reverted samples with new command argument parser. will be continued after OpenCV release.

pull/13383/head
itsyplen 14 years ago
parent 8f4f982e5c
commit 3876cf22e3
  1. 57
      samples/c/adaptiveskindetector.cpp
  2. 103
      samples/c/bgfg_codebook.cpp
  3. 79
      samples/c/facedetect.cpp
  4. 41
      samples/c/find_obj.cpp
  5. 38
      samples/c/find_obj_calonder.cpp
  6. 32
      samples/c/find_obj_ferns.cpp
  7. 103
      samples/c/latentsvmdetect.cpp
  8. 176
      samples/c/mser_sample.cpp
  9. 36
      samples/c/one_way_sample.cpp
  10. 65
      samples/c/tree_engine.cpp
  11. 68
      samples/cpp/bagofwords_classification.cpp
  12. 26
      samples/cpp/bgfg_segm.cpp
  13. 38
      samples/cpp/brief_match_test.cpp
  14. 232
      samples/cpp/calibration.cpp
  15. 43
      samples/cpp/camshiftdemo.cpp
  16. 37
      samples/cpp/chamfer.cpp

@ -35,17 +35,27 @@
//M*/
#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <cstdio>
#include <cstring>
#include <ctime>
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace std;
using namespace cv;
void help(char **argv)
{
std::cout << "\nThis program demonstrates the contributed flesh detector CvAdaptiveSkinDetector which can be found in contrib.cpp\n"
<< "Usage: " << std::endl <<
argv[0] << " fileMask firstFrame lastFrame" << std::endl << std::endl <<
"Example: " << std::endl <<
argv[0] << " C:\\VideoSequences\\sample1\\right_view\\temp_%05d.jpg 0 1000" << std::endl <<
" iterates through temp_00000.jpg to temp_01000.jpg" << std::endl << std::endl <<
"If no parameter specified, this application will try to capture from the default Webcam." << std::endl <<
"Please note: Background should not contain large surfaces with skin tone." <<
"\n\n ESC will stop\n"
"Using OpenCV version %s\n" << CV_VERSION << "\n"
<< std::endl;
}
class ASDFrameHolder
{
@ -149,6 +159,7 @@ void ASDFrameHolder::setImage(IplImage *sourceImage)
//-------------------- ASDFrameSequencer -----------------------//
ASDFrameSequencer::~ASDFrameSequencer()
{
close();
@ -204,6 +215,7 @@ bool ASDCVFrameSequencer::isOpen()
//-------------------- ASDFrameSequencerWebCam -----------------------//
bool ASDFrameSequencerWebCam::open(int cameraIndex)
{
close();
@ -323,39 +335,19 @@ void displayBuffer(IplImage *rgbDestImage, IplImage *buffer, int rValue, int gVa
}
};
void help()
{
printf("\nThis program demonstrates the contributed flesh detector CvAdaptiveSkinDetector \n"
"which can be found in contrib.cpp \n"
"Usage: \n"
"./adaptiveskindetector [--fileMask]=<path to file, which are used in mask \n"
" [--firstFrame]=<first frame number \n"
" [--lastFrame]=<last frame number> \n"
"if at least one parameter doesn't specified, it will try to use default webcam \n"
"Expample: \n"
" --fileMask = /home/user_home_directory/work/opencv/samples/c/temp_%%05d.jpg --firstFrame=0 --lastFrame=1000 \n");
}
int main(int argc, const char** argv )
int main(int argc, char** argv )
{
help();
CommandLineParser parser(argc, argv);
string fileMask = parser.get<string>("fileMask");
int firstFrame = parser.get<int>("firstFrame", 0);
int lastFrame = parser.get<int>("lastFrame", 0);
IplImage *img, *filterMask = NULL;
CvAdaptiveSkinDetector filter(1, CvAdaptiveSkinDetector::MORPHING_METHOD_ERODE_DILATE);
ASDFrameSequencer *sequencer;
CvFont base_font;
char caption[2048], s[256], windowName[256];
long int clockTotal = 0, numFrames = 0;
std::clock_t clock;
std::clock_t clock;
