConvertTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(CV_8U, CV_16U, CV_32F, CV_64F))) |
||||
{ |
||||
cv::Size size = GET_PARAM(0); |
||||
int depth1 = GET_PARAM(1); |
||||
int depth2 = GET_PARAM(2); |
||||
|
||||
cv::Mat src_host(size, depth1); |
||||
fill(src_host, 0, 255); |
||||
cv::Mat src(size, depth1); |
||||
fillRandom(src); |
||||
|
||||
cv::gpu::GpuMat src(src_host); |
||||
cv::gpu::GpuMat dst; |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_src(src); |
||||
cv::gpu::GpuMat d_dst; |
||||
|
||||
src.convertTo(dst, depth2, 0.5, 1.0); |
||||
d_src.convertTo(d_dst, depth2, 0.5, 1.0); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_src.convertTo(d_dst, depth2, 0.5, 1.0); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::Mat dst; |
||||
|
||||
src.convertTo(dst, depth2, 0.5, 1.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
src.convertTo(dst, depth2, 0.5, 1.0); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, ConvertTo, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F)), |
||||
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F)))); |
||||
|
||||
#endif |
||||
} // namespace
|
||||
|
@ -1,85 +1,131 @@ |
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
using namespace std; |
||||
using namespace testing; |
||||
|
||||
namespace { |
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// HOG
|
||||
|
||||
GPU_PERF_TEST_1(HOG, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GetParam(); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
DEF_PARAM_TEST_1(Image, string); |
||||
|
||||
cv::Mat img_host = readImage("gpu/hog/road.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img_host.empty()); |
||||
PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png")) |
||||
{ |
||||
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::gpu::GpuMat img(img_host); |
||||
std::vector<cv::Rect> found_locations; |
||||
|
||||
cv::gpu::HOGDescriptor hog; |
||||
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::GpuMat d_img(img); |
||||
|
||||
cv::gpu::HOGDescriptor d_hog; |
||||
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
||||
|
||||
hog.detectMultiScale(img, found_locations); |
||||
d_hog.detectMultiScale(d_img, found_locations); |
||||
|
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_hog.detectMultiScale(d_img, found_locations); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::HOGDescriptor hog; |
||||
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
||||
|
||||
hog.detectMultiScale(img, found_locations); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
hog.detectMultiScale(img, found_locations); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ObjDetect, HOG, ALL_DEVICES); |
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// HaarClassifier
|
||||
|
||||
GPU_PERF_TEST_1(HaarClassifier, cv::gpu::DeviceInfo) |
||||
typedef pair<string, string> pair_string; |
||||
DEF_PARAM_TEST_1(ImageAndCascade, pair_string); |
||||
|
||||
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier, |
||||
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml"))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GetParam(); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat img_host = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img_host.empty()); |
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::CascadeClassifier_GPU d_cascade; |
||||
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
||||
|
||||
cv::gpu::CascadeClassifier_GPU cascade; |
||||
cv::gpu::GpuMat d_img(img); |
||||
cv::gpu::GpuMat d_objects_buffer; |
||||
|
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml"))); |
||||
d_cascade.detectMultiScale(d_img, d_objects_buffer); |
||||
|
||||
cv::gpu::GpuMat img(img_host); |
||||
cv::gpu::GpuMat objects_buffer; |
||||
TEST_CYCLE() |
||||
{ |
||||
d_cascade.detectMultiScale(d_img, d_objects_buffer); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cv::CascadeClassifier cascade; |
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml"))); |
||||
|
||||
cascade.detectMultiScale(img, objects_buffer); |
||||
std::vector<cv::Rect> rects; |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detectMultiScale(img, objects_buffer); |
||||
cascade.detectMultiScale(img, rects); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detectMultiScale(img, rects); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ObjDetect, HaarClassifier, ALL_DEVICES); |
||||
///////////////////////////////////////////////////////////////
|
||||
// LBP cascade
|
||||
|
||||
//===================== LBP cascade ==========================//
|
||||
GPU_PERF_TEST_1(LBPClassifier, cv::gpu::DeviceInfo) |
||||
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier, |
||||
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml"))) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GetParam(); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::Mat img_host = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img_host.empty()); |
||||
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
if (runOnGpu) |
||||
{ |
||||
cv::gpu::CascadeClassifier_GPU d_cascade; |
||||
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
||||
|
||||
cv::gpu::GpuMat d_img(img); |
||||
cv::gpu::GpuMat d_gpu_rects; |
||||
|
||||
cv::gpu::GpuMat img(img_host); |
||||
cv::gpu::GpuMat gpu_rects; |
||||
cv::gpu::CascadeClassifier_GPU cascade; |
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml"))); |
||||
d_cascade.detectMultiScale(d_img, d_gpu_rects); |
||||
|
||||
cascade.detectMultiScale(img, gpu_rects); |
||||
TEST_CYCLE() |
||||
TEST_CYCLE() |
||||
{ |
||||
d_cascade.detectMultiScale(d_img, d_gpu_rects); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
cascade.detectMultiScale(img, gpu_rects); |
||||
cv::CascadeClassifier cascade; |
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml"))); |
||||
|
||||
std::vector<cv::Rect> rects; |
||||
|
||||
cascade.detectMultiScale(img, rects); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detectMultiScale(img, rects); |
||||
} |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ObjDetect, LBPClassifier, ALL_DEVICES); |
||||
|
||||
#endif |
||||
} // namespace
|
||||
|
@ -1,77 +0,0 @@ |
||||
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__ |
||||
#define __OPENCV_PERF_GPU_UTILITY_HPP__ |
||||
|
||||
void fill(cv::Mat& m, double a, double b); |
||||
|
||||
using perf::MatType; |
||||
using perf::MatDepth; |
||||
|
||||
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP) |
||||
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA) |
||||
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING) |
||||
|
||||
struct CvtColorInfo |
||||
{ |
||||
int scn; |
||||
int dcn; |
||||
int code; |
||||
|
||||
explicit CvtColorInfo(int scn_=0, int dcn_=0, int code_=0) : scn(scn_), dcn(dcn_), code(code_) {} |
||||
}; |
||||
|
||||
void PrintTo(const CvtColorInfo& info, std::ostream* os); |
||||
|
||||
#define IMPLEMENT_PARAM_CLASS(name, type) \ |
||||
class name \
|
||||
{ \
|
||||
public: \
|
||||
name ( type arg = type ()) : val_(arg) {} \
|
||||
operator type () const {return val_;} \
|
||||
private: \
|
||||
type val_; \
|
||||
}; \
|
||||
inline void PrintTo( name param, std::ostream* os) \
|
||||
{ \
|
||||
*os << #name << " = " << testing::PrintToString(static_cast< type >(param)); \
|
||||
} |
||||
|
||||
IMPLEMENT_PARAM_CLASS(Channels, int) |
||||
|
||||
namespace cv { namespace gpu |
||||
{ |
||||
void PrintTo(const cv::gpu::DeviceInfo& info, std::ostream* os); |
||||
}} |
||||
|
||||
#define GPU_PERF_TEST(name, ...) \ |
||||
struct name : perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > \
|
||||
{ \
|
||||
public: \
|
||||
name() {} \
|
||||
protected: \
|
||||
void PerfTestBody(); \
|
||||
}; \
|
||||
TEST_P(name, perf){ RunPerfTestBody(); } \
|
||||
void name :: PerfTestBody() |
||||
|
||||
#define GPU_PERF_TEST_1(name, param_type) \ |
||||
struct name : perf::TestBaseWithParam< param_type > \
|
||||
{ \
|
||||
public: \
|
||||
name() {} \
|
||||
protected: \
|
||||
void PerfTestBody(); \
|
||||
}; \
|
||||
TEST_P(name, perf){ RunPerfTestBody(); } \
|
||||
void name :: PerfTestBody() |
||||
|
||||
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::szSXGA, perf::sz1080p, cv::Size(1800, 1500)) |
||||
|
||||
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR); |
||||
|
||||
const std::vector<cv::gpu::DeviceInfo>& devices(); |
||||
|
||||
#define ALL_DEVICES testing::ValuesIn(devices()) |
||||
|
||||
#define GET_PARAM(k) std::tr1::get< k >(GetParam()) |
||||
|
||||
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,45 @@ |
