mirror of https://github.com/opencv/opencv.git
Merge pull request #3897 from sanchom:bugfix_4030
commit
38ce0fe954
2 changed files with 92 additions and 3 deletions
@ -0,0 +1,89 @@ |
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// Intel License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "test_precomp.hpp" |
||||||
|
|
||||||
|
using namespace cv; |
||||||
|
using namespace std; |
||||||
|
using cv::ml::SVM; |
||||||
|
using cv::ml::TrainData; |
||||||
|
|
||||||
|
//--------------------------------------------------------------------------------------------
|
||||||
|
class CV_SVMTrainAutoTest : public cvtest::BaseTest { |
||||||
|
public: |
||||||
|
CV_SVMTrainAutoTest() {} |
||||||
|
protected: |
||||||
|
virtual void run( int start_from ); |
||||||
|
}; |
||||||
|
|
||||||
|
void CV_SVMTrainAutoTest::run( int /*start_from*/ ) |
||||||
|
{ |
||||||
|
int datasize = 100; |
||||||
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 ); |
||||||
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S ); |
||||||
|
|
||||||
|
RNG rng(0); |
||||||
|
for (int i = 0; i < datasize; ++i) |
||||||
|
{ |
||||||
|
int response = rng.uniform(0, 2); // Random from {0, 1}.
|
||||||
|
samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f; |
||||||
|
samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f; |
||||||
|
responses.at<int>( i, 0 ) = response; |
||||||
|
} |
||||||
|
|
||||||
|
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); |
||||||
|
cv::Ptr<SVM> svm = SVM::create(); |
||||||
|
svm->trainAuto( data, 10 ); // 2-fold cross validation.
|
||||||
|
|
||||||
|
float test_data0[2] = {0.25f, 0.25f}; |
||||||
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 ); |
||||||
|
float result0 = svm->predict( test_point0 ); |
||||||
|
float test_data1[2] = {0.75f, 0.75f}; |
||||||
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 ); |
||||||
|
float result1 = svm->predict( test_point1 ); |
||||||
|
|
||||||
|
if ( fabs( result0 - 0 ) > 0.001 || fabs( result1 - 1 ) > 0.001 ) |
||||||
|
{ |
||||||
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); } |
Loading…
Reference in new issue