if (argc < 4)
{
help(argv);
sequencer = new ASDFrameSequencerWebCam();
(dynamic_cast<ASDFrameSequencerWebCam*>(sequencer))->open(-1);
@ -366,9 +358,8 @@ int main(int argc, const char** argv )
}
else
{
// A sequence of images captured from video source, is stored here
sequencer = new ASDFrameSequencerImageFile();
(dynamic_cast<ASDFrameSequencerImageFile*>(sequencer))->open(fileMask.c_str(), firstFrame, lastFrame );
(dynamic_cast<ASDFrameSequencerImageFile*>(sequencer))->open(argv[1], std::atoi(argv[2]), std::atoi(argv[3]) ); // A sequence of images captured from video source, is stored here
}
std::sprintf(windowName, "%s", "Adaptive Skin Detection Algorithm for Video Sequences");
@ -376,6 +367,10 @@ int main(int argc, const char** argv )
cvNamedWindow(windowName, CV_WINDOW_AUTOSIZE);
cvInitFont( &base_font, CV_FONT_VECTOR0, 0.5, 0.5);
// Usage:
// c:\>CvASDSample "C:\VideoSequences\sample1\right_view\temp_%05d.jpg" 0 1000
std::cout << "Press ESC to stop." << std::endl << std::endl;
while ((img = sequencer->getNextImage()) != 0)
{
numFrames++;

@ -25,14 +25,10 @@
#include <stdlib.h>
#include <ctype.h>
#include "opencv2/core/core.hpp"
#include "opencv2/video/background_segm.hpp"
#include <opencv2/imgproc/imgproc_c.h>
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/highgui/highgui.hpp"
using namespace std;
using namespace cv;
//VARIABLES for CODEBOOK METHOD:
CvBGCodeBookModel* model = 0;
const int NCHANNELS = 3;
@ -42,28 +38,26 @@ void help(void)
{
printf("\nLearn background and find foreground using simple average and average difference learning method:\n"
"Originally from the book: Learning OpenCV by O'Reilly press\n"
"\nUsage:\n"
"./bgfg_codebook [--nframes]=<frames number, 300 as default> \n"
" [--input]=<movie filename or camera index, zero camera index as default>\n"
"***Keep the focus on the video windows, NOT the consol***\n\n"
"INTERACTIVE PARAMETERS:\n"
"\tESC,q,Q - quit the program\n"
"\th - print this help\n"
"\tp - pause toggle\n"
"\ts - single step\n"
"\tr - run mode (single step off)\n"
"=== AVG PARAMS ===\n"
"\t- - bump high threshold UP by 0.25\n"
"\t= - bump high threshold DOWN by 0.25\n"
"\t[ - bump low threshold UP by 0.25\n"
"\t] - bump low threshold DOWN by 0.25\n"
"=== CODEBOOK PARAMS ===\n"
"\ty,u,v- only adjust channel 0(y) or 1(u) or 2(v) respectively\n"
"\ta - adjust all 3 channels at once\n"
"\tb - adjust both 2 and 3 at once\n"
"\ti,o - bump upper threshold up,down by 1\n"
"\tk,l - bump lower threshold up,down by 1\n"
"\tSPACE - reset the model\n"
"\nUSAGE:\nbgfg_codebook [--nframes=300] [movie filename, else from camera]\n"
"***Keep the focus on the video windows, NOT the consol***\n\n"
"INTERACTIVE PARAMETERS:\n"
"\tESC,q,Q - quit the program\n"
"\th - print this help\n"
"\tp - pause toggle\n"
"\ts - single step\n"
"\tr - run mode (single step off)\n"
"=== AVG PARAMS ===\n"
"\t- - bump high threshold UP by 0.25\n"
"\t= - bump high threshold DOWN by 0.25\n"
"\t[ - bump low threshold UP by 0.25\n"
"\t] - bump low threshold DOWN by 0.25\n"
"=== CODEBOOK PARAMS ===\n"
"\ty,u,v- only adjust channel 0(y) or 1(u) or 2(v) respectively\n"
"\ta - adjust all 3 channels at once\n"
"\tb - adjust both 2 and 3 at once\n"
"\ti,o - bump upper threshold up,down by 1\n"
"\tk,l - bump lower threshold up,down by 1\n"
"\tSPACE - reset the model\n"
);
}
@ -71,20 +65,15 @@ void help(void)
//USAGE: ch9_background startFrameCollection# endFrameCollection# [movie filename, else from camera]