||||
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__ |
||||
#define __OPENCV_PERF_GPU_UTILITY_HPP__ |
||||
|
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/core/gpumat.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include "opencv2/ts/ts_perf.hpp" |
||||
|
||||
extern bool runOnGpu; |
||||
|
||||
void fillRandom(cv::Mat& m, double a = 0.0, double b = 255.0); |
||||
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR); |
||||
|
||||
using perf::MatType; |
||||
using perf::MatDepth; |
||||
|
||||
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP) |
||||
#define ALL_BORDER_MODES testing::ValuesIn(BorderMode::all()) |
||||
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA) |
||||
#define ALL_INTERPOLATIONS testing::ValuesIn(Interpolation::all()) |
||||
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING) |
||||
|
||||
struct CvtColorInfo |
||||
{ |
||||
int scn; |
||||
int dcn; |
||||
int code; |
||||
|
||||
explicit CvtColorInfo(int scn_=0, int dcn_=0, int code_=0) : scn(scn_), dcn(dcn_), code(code_) {} |
||||
}; |
||||
void PrintTo(const CvtColorInfo& info, std::ostream* os); |
||||
|
||||
#define GET_PARAM(k) std::tr1::get< k >(GetParam()) |
||||
|
||||
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name |
||||
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name |
||||
|
||||
DEF_PARAM_TEST_1(Sz, cv::Size); |
||||
typedef perf::Size_MatType Sz_Type; |
||||
DEF_PARAM_TEST(Sz_Depth, cv::Size, MatDepth); |
||||
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, MatDepth, int); |
||||
|
||||
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::szSXGA, perf::sz720p, perf::sz1080p) |
||||
|
||||
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__
|
@ -1,136 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// StereoBM
|
||||
|
||||
GPU_PERF_TEST_1(StereoBM, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat img_l = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img_l.empty()); |
||||
|
||||
cv::Mat img_r = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img_r.empty()); |
||||
|
||||
cv::StereoBM bm(0, 256); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
bm(img_l, img_r, dst); |
||||
|
||||
declare.time(5.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
bm(img_l, img_r, dst); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, StereoBM, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// ProjectPoints
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(Count, int) |
||||
|
||||
GPU_PERF_TEST(ProjectPoints, cv::gpu::DeviceInfo, Count) |
||||
{ |
||||
int count = GET_PARAM(1); |
||||
|
||||
cv::Mat src(1, count, CV_32FC3); |
||||
fill(src, -100, 100); |
||||
|
||||
cv::Mat rvec = cv::Mat::ones(1, 3, CV_32FC1); |
||||
cv::Mat tvec = cv::Mat::ones(1, 3, CV_32FC1); |
||||
cv::Mat camera_mat = cv::Mat::ones(3, 3, CV_32FC1); |
||||
cv::Mat dst; |
||||
|
||||
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::projectPoints(src, rvec, tvec, camera_mat, cv::noArray(), dst); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, ProjectPoints, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values<Count>(5000, 10000, 20000))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SolvePnPRansac
|
||||
|
||||
GPU_PERF_TEST(SolvePnPRansac, cv::gpu::DeviceInfo, Count) |
||||
{ |
||||
int count = GET_PARAM(1); |
||||
|
||||
cv::Mat object(1, count, CV_32FC3); |
||||
fill(object, -100, 100); |
||||
|
||||
cv::Mat camera_mat(3, 3, CV_32FC1); |
||||
fill(camera_mat, 0.5, 1); |
||||
camera_mat.at<float>(0, 1) = 0.f; |
||||
camera_mat.at<float>(1, 0) = 0.f; |
||||
camera_mat.at<float>(2, 0) = 0.f; |
||||
camera_mat.at<float>(2, 1) = 0.f; |
||||
|
||||
cv::Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0)); |
||||
|
||||
std::vector<cv::Point2f> image_vec; |
||||
cv::Mat rvec_gold(1, 3, CV_32FC1); |
||||
fill(rvec_gold, 0, 1); |
||||
cv::Mat tvec_gold(1, 3, CV_32FC1); |
||||
fill(tvec_gold, 0, 1); |
||||
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec); |
||||
|
||||
cv::Mat image(1, count, CV_32FC2, &image_vec[0]); |
||||
|
||||
cv::Mat rvec; |
||||
cv::Mat tvec; |
||||
|
||||
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec); |
||||
|
||||
declare.time(10.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, SolvePnPRansac, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values<Count>(5000, 10000, 20000))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// ReprojectImageTo3D
|
||||
|
||||
GPU_PERF_TEST(ReprojectImageTo3D, cv::gpu::DeviceInfo, cv::Size, MatDepth) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int depth = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, depth); |
||||
fill(src, 5.0, 30.0); |
||||
|
||||
cv::Mat Q(4, 4, CV_32FC1); |
||||
fill(Q, 0.1, 1.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::reprojectImageTo3D(src, dst, Q); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::reprojectImageTo3D(src, dst, Q); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Calib3D, ReprojectImageTo3D, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values<MatDepth>(CV_8U, CV_16S))); |
||||
|
||||
#endif |
||||
|
File diff suppressed because it is too large
Load Diff
@ -1 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
@ -1,32 +0,0 @@ |
||||
#ifdef __GNUC__ |
||||
# pragma GCC diagnostic ignored "-Wmissing-declarations" |
||||
# pragma GCC diagnostic ignored "-Wmissing-prototypes" //OSX
|
||||
#endif |
||||
|
||||
#ifndef __OPENCV_PERF_CPU_PRECOMP_HPP__ |
||||
#define __OPENCV_PERF_CPU_PRECOMP_HPP__ |
||||
|
||||
#include <cstdio> |
||||
#include <iostream> |
||||
|
||||
#include "cvconfig.h" |
||||
|
||||
#include "opencv2/ts/ts.hpp" |
||||
#include "opencv2/ts/ts_perf.hpp" |
||||
|
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/gpu/gpu.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include "opencv2/video/video.hpp" |
||||
#include "opencv2/calib3d/calib3d.hpp" |
||||
#include "opencv2/nonfree/nonfree.hpp" |
||||
#include "opencv2/legacy/legacy.hpp" |
||||
|
||||
#include "perf_utility.hpp" |
||||
|
||||
#ifdef GTEST_CREATE_SHARED_LIBRARY |
||||
#error no modules except ts should have GTEST_CREATE_SHARED_LIBRARY defined |
||||
#endif |
||||
|
||||
#endif |
@ -1,187 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SURF
|
||||
|
||||
GPU_PERF_TEST_1(SURF, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::SURF surf; |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
cv::Mat descriptors; |
||||
|
||||
surf(img, cv::noArray(), keypoints, descriptors); |
||||
|
||||
declare.time(50.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
keypoints.clear(); |
||||
surf(img, cv::noArray(), keypoints, descriptors); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, SURF, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// FAST
|
||||
|
||||
GPU_PERF_TEST_1(FAST, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
|
||||
cv::FAST(img, keypoints, 20); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
keypoints.clear(); |
||||
cv::FAST(img, keypoints, 20); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, FAST, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// ORB
|
||||
|
||||
GPU_PERF_TEST_1(ORB, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat img = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::ORB orb(4000); |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
cv::Mat descriptors; |
||||
|
||||
orb(img, cv::noArray(), keypoints, descriptors); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
keypoints.clear(); |
||||
orb(img, cv::noArray(), keypoints, descriptors); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, ORB, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// BruteForceMatcher_match
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(DescriptorSize, int) |
||||
|
||||
GPU_PERF_TEST(BruteForceMatcher_match, cv::gpu::DeviceInfo, DescriptorSize, NormType) |
||||
{ |
||||
int desc_size = GET_PARAM(1); |
||||
int normType = GET_PARAM(2); |
||||
|
||||
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
||||
|
||||
cv::Mat query(3000, desc_size, type); |
||||
fill(query, 0.0, 10.0); |
||||
|
||||
cv::Mat train(3000, desc_size, type); |
||||
fill(train, 0.0, 10.0); |
||||
|
||||
cv::BFMatcher matcher(normType); |
||||
|
||||
std::vector<cv::DMatch> matches; |
||||
|
||||
matcher.match(query, train, matches); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
matcher.match(query, train, matches); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_match, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
||||
