|
|
|
@ -2289,6 +2289,7 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef& |
|
|
|
|
const std::string& type = layer.op(); |
|
|
|
|
const int num_inputs = layer.input_size(); |
|
|
|
|
std::string pool_type = cv::toLowerCase(type); |
|
|
|
|
DataLayout layout = getDataLayout(name, data_layouts); |
|
|
|
|
|
|
|
|
|
if (pool_type == "mean") |
|
|
|
|
{ |
|
|
|
@ -2352,6 +2353,16 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef& |
|
|
|
|
|
|
|
|
|
if (!keepDims) |
|
|
|
|
{ |
|
|
|
|
if (layout == DATA_LAYOUT_NHWC) |
|
|
|
|
{ |
|
|
|
|
LayerParams permLP; |
|
|
|
|
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
|
|
|
|
std::string permName = name + "/nhwc"; |
|
|
|
|
Pin inpId = Pin(layerShapeName); |
|
|
|
|
addPermuteLayer(order, permName, inpId); |
|
|
|
|
layerShapeName = permName; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
LayerParams squeezeLp; |
|
|
|
|
std::string squeezeName = name + "/squeeze"; |
|
|
|
|
CV_Assert(layer_id.find(squeezeName) == layer_id.end()); |
|
|
|
@ -2374,22 +2385,30 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef& |
|
|
|
|
layerParams.set("pool", pool_type); |
|
|
|
|
layerParams.set(axis == 2 ? "kernel_w" : "kernel_h", 1); |
|
|
|
|
layerParams.set(axis == 2 ? "global_pooling_h" : "global_pooling_w", true); |
|
|
|
|
|
|
|
|
|
if (keepDims) |
|
|
|
|
{ |
|
|
|
|
int id = dstNet.addLayer(name, "Pooling", layerParams); |
|
|
|
|
layer_id[name] = id; |
|
|
|
|
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0); |
|
|
|
|
|
|
|
|
|
if (!keepDims) |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
// To keep correct order after squeeze dims we first need to change layout from NCHW to NHWC
|
|
|
|
|
std::string poolingName = name + "/Pooling"; |
|
|
|
|
CV_Assert(layer_id.find(poolingName) == layer_id.end()); |
|
|
|
|
int id = dstNet.addLayer(poolingName, "Pooling", layerParams); |
|
|
|
|
layer_id[poolingName] = id; |
|
|
|
|
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0); |
|
|
|
|
|
|
|
|
|
LayerParams permLP; |
|
|
|
|
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
|
|
|
|
std::string permName = name + "/nchw"; |
|
|
|
|
Pin inpId = Pin(name); |
|
|
|
|
std::string permName = name + "/nhwc"; |
|
|
|
|
Pin inpId = Pin(poolingName); |
|
|
|
|
addPermuteLayer(order, permName, inpId); |
|
|
|
|
|
|
|
|
|
LayerParams squeezeLp; |
|
|
|
|
std::string squeezeName = name + "/squeeze"; |
|
|
|
|
CV_Assert(layer_id.find(squeezeName) == layer_id.end()); |
|
|
|
|
const std::string& squeezeName = name; |
|
|
|
|
squeezeLp.set("axis", indices.at<int>(0)); |
|
|
|
|
squeezeLp.set("end_axis", indices.at<int>(0) + 1); |
|
|
|
|
int squeezeId = dstNet.addLayer(squeezeName, "Flatten", squeezeLp); |
|
|
|
@ -2401,32 +2420,34 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef& |
|
|
|
|
{ |
|
|
|
|
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
|
|
|
|
Pin inpId = parsePin(layer.input(0)); |
|
|
|
|
addPermuteLayer(order, name + "/nhwc", inpId); |
|
|
|
|
std::string permName = name + "/nhwc"; |
|
|
|
|
addPermuteLayer(order, permName, inpId); |
|
|
|
|
|
|
|
|
|
layerParams.set("pool", pool_type); |
|
|
|
|
layerParams.set("kernel_h", 1); |
|
|
|
|
layerParams.set("global_pooling_w", true); |
|
|
|
|
int id = dstNet.addLayer(name, "Pooling", layerParams); |
|
|
|
|
layer_id[name] = id; |
|
|
|
|
connect(layer_id, dstNet, inpId, id, 0); |
|
|
|
|
std::string poolingName = name + "/Pooling"; |
|
|
|
|
CV_Assert(layer_id.find(poolingName) == layer_id.end()); |
|
|
|
|
int id = dstNet.addLayer(poolingName, "Pooling", layerParams); |
|
|
|
|
layer_id[poolingName] = id; |
|
|
|
|
connect(layer_id, dstNet, Pin(permName), id, 0); |
|
|
|
|
|
|
|
|
|
if (!keepDims) |
|
|
|
|
{ |
|
|
|
|
LayerParams squeezeLp; |
|
|
|
|
std::string squeezeName = name + "/squeeze"; |
|
|
|
|
CV_Assert(layer_id.find(squeezeName) == layer_id.end()); |
|
|
|
|
const std::string& squeezeName = name; |
|
|
|
|
int channel_id = 3; // TF NHWC layout
|
|
|
|
|
squeezeLp.set("axis", channel_id - 1); |
|
|
|
|
squeezeLp.set("end_axis", channel_id); |
|
|
|
|
int squeezeId = dstNet.addLayer(squeezeName, "Flatten", squeezeLp); |
|
|
|
|
layer_id[squeezeName] = squeezeId; |
|
|
|
|
connect(layer_id, dstNet, Pin(name), squeezeId, 0); |
|
|
|
|
connect(layer_id, dstNet, Pin(poolingName), squeezeId, 0); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
int order[] = {0, 3, 1, 2}; // From NHWC to OpenCV's NCHW.
|
|
|
|
|
Pin inpId = parsePin(name); |
|
|
|
|
addPermuteLayer(order, name + "/nchw", inpId); |
|
|
|
|
Pin inpId = parsePin(poolingName); |
|
|
|
|
addPermuteLayer(order, name, inpId); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
@ -2435,18 +2456,26 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef& |
|
|
|
|
|
|
|
|
|
layerParams.set("pool", pool_type); |
|
|
|
|
layerParams.set("global_pooling", true); |
|
|
|
|
|
|
|
|
|
if (keepDims) |
|
|
|
|
{ |
|
|
|
|
int id = dstNet.addLayer(name, "Pooling", layerParams); |
|
|
|
|
layer_id[name] = id; |
|
|
|
|
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0); |
|
|
|
|
|
|
|
|
|
if (!keepDims) |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
std::string poolingName = name + "/Pooling"; |
|
|
|
|
CV_Assert(layer_id.find(poolingName) == layer_id.end()); |
|
|
|
|
int id = dstNet.addLayer(poolingName, "Pooling", layerParams); |
|
|
|
|
layer_id[poolingName] = id; |
|
|
|
|
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0); |
|
|
|
|
LayerParams flattenLp; |
|
|
|
|
std::string flattenName = name + "/flatten"; |
|
|
|
|
CV_Assert(layer_id.find(flattenName) == layer_id.end()); |
|
|
|
|
const std::string& flattenName = name; |
|
|
|
|
int flattenId = dstNet.addLayer(flattenName, "Flatten", flattenLp); |
|
|
|
|
layer_id[flattenName] = flattenId; |
|
|
|
|
connect(layer_id, dstNet, Pin(name), flattenId, 0); |
|
|
|
|
connect(layer_id, dstNet, Pin(poolingName), flattenId, 0); |
|
|
|
|
data_layouts[name] = DATA_LAYOUT_PLANAR; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|