//If from AVI, then optionally add HighAvg, LowAvg, HighCB_Y LowCB_Y HighCB_U LowCB_U HighCB_V LowCB_V
//
int main(int argc, const char** argv)
int main(int argc, char** argv)
{
help();
CommandLineParser parser(argc, argv);
string inputName = parser.get<string>("input", "0");
int nframesToLearnBG = parser.get<int>("nframes", 300);
const char* filename = 0;
IplImage* rawImage = 0, *yuvImage = 0; //yuvImage is for codebook method
IplImage *ImaskCodeBook = 0,*ImaskCodeBookCC = 0;
CvCapture* capture = 0;
int c, n, nframes = 0;
int c, n, nframes = 0;
int nframesToLearnBG = 300;
model = cvCreateBGCodeBookModel();
@ -98,30 +87,38 @@ int main(int argc, const char** argv)
bool pause = false;
bool singlestep = false;
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
for( n = 1; n < argc; n++ )
{
printf("Capture from camera\n");
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
if( !capture)
{
printf ("Capture from CAM %d", c);
printf (" didn't work\n");
}
}
else
static const char* nframesOpt = "--nframes=";
if( strncmp(argv[n], nframesOpt, strlen(nframesOpt))==0 )
{
printf("Capture from file %s\n",inputName.c_str());
capture = cvCreateFileCapture(inputName.c_str());
if( !capture)
if( sscanf(argv[n] + strlen(nframesOpt), "%d", &nframesToLearnBG) == 0 )
{
printf ("Capture from file %s", inputName.c_str());
printf (" didn't work\n");
help();
return -1;
}
}
else
filename = argv[n];
}
if( !filename )
{
printf("Capture from camera\n");
capture = cvCaptureFromCAM( 0 );
}
else
{
printf("Capture from file %s\n",filename);
capture = cvCreateFileCapture( filename );
}
if( !capture )
{
printf( "Can not initialize video capturing\n\n" );
help();
return -1;
}
//MAIN PROCESSING LOOP:
for(;;)

@ -1,4 +1,3 @@
#include "opencv2/core/core.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
@ -11,13 +10,13 @@ using namespace cv;
void help()
{
cout << "\nThis program demonstrates the cascade classifier. Now you can use Haar or LBP features.\n"
cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
"This classifier can recognize many ~rigid objects, it's most known use is for faces.\n"
"Usage:\n"
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>\n"
" [--input=filename|camera_index]\n\n"
" [filename|camera_index]\n\n"
"see facedetect.cmd for one call:\n"
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye.xml\" --scale=1.3 \n"
"Hit any key to quit.\n"
@ -28,41 +27,70 @@ void detectAndDraw( Mat& img,
CascadeClassifier& cascade, CascadeClassifier& nestedCascade,
double scale);
String cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
String nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
int main( int argc, const char** argv )
{
help();
CommandLineParser parser(argc, argv);
string cascadeName = parser.get<string>("cascade", "../../data/haarcascades/haarcascade_frontalface_alt.xml");
string nestedCascadeName = parser.get<string>("nested-cascade", "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml");
double scale = parser.get<double>("scale", 1.0);
string inputName = parser.get<string>("input", "0"); //read from camera by default
if (!cascadeName.empty())
cout << " from which we have cascadeName= " << cascadeName << endl;
if (!nestedCascadeName.empty())
cout << " from which we have nestedCascadeName= " << nestedCascadeName << endl;
CvCapture* capture = 0;
Mat frame, frameCopy, image;
const String scaleOpt = "--scale=";