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// BruteForceMatcher_knnMatch
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(K, int) |
||||
|
||||
GPU_PERF_TEST(BruteForceMatcher_knnMatch, cv::gpu::DeviceInfo, DescriptorSize, K, NormType) |
||||
{ |
||||
int desc_size = GET_PARAM(1); |
||||
int k = GET_PARAM(2); |
||||
int normType = GET_PARAM(3); |
||||
|
||||
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
||||
|
||||
cv::Mat query(3000, desc_size, type); |
||||
fill(query, 0.0, 10.0); |
||||
|
||||
cv::Mat train(3000, desc_size, type); |
||||
fill(train, 0.0, 10.0); |
||||
|
||||
cv::BFMatcher matcher(normType); |
||||
|
||||
std::vector< std::vector<cv::DMatch> > matches; |
||||
|
||||
matcher.knnMatch(query, train, matches, k); |
||||
|
||||
declare.time(30.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
matcher.knnMatch(query, train, matches, k); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_knnMatch, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
||||
testing::Values(K(2), K(3)), |
||||
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// BruteForceMatcher_radiusMatch
|
||||
|
||||
GPU_PERF_TEST(BruteForceMatcher_radiusMatch, cv::gpu::DeviceInfo, DescriptorSize, NormType) |
||||
{ |
||||
int desc_size = GET_PARAM(1); |
||||
int normType = GET_PARAM(2); |
||||
|
||||
int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; |
||||
|
||||
cv::Mat query(3000, desc_size, type); |
||||
fill(query, 0.0, 1.0); |
||||
|
||||
cv::Mat train(3000, desc_size, type); |
||||
fill(train, 0.0, 1.0); |
||||
|
||||
cv::BFMatcher matcher(normType); |
||||
|
||||
std::vector< std::vector<cv::DMatch> > matches; |
||||
|
||||
matcher.radiusMatch(query, train, matches, 2.0); |
||||
|
||||
declare.time(30.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
matcher.radiusMatch(query, train, matches, 2.0); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher_radiusMatch, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(DescriptorSize(64), DescriptorSize(128), DescriptorSize(256)), |
||||
testing::Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)))); |
||||
|
||||
#endif |
@ -1,283 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
IMPLEMENT_PARAM_CLASS(KernelSize, int) |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Blur
|
||||
|
||||
GPU_PERF_TEST(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::blur(src, dst, cv::Size(ksize, ksize)); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::blur(src, dst, cv::Size(ksize, ksize)); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Blur, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)), |
||||
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Sobel
|
||||
|
||||
GPU_PERF_TEST(Sobel, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::Sobel(src, dst, -1, 1, 1, ksize); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::Sobel(src, dst, -1, 1, 1, ksize); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Sobel, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)), |
||||
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Scharr
|
||||
|
||||
GPU_PERF_TEST(Scharr, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::Scharr(src, dst, -1, 1, 0); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::Scharr(src, dst, -1, 1, 0); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Scharr, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// GaussianBlur
|
||||
|
||||
GPU_PERF_TEST(GaussianBlur, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::GaussianBlur(src, dst, cv::Size(ksize, ksize), 0.5); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, GaussianBlur, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)), |
||||
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Laplacian
|
||||
|
||||
GPU_PERF_TEST(Laplacian, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::Laplacian(src, dst, -1, ksize); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::Laplacian(src, dst, -1, ksize); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Laplacian, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)), |
||||
testing::Values(KernelSize(1), KernelSize(3)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Erode
|
||||
|
||||
GPU_PERF_TEST(Erode, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::erode(src, dst, ker); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::erode(src, dst, ker); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Erode, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Dilate
|
||||
|
||||
GPU_PERF_TEST(Dilate, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::dilate(src, dst, ker); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::dilate(src, dst, ker); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Dilate, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// MorphologyEx
|
||||
|
||||
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT) |
||||
#define ALL_MORPH_OPS testing::Values(MorphOp(cv::MORPH_OPEN), MorphOp(cv::MORPH_CLOSE), MorphOp(cv::MORPH_GRADIENT), MorphOp(cv::MORPH_TOPHAT), MorphOp(cv::MORPH_BLACKHAT)) |
||||
|
||||
GPU_PERF_TEST(MorphologyEx, cv::gpu::DeviceInfo, cv::Size, MatType, MorphOp) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int morphOp = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::Mat ker = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); |
||||
|
||||
cv::morphologyEx(src, dst, morphOp, ker); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::morphologyEx(src, dst, morphOp, ker); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, MorphologyEx, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)), |
||||
ALL_MORPH_OPS)); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Filter2D
|
||||
|
||||
GPU_PERF_TEST(Filter2D, cv::gpu::DeviceInfo, cv::Size, MatType, KernelSize) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int ksize = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0.0, 255.0); |
||||
|
||||
cv::Mat kernel(ksize, ksize, CV_32FC1); |
||||
fill(kernel, 0.0, 1.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::filter2D(src, dst, -1, kernel); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::filter2D(src, dst, -1, kernel); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filters, Filter2D, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4)), |
||||
testing::Values(KernelSize(3), KernelSize(5), KernelSize(7), KernelSize(9), KernelSize(11), KernelSize(13), KernelSize(15)))); |
||||
|
||||
#endif |
@ -1,771 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Remap
|
||||
|
||||
GPU_PERF_TEST(Remap, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, BorderMode) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int interpolation = GET_PARAM(3); |
||||
int borderMode = GET_PARAM(4); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat xmap(size, CV_32FC1); |
||||
fill(xmap, 0, size.width); |
||||
|
||||
cv::Mat ymap(size, CV_32FC1); |
||||
fill(ymap, 0, size.height); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::remap(src, dst, xmap, ymap, interpolation, borderMode); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::remap(src, dst, xmap, ymap, interpolation, borderMode); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Remap, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), |
||||
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
||||
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_CONSTANT), BorderMode(cv::BORDER_REFLECT), BorderMode(cv::BORDER_WRAP)))); |
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Resize
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(Scale, double) |
||||
|
||||
GPU_PERF_TEST(Resize, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, Scale) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int interpolation = GET_PARAM(3); |
||||
double f = GET_PARAM(4); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::resize(src, dst, cv::Size(), f, f, interpolation); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::resize(src, dst, cv::Size(), f, f, interpolation); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Resize, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), |
||||
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), |
||||
Interpolation(cv::INTER_CUBIC), Interpolation(cv::INTER_AREA)), |
||||
testing::Values(Scale(0.5), Scale(0.3), Scale(2.0)))); |
||||
|
||||
GPU_PERF_TEST(ResizeArea, cv::gpu::DeviceInfo, cv::Size, MatType, Scale) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int interpolation = cv::INTER_AREA; |
||||
double f = GET_PARAM(3); |
||||
|
||||
cv::Mat src_host(size, type); |
||||
