Merge pull request #13334 from terfendail:histogram_wintr

* added performance test for compareHist

* compareHist reworked to use wide universal intrinsics

* Disabled vectorization for CV_COMP_CORREL and CV_COMP_BHATTACHARYYA if f64 is unsupported
pull/13433/head^2
Vitaly Tuzov 6 years ago committed by Alexander Alekhin
parent a9771078df
commit 3903174f7c
  1. 6
      modules/core/include/opencv2/core/hal/intrin_avx.hpp
  2. 7
      modules/core/include/opencv2/core/hal/intrin_neon.hpp
  3. 7
      modules/core/include/opencv2/core/hal/intrin_sse.hpp
  4. 5
      modules/core/include/opencv2/core/hal/intrin_vsx.hpp
  5. 25
      modules/imgproc/perf/perf_histogram.cpp
  6. 207
      modules/imgproc/src/histogram.cpp

@ -1125,6 +1125,12 @@ inline float v_reduce_sum(const v_float32x8& a)
return _mm_cvtss_f32(s1);
}
inline double v_reduce_sum(const v_float64x4& a)
{
__m256d s0 = _mm256_hadd_pd(a.val, a.val);
return _mm_cvtsd_f64(_mm_add_pd(_v256_extract_low(s0), _v256_extract_high(s0)));
}
inline v_float32x8 v_reduce_sum4(const v_float32x8& a, const v_float32x8& b,
const v_float32x8& c, const v_float32x8& d)
{

@ -984,6 +984,13 @@ OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, sum, add, f32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, max, max, f32)
OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, min, min, f32)
#if CV_SIMD128_64F
inline double v_reduce_sum(const v_float64x2& a)
{
return vgetq_lane_f64(a.val, 0) + vgetq_lane_f64(a.val, 1);
}
#endif
inline v_float32x4 v_reduce_sum4(const v_float32x4& a, const v_float32x4& b,
const v_float32x4& c, const v_float32x4& d)
{

@ -1456,6 +1456,13 @@ OPENCV_HAL_IMPL_SSE_REDUCE_OP_4_SUM(v_uint32x4, unsigned, __m128i, epi32, OPENCV
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4_SUM(v_int32x4, int, __m128i, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP, si128_si32)
OPENCV_HAL_IMPL_SSE_REDUCE_OP_4_SUM(v_float32x4, float, __m128, ps, _mm_castps_si128, _mm_castsi128_ps, ss_f32)
inline double v_reduce_sum(const v_float64x2& a)
{
double CV_DECL_ALIGNED(32) idx[2];
v_store_aligned(idx, a);
return idx[0] + idx[1];
}
inline v_float32x4 v_reduce_sum4(const v_float32x4& a, const v_float32x4& b,
const v_float32x4& c, const v_float32x4& d)
{

@ -716,6 +716,11 @@ OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_float32x4, vec_float4, float, sum, vec_add)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_float32x4, vec_float4, float, max, vec_max)
OPENCV_HAL_IMPL_VSX_REDUCE_OP_4(v_float32x4, vec_float4, float, min, vec_min)
inline double v_reduce_sum(const v_float64x2& a)
{
return vec_extract(vec_add(a.val, vec_sld(a.val, a.val, 8)), 0);
}
#define OPENCV_HAL_IMPL_VSX_REDUCE_OP_8(_Tpvec, _Tpvec2, scalartype, suffix, func) \
inline scalartype v_reduce_##suffix(const _Tpvec& a) \
{ \

@ -116,6 +116,31 @@ PERF_TEST_P(MatSize, equalizeHist,
}
#undef MatSize
typedef TestBaseWithParam< tuple<int, int> > Dim_Cmpmethod;
PERF_TEST_P(Dim_Cmpmethod, compareHist,
testing::Combine(testing::Values(1, 3),
testing::Values(HISTCMP_CORREL, HISTCMP_CHISQR, HISTCMP_INTERSECT, HISTCMP_BHATTACHARYYA, HISTCMP_CHISQR_ALT, HISTCMP_KL_DIV))
)
{
int dims = get<0>(GetParam());
int method = get<1>(GetParam());
int histSize[] = { 2048, 128, 64 };
Mat hist1(dims, histSize, CV_32FC1);
Mat hist2(dims, histSize, CV_32FC1);
randu(hist1, 0, 256);
randu(hist2, 0, 256);
declare.in(hist1.reshape(1, 256), hist2.reshape(1, 256));
TEST_CYCLE()
{
compareHist(hist1, hist2, method);
}
SANITY_CHECK_NOTHING();
}
typedef tuple<Size, double> Sz_ClipLimit_t;
typedef TestBaseWithParam<Sz_ClipLimit_t> Sz_ClipLimit;