size_t scaleOptLen = scaleOpt.length();
const String cascadeOpt = "--cascade=";
size_t cascadeOptLen = cascadeOpt.length();
const String nestedCascadeOpt = "--nested-cascade";
size_t nestedCascadeOptLen = nestedCascadeOpt.length();
String inputName;
help();
CascadeClassifier cascade, nestedCascade;
double scale = 1;
for( int i = 1; i < argc; i++ )
{
cout << "Processing " << i << " " << argv[i] << endl;
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
{
cascadeName.assign( argv[i] + cascadeOptLen );
cout << " from which we have cascadeName= " << cascadeName << endl;
}
else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 )
{
if( argv[i][nestedCascadeOpt.length()] == '=' )
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 );
if( !nestedCascade.load( nestedCascadeName ) )
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
}
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
{
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
scale = 1;
cout << " from which we read scale = " << scale << endl;
}
else if( argv[i][0] == '-' )
{
cerr << "WARNING: Unknown option %s" << argv[i] << endl;
}
else
inputName.assign( argv[i] );
}
if( !cascade.load( cascadeName ) )
{
cerr << "ERROR: Could not load classifier cascade" << endl;
cerr << "Usage: facedetect [--cascade=<cascade_path>]\n"
" [--nested-cascade[=nested_cascade_path]]\n"
" [--scale[=<image scale>\n"
" [filename|camera_index]\n" << endl ;
return -1;
}
if( !nestedCascade.load( nestedCascadeName ) )
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
{
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
if( !capture) cout << "Capture from CAM " << c << " didn't work" << endl;
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
}
else if( inputName.size() )
{
@ -70,9 +98,14 @@ int main( int argc, const char** argv )
if( image.empty() )
{
capture = cvCaptureFromAVI( inputName.c_str() );
if( !capture ) cout << "Capture from AVI didn't work" << endl;
if(!capture) cout << "Capture from AVI didn't work" << endl;
}
}
else
{
image = imread( "lena.jpg", 1 );
if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
}
cvNamedWindow( "result", 1 );

@ -4,30 +4,26 @@
* Author: Liu Liu
* liuliu.1987+opencv@gmail.com
*/
#include "opencv2/core/core.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include <opencv2/imgproc/imgproc_c.h>
#include "opencv2/imgproc/imgproc_c.h"
#include <iostream>
#include <vector>
using namespace std;
using namespace cv;
void help()
{
printf( "\n This program demonstrated the use of the SURF Detector and Descriptor using\n"
"either FLANN (fast approx nearst neighbor classification) or brute force matching\n"
"on planar objects.\n"
"Usage: \n"
"./find_obj [--object_filename]=<object_filename, box.png as default> \n"
" [--scene_filename]=<scene_filename box_in_scene.png as default>] \n"
"Example: \n"
"./find_obj --object_filename=box.png --scene_filename=box_in_scene.png \n\n"
);
printf(
"This program demonstrated the use of the SURF Detector and Descriptor using\n"
"either FLANN (fast approx nearst neighbor classification) or brute force matching\n"
"on planar objects.\n"
"Call:\n"
"./find_obj [<object_filename default box.png> <scene_filename default box_in_scene.png>]\n\n"
);
}
// define whether to use approximate nearest-neighbor search
@ -213,16 +209,13 @@ locatePlanarObject( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors
return 1;
}
int main(int argc, const char** argv)