fill(src_host, 0, 255); |
||||
|
||||
cv::Mat src(src_host); |
||||
cv::Mat dst; |
||||
|
||||
cv::resize(src, dst, cv::Size(), f, f, interpolation); |
||||
|
||||
declare.time(1.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::resize(src, dst, cv::Size(), f, f, interpolation); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, ResizeArea, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(perf::sz1080p, cv::Size(4096, 2048)), |
||||
testing::Values(MatType(CV_8UC1)/*, MatType(CV_8UC3), MatType(CV_8UC4),
|
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)*/), |
||||
testing::Values(Scale(0.2),Scale(0.1),Scale(0.05)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// WarpAffine
|
||||
|
||||
GPU_PERF_TEST(WarpAffine, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, BorderMode) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int interpolation = GET_PARAM(3); |
||||
int borderMode = GET_PARAM(4); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
const double aplha = CV_PI / 4; |
||||
double mat[2][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2}, |
||||
{std::sin(aplha), std::cos(aplha), 0}}; |
||||
cv::Mat M(2, 3, CV_64F, (void*) mat); |
||||
|
||||
cv::warpAffine(src, dst, M, size, interpolation, borderMode); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::warpAffine(src, dst, M, size, interpolation, borderMode); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, WarpAffine, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), |
||||
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
||||
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_CONSTANT), BorderMode(cv::BORDER_REFLECT), BorderMode(cv::BORDER_WRAP)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// WarpPerspective
|
||||
|
||||
GPU_PERF_TEST(WarpPerspective, cv::gpu::DeviceInfo, cv::Size, MatType, Interpolation, BorderMode) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int interpolation = GET_PARAM(3); |
||||
int borderMode = GET_PARAM(4); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
const double aplha = CV_PI / 4; |
||||
double mat[3][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2}, |
||||
{std::sin(aplha), std::cos(aplha), 0}, |
||||
{0.0, 0.0, 1.0}}; |
||||
cv::Mat M(3, 3, CV_64F, (void*) mat); |
||||
|
||||
cv::warpPerspective(src, dst, M, size, interpolation, borderMode); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::warpPerspective(src, dst, M, size, interpolation, borderMode); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, WarpPerspective, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), |
||||
testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
||||
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_CONSTANT), BorderMode(cv::BORDER_REFLECT), BorderMode(cv::BORDER_WRAP)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CopyMakeBorder
|
||||
|
||||
GPU_PERF_TEST(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, BorderMode) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
int borderType = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderType); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderType); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, CopyMakeBorder, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), |
||||
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_CONSTANT), BorderMode(cv::BORDER_REFLECT), BorderMode(cv::BORDER_WRAP)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Threshold
|
||||
|
||||
CV_ENUM(ThreshOp, cv::THRESH_BINARY, cv::THRESH_BINARY_INV, cv::THRESH_TRUNC, cv::THRESH_TOZERO, cv::THRESH_TOZERO_INV) |
||||
#define ALL_THRESH_OPS testing::Values(ThreshOp(cv::THRESH_BINARY), ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC), ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV)) |
||||
|
||||
GPU_PERF_TEST(Threshold, cv::gpu::DeviceInfo, cv::Size, MatDepth, ThreshOp) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int depth = GET_PARAM(2); |
||||
int threshOp = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, depth); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::threshold(src, dst, 100.0, 255.0, threshOp); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::threshold(src, dst, 100.0, 255.0, threshOp); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Threshold, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F)), |
||||
ALL_THRESH_OPS)); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Integral
|
||||
|
||||
GPU_PERF_TEST(Integral, cv::gpu::DeviceInfo, cv::Size) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
|
||||
cv::Mat src(size, CV_8UC1); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::integral(src, dst); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::integral(src, dst); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Integral, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES)); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// HistEven_OneChannel
|
||||
|
||||
GPU_PERF_TEST(HistEven_OneChannel, cv::gpu::DeviceInfo, cv::Size, MatDepth) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int depth = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, depth); |
||||
fill(src, 0, 255); |
||||
|
||||
int hbins = 30; |
||||
float hranges[] = {0.0f, 180.0f}; |
||||
cv::Mat hist; |
||||
int histSize[] = {hbins}; |
||||
const float* ranges[] = {hranges}; |
||||
int channels[] = {0}; |
||||
|
||||
cv::calcHist(&src, 1, channels, cv::Mat(), hist, 1, histSize, ranges); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::calcHist(&src, 1, channels, cv::Mat(), hist, 1, histSize, ranges); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, HistEven_OneChannel, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_16S)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// EqualizeHist
|
||||
|
||||
GPU_PERF_TEST(EqualizeHist, cv::gpu::DeviceInfo, cv::Size) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
|
||||
cv::Mat src(size, CV_8UC1); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::equalizeHist(src, dst); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::equalizeHist(src, dst); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, EqualizeHist, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES)); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Canny
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(AppertureSize, int) |
||||
IMPLEMENT_PARAM_CLASS(L2gradient, bool) |
||||
|
||||
GPU_PERF_TEST(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient) |
||||
{ |
||||
int apperture_size = GET_PARAM(1); |
||||
bool useL2gradient = GET_PARAM(2); |
||||
|
||||
cv::Mat image = readImage("perf/1280x1024.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::Canny(image, dst, 50.0, 100.0, apperture_size, useL2gradient); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::Canny(image, dst, 50.0, 100.0, apperture_size, useL2gradient); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Canny, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(AppertureSize(3), AppertureSize(5)), |
||||
testing::Values(L2gradient(false), L2gradient(true)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// MeanShiftFiltering
|
||||
|
||||
GPU_PERF_TEST_1(MeanShiftFiltering, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat img = readImage("gpu/meanshift/cones.png"); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::pyrMeanShiftFiltering(img, dst, 50, 50); |
||||
|
||||
declare.time(15.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::pyrMeanShiftFiltering(img, dst, 50, 50); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, MeanShiftFiltering, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Convolve
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(KSize, int) |
||||
IMPLEMENT_PARAM_CLASS(Ccorr, bool) |
||||
|
||||
GPU_PERF_TEST(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int templ_size = GET_PARAM(2); |
||||
bool ccorr = GET_PARAM(3); |
||||
|
||||
ASSERT_FALSE(ccorr); |
||||
|
||||
cv::Mat image(size, CV_32FC1); |
||||
image.setTo(1.0); |
||||
|
||||
cv::Mat templ(templ_size, templ_size, CV_32FC1); |
||||
templ.setTo(1.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::filter2D(image, dst, image.depth(), templ); |
||||
|
||||
declare.time(10.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::filter2D(image, dst, image.depth(), templ); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Convolve, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(KSize(3), KSize(9), KSize(17), KSize(27), KSize(32), KSize(64)), |
||||
testing::Values(Ccorr(false), Ccorr(true)))); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate_8U