@ -41,6 +41,7 @@
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include "opencv2/core/openvx/ovx_defs.hpp"
@ -1938,10 +1939,6 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
CV_Assert( it.planes[0].isContinuous() && it.planes[1].isContinuous() );
#if CV_SSE2
bool haveSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
const float* h1 = it.planes[0].ptr<float>();
@ -1961,50 +1958,63 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
}
else if( method == CV_COMP_CORREL )
{
#if CV_SSE2
if (haveSIMD)
#if CV_SIMD_64F
v_float64 v_s1 = vx_setzero_f64();
v_float64 v_s2 = vx_setzero_f64();
v_float64 v_s11 = vx_setzero_f64();
v_float64 v_s12 = vx_setzero_f64();
v_float64 v_s22 = vx_setzero_f64();
for ( ; j <= len - v_float32::nlanes; j += v_float32::nlanes)
{
__m128d v_s1 = _mm_setzero_pd(), v_s2 = v_s1;
__m128d v_s11 = v_s1, v_s22 = v_s1, v_s12 = v_s1;
for ( ; j <= len - 4; j += 4)
{
__m128 v_a = _mm_loadu_ps(h1 + j);
__m128 v_b = _mm_loadu_ps(h2 + j);
// 0-1
__m128d v_ad = _mm_cvtps_pd(v_a);
__m128d v_bd = _mm_cvtps_pd(v_b);
v_s12 = _mm_add_pd(v_s12, _mm_mul_pd(v_ad, v_bd));
v_s11 = _mm_add_pd(v_s11, _mm_mul_pd(v_ad, v_ad));
v_s22 = _mm_add_pd(v_s22, _mm_mul_pd(v_bd, v_bd));
v_s1 = _mm_add_pd(v_s1, v_ad);
v_s2 = _mm_add_pd(v_s2, v_bd);
// 2-3
v_ad = _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_a), 8)));
v_bd = _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_b), 8)));
v_s12 = _mm_add_pd(v_s12, _mm_mul_pd(v_ad, v_bd));
v_s11 = _mm_add_pd(v_s11, _mm_mul_pd(v_ad, v_ad));
v_s22 = _mm_add_pd(v_s22, _mm_mul_pd(v_bd, v_bd));
v_s1 = _mm_add_pd(v_s1, v_ad);
v_s2 = _mm_add_pd(v_s2, v_bd);
}
double CV_DECL_ALIGNED(16) ar[10];
_mm_store_pd(ar, v_s12);
_mm_store_pd(ar + 2, v_s11);
_mm_store_pd(ar + 4, v_s22);
_mm_store_pd(ar + 6, v_s1);
_mm_store_pd(ar + 8, v_s2);
s12 += ar[0] + ar[1];
s11 += ar[2] + ar[3];
s22 += ar[4] + ar[5];
s1 += ar[6] + ar[7];
s2 += ar[8] + ar[9];
v_float32 v_a = vx_load(h1 + j);
v_float32 v_b = vx_load(h2 + j);
// 0-1
v_float64 v_ad = v_cvt_f64(v_a);
v_float64 v_bd = v_cvt_f64(v_b);
v_s12 = v_muladd(v_ad, v_bd, v_s12);
v_s11 = v_muladd(v_ad, v_ad, v_s11);
v_s22 = v_muladd(v_bd, v_bd, v_s22);
v_s1 += v_ad;
v_s2 += v_bd;
// 2-3
v_ad = v_cvt_f64_high(v_a);
v_bd = v_cvt_f64_high(v_b);
v_s12 = v_muladd(v_ad, v_bd, v_s12);
v_s11 = v_muladd(v_ad, v_ad, v_s11);
v_s22 = v_muladd(v_bd, v_bd, v_s22);
v_s1 += v_ad;
v_s2 += v_bd;
}
#endif
s12 += v_reduce_sum(v_s12);
s11 += v_reduce_sum(v_s11);
s22 += v_reduce_sum(v_s22);
s1 += v_reduce_sum(v_s1);
s2 += v_reduce_sum(v_s2);
#elif CV_SIMD && 0 //Disable vectorization for CV_COMP_CORREL if f64 is unsupported due to low precision
v_float32 v_s1 = vx_setzero_f32();
v_float32 v_s2 = vx_setzero_f32();
v_float32 v_s11 = vx_setzero_f32();
v_float32 v_s12 = vx_setzero_f32();
v_float32 v_s22 = vx_setzero_f32();
for (; j <= len - v_float32::nlanes; j += v_float32::nlanes)
{
v_float32 v_a = vx_load(h1 + j);
v_float32 v_b = vx_load(h2 + j);
v_s12 = v_muladd(v_a, v_b, v_s12);
v_s11 = v_muladd(v_a, v_a, v_s11);
v_s22 = v_muladd(v_b, v_b, v_s22);
v_s1 += v_a;
v_s2 += v_b;
}
s12 += v_reduce_sum(v_s12);
s11 += v_reduce_sum(v_s11);
s22 += v_reduce_sum(v_s22);
s1 += v_reduce_sum(v_s1);
s2 += v_reduce_sum(v_s2);
#endif
for( ; j < len; j++ )
{
double a = h1[j];
@ -2019,67 +2029,68 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
}