int main(int argc, char** argv)
{
help();
CommandLineParser parser(argc, argv);
string objectFileName = parser.get<string>("object_filename", "box.png");
string sceneFileName = parser.get<string>("scene_filename", "box_in_scene.png");
const char* object_filename = argc == 3 ? argv[1] : "box.png";
const char* scene_filename = argc == 3 ? argv[2] : "box_in_scene.png";
CvMemStorage* storage = cvCreateMemStorage(0);
help();
cvNamedWindow("Object", 1);
cvNamedWindow("Object Correspond", 1);
@ -239,11 +232,13 @@ int main(int argc, const char** argv)
{{255,255,255}}
};
IplImage* object = cvLoadImage( objectFileName.c_str(), CV_LOAD_IMAGE_GRAYSCALE );
IplImage* image = cvLoadImage( sceneFileName.c_str(), CV_LOAD_IMAGE_GRAYSCALE );
IplImage* object = cvLoadImage( object_filename, CV_LOAD_IMAGE_GRAYSCALE );
IplImage* image = cvLoadImage( scene_filename, CV_LOAD_IMAGE_GRAYSCALE );
if( !object || !image )
{
fprintf( stderr, "Can not load %s and/or %s\n", objectFileName.c_str(), sceneFileName.c_str() );
fprintf( stderr, "Can not load %s and/or %s\n"
"Usage: find_obj [<object_filename> <scene_filename>]\n",
object_filename, scene_filename );
exit(-1);
}
IplImage* object_color = cvCreateImage(cvGetSize(object), 8, 3);

@ -11,17 +11,14 @@ using namespace cv;
void help()
{
printf("\n This program shows the use of the Calonder point descriptor classifier \n"
"SURF is used to detect interest points, Calonder is used to describe/match these points \n"
"Usage: \n"
"./find_obj_calonder --classifier_file=<classifier file, there is no default classifier file. You should create it at first and when you can use it for test> \n"
" --test_image=<image file for test, lena.jpg as default> \n"
" [--train_container]=<txt file with train images filenames> \n"
"Example: \n"
" --classifier_file=test_classifier --test_image=lena.jpg --train_container=one_way_train_images.txt \n"
" the test_classifier is created here using --train_container and tested witn --test_image at the end \n"
" --classifier_file=test_classifier --test_image=lena.jpg \n"
" the test classifier is tested here using lena.jpg \n");
cout << "This program shows the use of the Calonder point descriptor classifier"
"SURF is used to detect interest points, Calonder is used to describe/match these points\n"
"Format:" << endl <<
" classifier_file(to write) test_image file_with_train_images_filenames(txt)" <<
" or" << endl <<
" classifier_file(to read) test_image"
"Using OpenCV version %s\n" << CV_VERSION << "\n"
<< endl;
}
/*
* Generates random perspective transform of image
@ -147,27 +144,18 @@ void testCalonderClassifier( const string& classifierFilename, const string& img
waitKey();
}
int main( int argc, const char **argv )
int main( int argc, char **argv )
{
help();
CommandLineParser parser(argc, argv);
string classifierFileName = parser.get<string>("classifier_file");
string testImageFileName = parser.get<string>("test_image", "lena.jpg");
string trainContainerFileName = parser.get<string>("train_container");
if( classifierFileName.empty())
if( argc != 4 && argc != 3 )
{
printf("\n Can't find classifier file, please select file for --classifier_file parameter \n");
help();
return -1;
}
if( !trainContainerFileName.empty())
trainCalonderClassifier( classifierFileName.c_str(), trainContainerFileName.c_str() );
if( argc == 4 )
trainCalonderClassifier( argv[1], argv[3] );
testCalonderClassifier( classifierFileName.c_str(), testImageFileName.c_str() );