|
||||
|
||||
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED) |
||||
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED)) |
||||
|
||||
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size) |
||||
|
||||
GPU_PERF_TEST(MatchTemplate_8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
cv::Size templ_size = GET_PARAM(2); |
||||
int cn = GET_PARAM(3); |
||||
int method = GET_PARAM(4); |
||||
|
||||
cv::Mat image(size, CV_MAKE_TYPE(CV_8U, cn)); |
||||
fill(image, 0, 255); |
||||
|
||||
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_8U, cn)); |
||||
fill(templ, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::matchTemplate(image, templ, dst, method); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::matchTemplate(image, templ, dst, method); |
||||
} |
||||
}; |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate_8U, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))), |
||||
testing::Values(Channels(1), Channels(3), Channels(4)), |
||||
ALL_TEMPLATE_METHODS)); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// MatchTemplate_32F
|
||||
|
||||
GPU_PERF_TEST(MatchTemplate_32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
cv::Size templ_size = GET_PARAM(2); |
||||
int cn = GET_PARAM(3); |
||||
int method = GET_PARAM(4); |
||||
|
||||
cv::Mat image(size, CV_MAKE_TYPE(CV_32F, cn)); |
||||
fill(image, 0, 255); |
||||
|
||||
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_32F, cn)); |
||||
fill(templ, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::matchTemplate(image, templ, dst, method); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::matchTemplate(image, templ, dst, method); |
||||
} |
||||
}; |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate_32F, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))), |
||||
testing::Values(Channels(1), Channels(3), Channels(4)), |
||||
testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// MulSpectrums
|
||||
|
||||
CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT) |
||||
|
||||
GPU_PERF_TEST(MulSpectrums, cv::gpu::DeviceInfo, cv::Size, DftFlags) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int flag = GET_PARAM(2); |
||||
|
||||
cv::Mat a(size, CV_32FC2); |
||||
fill(a, 0, 100); |
||||
|
||||
cv::Mat b(size, CV_32FC2); |
||||
fill(b, 0, 100); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::mulSpectrums(a, b, dst, flag); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::mulSpectrums(a, b, dst, flag); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, MulSpectrums, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Dft
|
||||
|
||||
GPU_PERF_TEST(Dft, cv::gpu::DeviceInfo, cv::Size, DftFlags) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int flag = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, CV_32FC2); |
||||
fill(src, 0, 100); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::dft(src, dst, flag); |
||||
|
||||
declare.time(10.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::dft(src, dst, flag); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, Dft, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CornerHarris
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(BlockSize, int) |
||||
IMPLEMENT_PARAM_CLASS(ApertureSize, int) |
||||
|
||||
GPU_PERF_TEST(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderMode, BlockSize, ApertureSize) |
||||
{ |
||||
int type = GET_PARAM(1); |
||||
int borderType = GET_PARAM(2); |
||||
int blockSize = GET_PARAM(3); |
||||
int apertureSize = GET_PARAM(4); |
||||
|
||||
cv::Mat img = readImage("gpu/stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
double k = 0.5; |
||||
|
||||
cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderType); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderType); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, CornerHarris, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)), |
||||
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), |
||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)), |
||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CornerMinEigenVal
|
||||
|
||||
GPU_PERF_TEST(CornerMinEigenVal, cv::gpu::DeviceInfo, MatType, BorderMode, BlockSize, ApertureSize) |
||||
{ |
||||
int type = GET_PARAM(1); |
||||
int borderType = GET_PARAM(2); |
||||
int blockSize = GET_PARAM(3); |
||||
int apertureSize = GET_PARAM(4); |
||||
|
||||
cv::Mat img = readImage("gpu/stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderType); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderType); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, CornerMinEigenVal, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)), |
||||
testing::Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), |
||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)), |
||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// PyrDown
|
||||
|
||||
GPU_PERF_TEST(PyrDown, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::pyrDown(src, dst); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::pyrDown(src, dst); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, PyrDown, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// PyrUp
|
||||
|
||||
GPU_PERF_TEST(PyrUp, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::pyrUp(src, dst); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::pyrUp(src, dst); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, PyrUp, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CvtColor
|
||||
|
||||
GPU_PERF_TEST(CvtColor, cv::gpu::DeviceInfo, cv::Size, MatDepth, CvtColorInfo) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int depth = GET_PARAM(2); |
||||
CvtColorInfo info = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, CV_MAKETYPE(depth, info.scn)); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
cv::cvtColor(src, dst, info.code, info.dcn); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::cvtColor(src, dst, info.code, info.dcn); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F)), |
||||
testing::Values(CvtColorInfo(4, 4, cv::COLOR_RGBA2BGRA), |
||||
CvtColorInfo(4, 1, cv::COLOR_BGRA2GRAY), |
||||
CvtColorInfo(1, 4, cv::COLOR_GRAY2BGRA), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2XYZ), |
||||
CvtColorInfo(3, 3, cv::COLOR_XYZ2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2YCrCb), |
||||
CvtColorInfo(3, 3, cv::COLOR_YCrCb2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2YUV), |
||||
CvtColorInfo(3, 3, cv::COLOR_YUV2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2HSV), |
||||
CvtColorInfo(3, 3, cv::COLOR_HSV2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2HLS), |
||||
CvtColorInfo(3, 3, cv::COLOR_HLS2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2Lab), |
||||
CvtColorInfo(3, 3, cv::COLOR_RGB2Lab), |
||||
CvtColorInfo(3, 3, cv::COLOR_BGR2Luv), |
||||
CvtColorInfo(3, 3, cv::COLOR_RGB2Luv), |
||||
CvtColorInfo(3, 3, cv::COLOR_Lab2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_Lab2RGB), |
||||
CvtColorInfo(3, 3, cv::COLOR_Luv2BGR), |
||||
CvtColorInfo(3, 3, cv::COLOR_Luv2RGB), |
||||
CvtColorInfo(1, 3, cv::COLOR_BayerBG2BGR), |
||||
CvtColorInfo(1, 3, cv::COLOR_BayerGB2BGR), |
||||
CvtColorInfo(1, 3, cv::COLOR_BayerRG2BGR), |
||||
CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR), |
||||
CvtColorInfo(4, 4, cv::COLOR_RGBA2mRGBA)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// HoughLines
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(DoSort, bool) |
||||
|
||||
GPU_PERF_TEST(HoughLines, cv::gpu::DeviceInfo, cv::Size, DoSort) |
||||
{ |
||||
declare.time(30.0); |
||||
|
||||
const cv::Size size = GET_PARAM(1); |
||||
|
||||
const float rho = 1.0f; |
||||
const float theta = CV_PI / 180.0f; |
||||
const int threshold = 300; |
||||
|
||||
cv::RNG rng(123456789); |
||||
|
||||
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); |
||||
|
||||
const int numLines = rng.uniform(500, 2000); |
||||
for (int i = 0; i < numLines; ++i) |
||||
{ |
||||
cv::Point p1(rng.uniform(0, src.cols), rng.uniform(0, src.rows)); |
||||
cv::Point p2(rng.uniform(0, src.cols), rng.uniform(0, src.rows)); |
||||
cv::line(src, p1, p2, cv::Scalar::all(255), 2); |
||||
} |
||||
|
||||
std::vector<cv::Vec2f> lines; |
||||
cv::HoughLines(src, lines, rho, theta, threshold); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::HoughLines(src, lines, rho, theta, threshold); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, HoughLines, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(DoSort(false), DoSort(true)))); |
||||
|
||||
#endif |