else if( method == CV_COMP_INTERSECT )
{
#if CV_NEON
float32x4_t v_result = vdupq_n_f32(0.0f);
for( ; j <= len - 4; j += 4 )
v_result = vaddq_f32(v_result, vminq_f32(vld1q_f32(h1 + j), vld1q_f32(h2 + j)));
float CV_DECL_ALIGNED(16) ar[4];
vst1q_f32(ar, v_result);
result += ar[0] + ar[1] + ar[2] + ar[3];
#elif CV_SSE2
if (haveSIMD)
#if CV_SIMD_64F
v_float64 v_result = vx_setzero_f64();
for ( ; j <= len - v_float32::nlanes; j += v_float32::nlanes)
{
__m128d v_result = _mm_setzero_pd();
for ( ; j <= len - 4; j += 4)
{
__m128 v_src = _mm_min_ps(_mm_loadu_ps(h1 + j),
_mm_loadu_ps(h2 + j));
v_result = _mm_add_pd(v_result, _mm_cvtps_pd(v_src));
v_src = _mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_src), 8));
v_result = _mm_add_pd(v_result, _mm_cvtps_pd(v_src));
}
double CV_DECL_ALIGNED(16) ar[2];
_mm_store_pd(ar, v_result);
result += ar[0] + ar[1];
v_float32 v_src = v_min(vx_load(h1 + j), vx_load(h2 + j));
v_result += v_cvt_f64(v_src) + v_cvt_f64_high(v_src);
}
result += v_reduce_sum(v_result);
#elif CV_SIMD
v_float32 v_result = vx_setzero_f32();
for (; j <= len - v_float32::nlanes; j += v_float32::nlanes)
{
v_float32 v_src = v_min(vx_load(h1 + j), vx_load(h2 + j));
v_result += v_src;
}
#endif
result += v_reduce_sum(v_result);
#endif
for( ; j < len; j++ )
result += std::min(h1[j], h2[j]);
}
else if( method == CV_COMP_BHATTACHARYYA )
{
#if CV_SSE2
if (haveSIMD)
#if CV_SIMD_64F
v_float64 v_s1 = vx_setzero_f64();
v_float64 v_s2 = vx_setzero_f64();
v_float64 v_result = vx_setzero_f64();
for ( ; j <= len - v_float32::nlanes; j += v_float32::nlanes)
{
__m128d v_s1 = _mm_setzero_pd(), v_s2 = v_s1, v_result = v_s1;
for ( ; j <= len - 4; j += 4)
{
__m128 v_a = _mm_loadu_ps(h1 + j);
__m128 v_b = _mm_loadu_ps(h2 + j);
__m128d v_ad = _mm_cvtps_pd(v_a);
__m128d v_bd = _mm_cvtps_pd(v_b);
v_s1 = _mm_add_pd(v_s1, v_ad);
v_s2 = _mm_add_pd(v_s2, v_bd);
v_result = _mm_add_pd(v_result, _mm_sqrt_pd(_mm_mul_pd(v_ad, v_bd)));
v_ad = _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_a), 8)));
v_bd = _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_b), 8)));
v_s1 = _mm_add_pd(v_s1, v_ad);
v_s2 = _mm_add_pd(v_s2, v_bd);
v_result = _mm_add_pd(v_result, _mm_sqrt_pd(_mm_mul_pd(v_ad, v_bd)));
}
double CV_DECL_ALIGNED(16) ar[6];
_mm_store_pd(ar, v_s1);
_mm_store_pd(ar + 2, v_s2);
_mm_store_pd(ar + 4, v_result);
s1 += ar[0] + ar[1];
s2 += ar[2] + ar[3];
result += ar[4] + ar[5];
v_float32 v_a = vx_load(h1 + j);
v_float32 v_b = vx_load(h2 + j);
v_float64 v_ad = v_cvt_f64(v_a);
v_float64 v_bd = v_cvt_f64(v_b);
v_s1 += v_ad;
v_s2 += v_bd;
v_result += v_sqrt(v_ad * v_bd);
v_ad = v_cvt_f64_high(v_a);
v_bd = v_cvt_f64_high(v_b);
v_s1 += v_ad;
v_s2 += v_bd;
v_result += v_sqrt(v_ad * v_bd);
}
#endif
s1 += v_reduce_sum(v_s1);
s2 += v_reduce_sum(v_s2);
result += v_reduce_sum(v_result);
#elif CV_SIMD && 0 //Disable vectorization for CV_COMP_BHATTACHARYYA if f64 is unsupported due to low precision
v_float32 v_s1 = vx_setzero_f32();
v_float32 v_s2 = vx_setzero_f32();
v_float32 v_result = vx_setzero_f32();
for (; j <= len - v_float32::nlanes; j += v_float32::nlanes)
{
v_float32 v_a = vx_load(h1 + j);
v_float32 v_b = vx_load(h2 + j);
v_s1 += v_a;
v_s2 += v_b;
v_result += v_sqrt(v_a * v_b);
}
s1 += v_reduce_sum(v_s1);
s2 += v_reduce_sum(v_s2);
result += v_reduce_sum(v_result);
#endif
for( ; j < len; j++ )
{
double a = h1[j];

Loading…
Cancel
Save