testCalonderClassifier( argv[1], argv[2] );
return 0;
}

@ -9,37 +9,30 @@
#include <vector>
using namespace cv;
void help()
{
printf( "This program shows the use of the \"fern\" plannar PlanarObjectDetector point\n"
"descriptor classifier"
"Usage: \n"
"./find_obj_ferns [--object_filename]=<object_filename, box.png as default> \n"
" [--scene_filename]=<scene_filename box_in_scene.png as default>] \n"
"Example: \n"
"./find_obj_ferns --object_filename=box.png --scene_filename=box_in_scene.png \n");
"descriptor classifier"
"Usage:\n"
"./find_obj_ferns [<object_filename default: box.png> <scene_filename default:box_in_scene.png>]\n"
"\n");
}
int main(int argc, const char** argv)
int main(int argc, char** argv)
{
const char* object_filename = argc > 1 ? argv[1] : "box.png";
const char* scene_filename = argc > 2 ? argv[2] : "box_in_scene.png";
int i;
help();
CommandLineParser parser(argc, argv);
string objectFileName = parser.get<string>("object_filename", "box.png");
string sceneFileName = parser.get<string>("scene_filename", "box_in_scene.png");
cvNamedWindow("Object", 1);
cvNamedWindow("Image", 1);
cvNamedWindow("Object Correspondence", 1);
Mat object = imread( objectFileName.c_str(), CV_LOAD_IMAGE_GRAYSCALE );
Mat object = imread( object_filename, CV_LOAD_IMAGE_GRAYSCALE );
Mat image;
double imgscale = 1;
Mat _image = imread( sceneFileName.c_str(), CV_LOAD_IMAGE_GRAYSCALE );
Mat _image = imread( scene_filename, CV_LOAD_IMAGE_GRAYSCALE );
resize(_image, image, Size(), 1./imgscale, 1./imgscale, INTER_CUBIC);
@ -47,7 +40,7 @@ int main(int argc, const char** argv)
{
fprintf( stderr, "Can not load %s and/or %s\n"
"Usage: find_obj_ferns [<object_filename> <scene_filename>]\n",
objectFileName.c_str(), sceneFileName.c_str() );
object_filename, scene_filename );
exit(-1);
}
@ -67,7 +60,7 @@ int main(int argc, const char** argv)
vector<KeyPoint> objKeypoints, imgKeypoints;
PatchGenerator gen(0,256,5,true,0.8,1.2,-CV_PI/2,CV_PI/2,-CV_PI/2,CV_PI/2);
string model_filename = format("%s_model.xml.gz", objectFileName.c_str());
string model_filename = format("%s_model.xml.gz", object_filename);
printf("Trying to load %s ...\n", model_filename.c_str());
FileStorage fs(model_filename, FileStorage::READ);
if( fs.isOpened() )
@ -113,7 +106,6 @@ int main(int argc, const char** argv)
t = (double)getTickCount() - t;
printf("%gms\n", t*1000/getTickFrequency());
int i = 0;
if( found )
{
for( i = 0; i < 4; i++ )

@ -1,11 +1,9 @@
#include "opencv2/core/core.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdio.h>
#ifdef HAVE_CONFIG_H
#include "cvconfig.h"
#include <cvconfig.h>
#endif
#ifdef HAVE_TBB
#include "tbb/task_scheduler_init.h"
@ -15,41 +13,42 @@ using namespace cv;
void help()
{
printf( "This program demonstrated the use of the latentSVM detector.\n"
"It reads in a trained object model and then uses that to detect the object in an image\n"
"Usage: \n"
"./latentsvmdetect [--image_filename]=<image_filename, cat.jpg as default> \n"
" [--model_filename]=<model_filename, cat.xml as default> \n"
" [--threads_number]=<number of threads, -1 as default>\n"
"Example: \n"
"./latentsvmdetect --image_filename=cat.jpg --model_filename=cat.xml --threads_number=7 \n"
" Press any key to quit.\n");
printf( "This program demonstrated the use of the latentSVM detector.\n"
"It reads in a trained object model and then uses that to detect the object in an image\n"
"Call:\n"