@ -1,158 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistributions in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
namespace { |
||||
|
||||
struct GreedyLabeling |
||||
{ |
||||
struct dot |
||||
{ |
||||
int x; |
||||
int y; |
||||
|
||||
static dot make(int i, int j) |
||||
{ |
||||
dot d; d.x = i; d.y = j; |
||||
return d; |
||||
} |
||||
}; |
||||
|
||||
struct InInterval |
||||
{ |
||||
InInterval(const int& _lo, const int& _hi) : lo(-_lo), hi(_hi) {}; |
||||
const int lo, hi; |
||||
|
||||
bool operator() (const unsigned char a, const unsigned char b) const |
||||
{ |
||||
int d = a - b; |
||||
return lo <= d && d <= hi; |
||||
} |
||||
}; |
||||
|
||||
GreedyLabeling(cv::Mat img) |
||||
: image(img), _labels(image.size(), CV_32SC1, cv::Scalar::all(-1)) {stack = new dot[image.cols * image.rows];} |
||||
|
||||
~GreedyLabeling(){delete[] stack;} |
||||
|
||||
void operator() (cv::Mat labels) const |
||||
{ |
||||
labels.setTo(cv::Scalar::all(-1)); |
||||
InInterval inInt(0, 2); |
||||
int cc = -1; |
||||
|
||||
int* dist_labels = (int*)labels.data; |
||||
int pitch = labels.step1(); |
||||
|
||||
unsigned char* source = (unsigned char*)image.data; |
||||
int width = image.cols; |
||||
int height = image.rows; |
||||
|
||||
for (int j = 0; j < image.rows; ++j) |
||||
for (int i = 0; i < image.cols; ++i) |
||||
{ |
||||
if (dist_labels[j * pitch + i] != -1) continue; |
||||
|
||||
dot* top = stack; |
||||
dot p = dot::make(i, j); |
||||
cc++; |
||||
|
||||
dist_labels[j * pitch + i] = cc; |
||||
|
||||
while (top >= stack) |
||||
{ |
||||
int* dl = &dist_labels[p.y * pitch + p.x]; |
||||
unsigned char* sp = &source[p.y * image.step1() + p.x]; |
||||
|
||||
dl[0] = cc; |
||||
|
||||
//right
|
||||
if( p.x < (width - 1) && dl[ +1] == -1 && inInt(sp[0], sp[+1])) |
||||
*top++ = dot::make(p.x + 1, p.y); |
||||
|
||||
//left
|
||||
if( p.x > 0 && dl[-1] == -1 && inInt(sp[0], sp[-1])) |
||||
*top++ = dot::make(p.x - 1, p.y); |
||||
|
||||
//bottom
|
||||
if( p.y < (height - 1) && dl[+pitch] == -1 && inInt(sp[0], sp[+image.step1()])) |
||||
*top++ = dot::make(p.x, p.y + 1); |
||||
|
||||
//top
|
||||
if( p.y > 0 && dl[-pitch] == -1 && inInt(sp[0], sp[-image.step1()])) |
||||
*top++ = dot::make(p.x, p.y - 1); |
||||
|
||||
p = *--top; |
||||
} |
||||
} |
||||
} |
||||
|
||||
cv::Mat image; |
||||
cv::Mat _labels; |
||||
dot* stack; |
||||
}; |
||||
} |
||||
|
||||
GPU_PERF_TEST(ConnectedComponents, cv::gpu::DeviceInfo, cv::Size) |
||||
{ |
||||
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
||||
cv::gpu::setDevice(devInfo.deviceID()); |
||||
|
||||
cv::Mat image = readImage("gpu/labeling/aloe-disp.png", cv::IMREAD_GRAYSCALE); |
||||
|
||||
GreedyLabeling host(image); |
||||
|
||||
host(host._labels); |
||||
|
||||
declare.time(1.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
host(host._labels); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Labeling, ConnectedComponents, testing::Combine(ALL_DEVICES, testing::Values(cv::Size(261, 262)))); |
||||
|
||||
#endif |
@ -1,20 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
testing::InitGoogleTest(&argc, argv); |
||||
perf::TestBase::Init(argc, argv); |
||||
return RUN_ALL_TESTS(); |
||||
} |
||||
|
||||
#else |
||||
|
||||
int main() |
||||
{ |
||||
printf("OpenCV was built without CUDA support\n"); |
||||
return 0; |
||||
} |
||||
|
||||
#endif |
@ -1,124 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SetTo
|
||||
|
||||
GPU_PERF_TEST(SetTo, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, type); |
||||
cv::Scalar val(1, 2, 3, 4); |
||||
|
||||
src.setTo(val); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
src.setTo(val); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, SetTo, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4), |
||||
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// SetToMasked
|
||||
|
||||
GPU_PERF_TEST(SetToMasked, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat mask(size, CV_8UC1); |
||||
fill(mask, 0, 2); |
||||
|
||||
cv::Scalar val(1, 2, 3, 4); |
||||
|
||||
src.setTo(val, mask); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
src.setTo(val, mask); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, SetToMasked, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4), |
||||
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// CopyToMasked
|
||||
|
||||
GPU_PERF_TEST(CopyToMasked, cv::gpu::DeviceInfo, cv::Size, MatType) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int type = GET_PARAM(2); |
||||
|
||||
cv::Mat src(size, type); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat mask(size, CV_8UC1); |
||||
fill(mask, 0, 2); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
src.copyTo(dst, mask); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
src.copyTo(dst, mask); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, CopyToMasked, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), |
||||
MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), |
||||
MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4), |
||||
MatType(CV_64FC1), MatType(CV_64FC3), MatType(CV_64FC4)))); |
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// ConvertTo
|
||||
|
||||
GPU_PERF_TEST(ConvertTo, cv::gpu::DeviceInfo, cv::Size, MatDepth, MatDepth) |
||||
{ |
||||
cv::Size size = GET_PARAM(1); |
||||
int depth1 = GET_PARAM(2); |
||||
int depth2 = GET_PARAM(3); |
||||
|
||||
cv::Mat src(size, depth1); |
||||
fill(src, 0, 255); |
||||
|
||||
cv::Mat dst; |
||||
|
||||
src.convertTo(dst, depth2, 0.5, 1.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
src.convertTo(dst, depth2, 0.5, 1.0); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(MatOp, ConvertTo, testing::Combine( |
||||
ALL_DEVICES, |
||||
GPU_TYPICAL_MAT_SIZES, |
||||
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F)), |
||||
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F), MatDepth(CV_64F)))); |
||||
|
||||
#endif |
@ -1,74 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// HOG
|
||||
|
||||
GPU_PERF_TEST_1(HOG, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat img = readImage("gpu/hog/road.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
std::vector<cv::Rect> found_locations; |
||||
|
||||
cv::HOGDescriptor hog; |
||||
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
||||
|
||||
hog.detectMultiScale(img, found_locations); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
hog.detectMultiScale(img, found_locations); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ObjDetect, HOG, ALL_DEVICES); |
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// HaarClassifier
|
||||
|
||||
GPU_PERF_TEST_1(HaarClassifier, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat img = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::CascadeClassifier cascade; |
||||
|
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml"))); |
||||
|
||||
std::vector<cv::Rect> rects; |
||||
|
||||
cascade.detectMultiScale(img, rects); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detectMultiScale(img, rects); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ObjDetect, HaarClassifier, ALL_DEVICES); |
||||
|
||||
//===================== LBP cascade ==========================//
|
||||
GPU_PERF_TEST_1(LBPClassifier, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat img = readImage("gpu/haarcascade/group_1_640x480_VGA.pgm", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
cv::CascadeClassifier cascade; |
||||
|
||||
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml"))); |
||||
|
||||
std::vector<cv::Rect> rects; |
||||
|
||||
cascade.detectMultiScale(img, rects); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cascade.detectMultiScale(img, rects); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(ObjDetect, LBPClassifier, ALL_DEVICES); |
||||
|
||||
#endif |
@ -1,220 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
|
||||
void fill(Mat& m, double a, double b) |
||||
{ |
||||
RNG rng(123456789); |
||||
rng.fill(m, RNG::UNIFORM, a, b); |
||||
} |
||||
|
||||
void PrintTo(const CvtColorInfo& info, ostream* os) |
||||
{ |
||||
static const char* str[] = |
||||
{ |
||||
"BGR2BGRA", |
||||
"BGRA2BGR", |
||||
"BGR2RGBA", |
||||
"RGBA2BGR", |
||||
"BGR2RGB", |
||||
"BGRA2RGBA", |
||||
|
||||
"BGR2GRAY", |
||||
"RGB2GRAY", |
||||
"GRAY2BGR", |
||||
"GRAY2BGRA", |
||||
"BGRA2GRAY", |
||||
"RGBA2GRAY", |
||||
|
||||
"BGR2BGR565", |
||||
"RGB2BGR565", |
||||
"BGR5652BGR", |
||||
"BGR5652RGB", |
||||
"BGRA2BGR565", |
||||
"RGBA2BGR565", |
||||
"BGR5652BGRA", |
||||
"BGR5652RGBA", |
||||
|
||||
"GRAY2BGR565", |
||||
"BGR5652GRAY", |
||||
|
||||
"BGR2BGR555", |
||||
"RGB2BGR555", |
||||
"BGR5552BGR", |
||||
"BGR5552RGB", |
||||
"BGRA2BGR555", |
||||
"RGBA2BGR555", |
||||
"BGR5552BGRA", |
||||
"BGR5552RGBA", |
||||
|
||||
"GRAY2BGR555", |
||||
"BGR5552GRAY", |
||||
|
||||
"BGR2XYZ", |
||||
"RGB2XYZ", |
||||
"XYZ2BGR", |
||||
"XYZ2RGB", |
||||
|
||||
"BGR2YCrCb", |
||||
"RGB2YCrCb", |
||||
"YCrCb2BGR", |
||||
"YCrCb2RGB", |
||||
|
||||
"BGR2HSV", |
||||
"RGB2HSV", |
||||
|
||||
"", |
||||
"", |
||||
|
||||
"BGR2Lab", |
||||
"RGB2Lab", |
||||
|
||||
"BayerBG2BGR", |
||||
"BayerGB2BGR", |
||||
"BayerRG2BGR", |
||||
"BayerGR2BGR", |
||||
|
||||
"BGR2Luv", |
||||
"RGB2Luv", |
||||
|
||||
"BGR2HLS", |
||||
"RGB2HLS", |
||||
|
||||
"HSV2BGR", |
||||
"HSV2RGB", |
||||
|
||||
"Lab2BGR", |
||||
"Lab2RGB", |
||||
"Luv2BGR", |
||||
"Luv2RGB", |
||||
|
||||
"HLS2BGR", |
||||
"HLS2RGB", |
||||
|
||||
"BayerBG2BGR_VNG", |
||||
"BayerGB2BGR_VNG", |
||||
"BayerRG2BGR_VNG", |
||||
"BayerGR2BGR_VNG", |
||||
|
||||
"BGR2HSV_FULL", |
||||
"RGB2HSV_FULL", |
||||
"BGR2HLS_FULL", |
||||
"RGB2HLS_FULL", |
||||
|
||||
"HSV2BGR_FULL", |
||||
"HSV2RGB_FULL", |
||||
"HLS2BGR_FULL", |
||||
"HLS2RGB_FULL", |
||||
|
||||
"LBGR2Lab", |
||||
"LRGB2Lab", |
||||
"LBGR2Luv", |
||||
"LRGB2Luv", |
||||
|
||||
"Lab2LBGR", |
||||
"Lab2LRGB", |
||||
"Luv2LBGR", |
||||
"Luv2LRGB", |
||||
|
||||
"BGR2YUV", |
||||
"RGB2YUV", |
||||
"YUV2BGR", |
||||
"YUV2RGB", |
||||
|
||||
"BayerBG2GRAY", |
||||
"BayerGB2GRAY", |
||||
"BayerRG2GRAY", |
||||
"BayerGR2GRAY", |
||||
|
||||
//YUV 4:2:0 formats family
|
||||
"YUV2RGB_NV12", |
||||
"YUV2BGR_NV12", |
||||
"YUV2RGB_NV21", |
||||
"YUV2BGR_NV21", |
||||
|
||||
"YUV2RGBA_NV12", |
||||
"YUV2BGRA_NV12", |
||||
"YUV2RGBA_NV21", |
||||
"YUV2BGRA_NV21", |
||||
|
||||
"YUV2RGB_YV12", |
||||
"YUV2BGR_YV12", |
||||
"YUV2RGB_IYUV", |
||||
"YUV2BGR_IYUV", |
||||
|
||||
"YUV2RGBA_YV12", |
||||
"YUV2BGRA_YV12", |
||||
"YUV2RGBA_IYUV", |
||||
"YUV2BGRA_IYUV", |
||||
|
||||
"YUV2GRAY_420", |
||||
|
||||
//YUV 4:2:2 formats family
|
||||
"YUV2RGB_UYVY", |
||||
"YUV2BGR_UYVY", |
||||
"YUV2RGB_VYUY", |
||||
"YUV2BGR_VYUY", |
||||
|
||||
"YUV2RGBA_UYVY", |
||||
"YUV2BGRA_UYVY", |
||||
"YUV2RGBA_VYUY", |
||||
"YUV2BGRA_VYUY", |
||||
|
||||
"YUV2RGB_YUY2", |
||||
"YUV2BGR_YUY2", |
||||
"YUV2RGB_YVYU", |
||||
"YUV2BGR_YVYU", |
||||
|
||||
"YUV2RGBA_YUY2", |
||||
"YUV2BGRA_YUY2", |
||||
"YUV2RGBA_YVYU", |
||||
"YUV2BGRA_YVYU", |
||||
|
||||
"YUV2GRAY_UYVY", |
||||
"YUV2GRAY_YUY2", |
||||
|
||||
// alpha premultiplication
|
||||
"RGBA2mRGBA", |
||||
"mRGBA2RGBA", |
||||
|
||||
"COLORCVT_MAX" |
||||
}; |
||||
|
||||
*os << str[info.code]; |
||||
} |
||||
|
||||
void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os) |
||||
{ |
||||
*os << info.name(); |
||||
} |
||||
|
||||
Mat readImage(const string& fileName, int flags) |
||||
{ |
||||
return imread(perf::TestBase::getDataPath(fileName), flags); |
||||
} |
||||
|
||||
const vector<DeviceInfo>& devices() |
||||
{ |
||||
static vector<DeviceInfo> devs; |
||||
static bool first = true; |
||||
|
||||
if (first) |
||||
{ |
||||
int deviceCount = getCudaEnabledDeviceCount(); |
||||
|
||||
devs.reserve(deviceCount); |
||||
|
||||
for (int i = 0; i < deviceCount; ++i) |
||||
{ |
||||
DeviceInfo info(i); |
||||
if (info.isCompatible()) |
||||
devs.push_back(info); |
||||
} |
||||
|
||||
first = false; |
||||
} |
||||
|
||||
return devs; |
||||
} |
@ -1,77 +0,0 @@ |
||||
#ifndef __OPENCV_PERF_GPU_UTILITY_HPP__ |
||||
#define __OPENCV_PERF_GPU_UTILITY_HPP__ |
||||
|
||||
void fill(cv::Mat& m, double a, double b); |
||||
|
||||
using perf::MatType; |
||||
using perf::MatDepth; |
||||
|
||||
CV_ENUM(BorderMode, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP) |
||||
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_AREA) |
||||
CV_ENUM(NormType, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_HAMMING) |
||||
|
||||
struct CvtColorInfo |
||||
{ |
||||
int scn; |
||||
int dcn; |
||||
int code; |
||||
|
||||
explicit CvtColorInfo(int scn_=0, int dcn_=0, int code_=0) : scn(scn_), dcn(dcn_), code(code_) {} |
||||
}; |
||||
|
||||
void PrintTo(const CvtColorInfo& info, std::ostream* os); |
||||
|
||||
#define IMPLEMENT_PARAM_CLASS(name, type) \ |
||||
class name \
|
||||
{ \
|
||||
public: \
|
||||
name ( type arg = type ()) : val_(arg) {} \
|
||||
operator type () const {return val_;} \
|
||||
private: \
|
||||
type val_; \
|
||||
}; \
|
||||
inline void PrintTo( name param, std::ostream* os) \
|
||||
{ \
|
||||
*os << #name << " = " << testing::PrintToString(static_cast< type >(param)); \
|
||||
} |
||||
|
||||
IMPLEMENT_PARAM_CLASS(Channels, int) |
||||
|
||||
namespace cv { namespace gpu |
||||
{ |
||||
void PrintTo(const cv::gpu::DeviceInfo& info, std::ostream* os); |
||||
}} |
||||
|
||||
#define GPU_PERF_TEST(name, ...) \ |
||||
struct name : perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > \
|
||||
{ \
|
||||
public: \
|
||||
name() {} \
|
||||
protected: \
|
||||
void PerfTestBody(); \
|
||||
}; \
|
||||
TEST_P(name, perf){ RunPerfTestBody(); } \
|
||||
void name :: PerfTestBody() |
||||
|
||||
#define GPU_PERF_TEST_1(name, param_type) \ |
||||
struct name : perf::TestBaseWithParam< param_type > \
|
||||
{ \
|
||||
public: \
|
||||
name() {} \
|
||||
protected: \
|
||||
void PerfTestBody(); \
|
||||
}; \
|
||||
TEST_P(name, perf){ RunPerfTestBody(); } \
|
||||
void name :: PerfTestBody() |
||||
|
||||
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::szSXGA, perf::sz1080p, cv::Size(1800, 1500)) |
||||
|
||||
cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR); |
||||
|
||||
const std::vector<cv::gpu::DeviceInfo>& devices(); |
||||
|
||||
#define ALL_DEVICES testing::ValuesIn(devices()) |
||||
|
||||
#define GET_PARAM(k) std::tr1::get< k >(GetParam()) |
||||
|
||||
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__
|
@ -1,466 +0,0 @@ |
||||
#include "perf_cpu_precomp.hpp" |
||||
|
||||
#ifdef HAVE_CUDA |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// GoodFeaturesToTrack
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(MinDistance, double) |
||||
|
||||
GPU_PERF_TEST(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance) |
||||
{ |
||||
double minDistance = GET_PARAM(1); |
||||
|
||||
cv::Mat image = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::Mat corners; |
||||
|
||||
cv::goodFeaturesToTrack(image, corners, 8000, 0.01, minDistance); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::goodFeaturesToTrack(image, corners, 8000, 0.01, minDistance); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(MinDistance(0.0), MinDistance(3.0)))); |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// PyrLKOpticalFlowSparse
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(GraySource, bool) |
||||
IMPLEMENT_PARAM_CLASS(Points, int) |
||||
IMPLEMENT_PARAM_CLASS(WinSize, int) |
||||
IMPLEMENT_PARAM_CLASS(Levels, int) |
||||
IMPLEMENT_PARAM_CLASS(Iters, int) |
||||
|
||||
GPU_PERF_TEST(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, GraySource, Points, WinSize, Levels, Iters) |
||||
{ |
||||
bool useGray = GET_PARAM(1); |
||||
int points = GET_PARAM(2); |
||||
int win_size = GET_PARAM(3); |
||||
int levels = GET_PARAM(4); |
||||
int iters = GET_PARAM(5); |
||||
|
||||
cv::Mat frame0 = readImage("gpu/opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
||||
ASSERT_FALSE(frame0.empty()); |
||||
|
||||
cv::Mat frame1 = readImage("gpu/opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
||||
ASSERT_FALSE(frame1.empty()); |
||||
|
||||
cv::Mat gray_frame; |
||||
if (useGray) |
||||
gray_frame = frame0; |
||||
else |
||||
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); |
||||
|
||||
cv::Mat pts; |
||||
cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0); |
||||
|
||||
cv::Mat nextPts; |
||||
cv::Mat status; |
||||
|
||||
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(), |
||||
cv::Size(win_size, win_size), levels - 1, |
||||
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01)); |
||||
|
||||
declare.time(20.0); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(), |
||||
cv::Size(win_size, win_size), levels - 1, |
||||
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01)); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(GraySource(true), GraySource(false)), |
||||
testing::Values(Points(1000), Points(2000), Points(4000), Points(8000)), |
||||
testing::Values(WinSize(9), WinSize(13), WinSize(17), WinSize(21)), |
||||
testing::Values(Levels(1), Levels(2), Levels(3)), |
||||