"./latentsvmdetect [<image_filename> <model_filename> [<threads_number>]]\n"
" The defaults for image_filename and model_filename are cat.jpg and cat.xml respectively\n"
" Press any key to quit.\n");
}
const char* model_filename = "cat.xml";
const char* image_filename = "cat.jpg";
int tbbNumThreads = -1;
void detect_and_draw_objects( IplImage* image, CvLatentSvmDetector* detector, int numThreads = -1)
{
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* detections = 0;
int i = 0;
int64 start = 0, finish = 0;
int64 start = 0, finish = 0;
#ifdef HAVE_TBB
tbb::task_scheduler_init init(tbb::task_scheduler_init::deferred);
if (numThreads > 0)
{
init.initialize(numThreads);
if (numThreads > 0)
{
init.initialize(numThreads);
printf("Number of threads %i\n", numThreads);
}
else
{
printf("Number of threads is not correct for TBB version");
return;
}
}
else
{
printf("Number of threads is not correct for TBB version");
return;
}
#endif
start = cvGetTickCount();
start = cvGetTickCount();
detections = cvLatentSvmDetectObjects(image, detector, storage, 0.5f, numThreads);
finish = cvGetTickCount();
printf("detection time = %.3f\n", (float)(finish - start) / (float)(cvGetTickFrequency() * 1000000.0));
finish = cvGetTickCount();
printf("detection time = %.3f\n", (float)(finish - start) / (float)(cvGetTickFrequency() * 1000000.0));
#ifdef HAVE_TBB
init.terminate();
@ -57,43 +56,43 @@ void detect_and_draw_objects( IplImage* image, CvLatentSvmDetector* detector, in
for( i = 0; i < detections->total; i++ )
{
CvObjectDetection detection = *(CvObjectDetection*)cvGetSeqElem( detections, i );
CvRect bounding_box = detection.rect;
CvRect bounding_box = detection.rect;
cvRectangle( image, cvPoint(bounding_box.x, bounding_box.y),
cvPoint(bounding_box.x + bounding_box.width,
bounding_box.y + bounding_box.height),
bounding_box.y + bounding_box.height),
CV_RGB(255,0,0), 3 );
}
cvReleaseMemStorage( &storage );
}
int main(int argc, const char* argv[])
int main(int argc, char* argv[])
{
help();
CommandLineParser parser(argc, argv);
string imageFileName = parser.get<string>("image_filename", "cat.jpg");
string modelFileName = parser.get<string>("model_filename", "cat.xml");
int tbbNumThreads = parser.get<int>("threads_number", -1);
IplImage* image = cvLoadImage(imageFileName.c_str());
if (!image)
{
printf( "Unable to load the image\n"
help();
if (argc > 2)
{
image_filename = argv[1];
model_filename = argv[2];
if (argc > 3)
{
tbbNumThreads = atoi(argv[3]);
}
}
IplImage* image = cvLoadImage(image_filename);
if (!image)
{
printf( "Unable to load the image\n"
"Pass it as the first parameter: latentsvmdetect <path to cat.jpg> <path to cat.xml>\n" );
return -1;
}
CvLatentSvmDetector* detector = cvLoadLatentSvmDetector(modelFileName.c_str());
if (!detector)
{
printf( "Unable to load the model\n"
return -1;
}
CvLatentSvmDetector* detector = cvLoadLatentSvmDetector(model_filename);
if (!detector)
{
printf( "Unable to load the model\n"
"Pass it as the second parameter: latentsvmdetect <path to cat.jpg> <path to cat.xml>\n" );
cvReleaseImage( &image );
return -1;
}
cvReleaseImage( &image );
return -1;
}
detect_and_draw_objects( image, detector, tbbNumThreads );
cvNamedWindow( "test", 0 );
cvShowImage( "test", image );
cvWaitKey(0);
@ -101,5 +100,5 @@ int main(int argc, const char* argv[])
cvReleaseImage( &image );
cvDestroyAllWindows();
return 0;
return 0;
}

@ -2,24 +2,17 @@
* Copyright<EFBFBD> 2009, Liu Liu All rights reserved.