testing::Values(Iters(1), Iters(10), Iters(30)))); |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// FarnebackOpticalFlowTest
|
||||
|
||||
GPU_PERF_TEST_1(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo) |
||||
{ |
||||
cv::Mat frame0 = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(frame0.empty()); |
||||
|
||||
cv::Mat frame1 = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(frame1.empty()); |
||||
|
||||
cv::Mat flow; |
||||
|
||||
int numLevels = 5; |
||||
double pyrScale = 0.5; |
||||
int winSize = 13; |
||||
int numIters = 10; |
||||
int polyN = 5; |
||||
double polySigma = 1.1; |
||||
int flags = 0; |
||||
|
||||
cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); |
||||
|
||||
declare.time(10); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest, ALL_DEVICES); |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// FGDStatModel
|
||||
|
||||
namespace cv |
||||
{ |
||||
template<> void Ptr<CvBGStatModel>::delete_obj() |
||||
{ |
||||
cvReleaseBGStatModel(&obj); |
||||
} |
||||
} |
||||
|
||||
GPU_PERF_TEST(FGDStatModel, cv::gpu::DeviceInfo, std::string) |
||||
{ |
||||
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
||||
|
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
|
||||
cv::Mat frame; |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
IplImage ipl_frame = frame; |
||||
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame)); |
||||
|
||||
declare.time(60); |
||||
|
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
ipl_frame = frame; |
||||
|
||||
startTimer(); |
||||
next(); |
||||
|
||||
cvUpdateBGStatModel(&ipl_frame, model); |
||||
|
||||
stopTimer(); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, FGDStatModel, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// MOG
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(LearningRate, double) |
||||
|
||||
GPU_PERF_TEST(MOG, cv::gpu::DeviceInfo, std::string, Channels, LearningRate) |
||||
{ |
||||
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
||||
int cn = GET_PARAM(2); |
||||
double learningRate = GET_PARAM(3); |
||||
|
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
|
||||
cv::Mat frame; |
||||
|
||||
cv::BackgroundSubtractorMOG mog; |
||||
cv::Mat foreground; |
||||
|
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (cn != 3) |
||||
{ |
||||
cv::Mat temp; |
||||
if (cn == 1) |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
else |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
mog(frame, foreground, learningRate); |
||||
|
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (cn != 3) |
||||
{ |
||||
cv::Mat temp; |
||||
if (cn == 1) |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
else |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
startTimer(); next(); |
||||
mog(frame, foreground, learningRate); |
||||
stopTimer(); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, MOG, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")), |
||||
testing::Values(Channels(1), Channels(3)/*, Channels(4)*/), |
||||
testing::Values(LearningRate(0.0), LearningRate(0.01)))); |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// MOG2
|
||||
|
||||
GPU_PERF_TEST(MOG2_update, cv::gpu::DeviceInfo, std::string, Channels) |
||||
{ |
||||
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
||||
int cn = GET_PARAM(2); |
||||
|
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
|
||||
cv::Mat frame; |
||||
|
||||
cv::BackgroundSubtractorMOG2 mog2; |
||||
cv::Mat foreground; |
||||
|
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (cn != 3) |
||||
{ |
||||
cv::Mat temp; |
||||
if (cn == 1) |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
else |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
mog2(frame, foreground); |
||||
|
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (cn != 3) |
||||
{ |
||||
cv::Mat temp; |
||||
if (cn == 1) |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
else |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
startTimer(); next(); |
||||
mog2(frame, foreground); |
||||
stopTimer(); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, MOG2_update, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")), |
||||
testing::Values(Channels(1), Channels(3)/*, Channels(4)*/))); |
||||
|
||||
GPU_PERF_TEST(MOG2_getBackgroundImage, cv::gpu::DeviceInfo, std::string, Channels) |
||||
{ |
||||
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
||||
int cn = GET_PARAM(2); |
||||
|
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
|
||||
cv::Mat frame; |
||||
|
||||
cv::BackgroundSubtractorMOG2 mog2; |
||||
cv::Mat foreground; |
||||
|
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (cn != 3) |
||||
{ |
||||
cv::Mat temp; |
||||
if (cn == 1) |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
else |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
mog2(frame, foreground); |
||||
} |
||||
|
||||
cv::Mat background; |
||||
mog2.getBackgroundImage(background); |
||||
|
||||
TEST_CYCLE() |
||||
{ |
||||
mog2.getBackgroundImage(background); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, MOG2_getBackgroundImage, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")), |
||||
testing::Values(/*Channels(1),*/ Channels(3)/*, Channels(4)*/))); |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// GMG
|
||||
|
||||
IMPLEMENT_PARAM_CLASS(MaxFeatures, int) |
||||
|
||||
GPU_PERF_TEST(GMG, cv::gpu::DeviceInfo, std::string, Channels, MaxFeatures) |
||||
{ |
||||
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
||||
int cn = GET_PARAM(2); |
||||
int maxFeatures = GET_PARAM(3); |
||||
|
||||
cv::VideoCapture cap(inputFile); |
||||
ASSERT_TRUE(cap.isOpened()); |
||||
|
||||
cv::Mat frame; |
||||
cap >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (cn != 3) |
||||
{ |
||||
cv::Mat temp; |
||||
if (cn == 1) |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
else |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
cv::Mat fgmask; |
||||
cv::Mat zeros(frame.size(), CV_8UC1, cv::Scalar::all(0)); |
||||
|
||||
cv::BackgroundSubtractorGMG gmg; |
||||
gmg.set("maxFeatures", maxFeatures); |
||||
gmg.initialize(frame.size(), 0.0, 255.0); |
||||
|
||||
gmg(frame, fgmask); |
||||
|
||||
for (int i = 0; i < 150; ++i) |
||||
{ |
||||
cap >> frame; |
||||
if (frame.empty()) |
||||
{ |
||||
cap.open(inputFile); |
||||
cap >> frame; |
||||
} |
||||
|
||||
if (cn != 3) |
||||
{ |
||||
cv::Mat temp; |
||||
if (cn == 1) |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); |
||||
else |
||||
cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); |
||||
cv::swap(temp, frame); |
||||
} |
||||
|
||||
startTimer(); next(); |
||||
gmg(frame, fgmask); |
||||
stopTimer(); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, GMG, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")), |
||||
testing::Values(Channels(1), Channels(3), Channels(4)), |
||||
testing::Values(MaxFeatures(20), MaxFeatures(40), MaxFeatures(60)))); |
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// VideoWriter
|
||||
|
||||
#ifdef WIN32 |
||||
|
||||
GPU_PERF_TEST(VideoWriter, cv::gpu::DeviceInfo, std::string) |
||||
{ |
||||
const double FPS = 25.0; |
||||
|
||||
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
||||
std::string outputFile = cv::tempfile(".avi"); |
||||
|
||||
cv::VideoCapture reader(inputFile); |
||||
ASSERT_TRUE( reader.isOpened() ); |
||||
|
||||
cv::VideoWriter writer; |
||||
|
||||
cv::Mat frame; |
||||
|
||||
declare.time(30); |
||||
|
||||
for (int i = 0; i < 10; ++i) |
||||
{ |
||||
reader >> frame; |
||||
ASSERT_FALSE(frame.empty()); |
||||
|
||||
if (!writer.isOpened()) |
||||
writer.open(outputFile, CV_FOURCC('X', 'V', 'I', 'D'), FPS, frame.size()); |
||||
|
||||
startTimer(); next(); |
||||
writer.write(frame); |
||||
stopTimer(); |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, VideoWriter, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); |
||||
|
||||
#endif // WIN32
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// VideoReader
|
||||
|
||||
GPU_PERF_TEST(VideoReader, cv::gpu::DeviceInfo, std::string) |
||||
{ |
||||
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
||||
|
||||
cv::VideoCapture reader(inputFile); |
||||
ASSERT_TRUE( reader.isOpened() ); |
||||
|
||||
cv::Mat frame; |
||||
|
||||
reader >> frame; |
||||
|
||||
declare.time(20); |
||||
|
||||
TEST_CYCLE_N(10) |
||||
{ |
||||
reader >> frame; |
||||
} |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(Video, VideoReader, testing::Combine( |
||||
ALL_DEVICES, |
||||
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); |
||||
|
||||
#endif |
Loading…
Reference in new issue