*/
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <iostream>
using namespace std;
using namespace cv;
void help()
{
printf("\nThis program demonstrates the Maximal Extremal Region interest point detector.\n"
"It finds the most stable (in size) dark and white regions as a threshold is increased.\n"
"\n Usage: \n"
"./mser_sample [--image_filename] <path_and_image_filename, default is 'puzzle.png'> \n"
"Example: \n"
"./mser_sample --image_filename=puzzle.png \n");
printf("\nThis program demonstrates the Maximal Extremal Region interest point detector.\n"
"It finds the most stable (in size) dark and white regions as a threshold is increased.\n"
"\nCall:\n"
"./mser_sample <path_and_image_filename, Default is 'puzzle.png'>\n\n");
}
static CvScalar colors[] =
@ -51,81 +44,90 @@ static uchar bcolors[][3] =
};
int main( int argc, const char** argv )
int main( int argc, char** argv )
{
help();
CommandLineParser parser(argc, argv);
string imageFileName = parser.get<string>("image_filename", "puzzle.png");
IplImage* img;
img = cvLoadImage( imageFileName.c_str(), CV_LOAD_IMAGE_GRAYSCALE );
if (!img)
{
printf("Unable to load image %s\n",imageFileName.c_str());
help();
return 0;
}
IplImage* rsp = cvLoadImage( imageFileName.c_str(), CV_LOAD_IMAGE_COLOR );
IplImage* ellipses = cvCloneImage(rsp);
cvCvtColor(img,ellipses,CV_GRAY2BGR);
CvSeq* contours;
CvMemStorage* storage= cvCreateMemStorage();
IplImage* hsv = cvCreateImage( cvGetSize( rsp ), IPL_DEPTH_8U, 3 );
cvCvtColor( rsp, hsv, CV_BGR2YCrCb );
CvMSERParams params = cvMSERParams();//cvMSERParams( 5, 60, cvRound(.2*img->width*img->height), .25, .2 );
double t = (double)cvGetTickCount();
cvExtractMSER( hsv, NULL, &contours, storage, params );
t = cvGetTickCount() - t;
printf( "MSER extracted %d contours in %g ms.\n", contours->total, t/((double)cvGetTickFrequency()*1000.) );
uchar* rsptr = (uchar*)rsp->imageData;
// draw mser with different color
for ( int i = contours->total-1; i >= 0; i-- )
{
CvSeq* r = *(CvSeq**)cvGetSeqElem( contours, i );
for ( int j = 0; j < r->total; j++ )
{
CvPoint* pt = CV_GET_SEQ_ELEM( CvPoint, r, j );
rsptr[pt->x*3+pt->y*rsp->widthStep] = bcolors[i%9][2];
rsptr[pt->x*3+1+pt->y*rsp->widthStep] = bcolors[i%9][1];
rsptr[pt->x*3+2+pt->y*rsp->widthStep] = bcolors[i%9][0];
}
}
// find ellipse ( it seems cvfitellipse2 have error or sth?
for ( int i = 0; i < contours->total; i++ )
{
CvContour* r = *(CvContour**)cvGetSeqElem( contours, i );
CvBox2D box = cvFitEllipse2( r );
box.angle=(float)CV_PI/2-box.angle;
if ( r->color > 0 )
cvEllipseBox( ellipses, box, colors[9], 2 );
else
cvEllipseBox( ellipses, box, colors[2], 2 );
}
cvSaveImage( "rsp.png", rsp );
cvNamedWindow( "original", 0 );
cvShowImage( "original", img );
cvNamedWindow( "response", 0 );
cvShowImage( "response", rsp );
cvNamedWindow( "ellipses", 0 );
cvShowImage( "ellipses", ellipses );
cvWaitKey(0);
cvDestroyWindow( "original" );
cvDestroyWindow( "response" );
cvDestroyWindow( "ellipses" );
cvReleaseImage(&rsp);
cvReleaseImage(&img);
cvReleaseImage(&ellipses);
char path[1024];
IplImage* img;
help();
if (argc!=2)
{
strcpy(path,"puzzle.png");
img = cvLoadImage( path, CV_LOAD_IMAGE_GRAYSCALE );
if (!img)
{
printf("\nUsage: mser_sample <path_to_image>\n");
return 0;
}
}
else
{
strcpy(path,argv[1]);
img = cvLoadImage( path, CV_LOAD_IMAGE_GRAYSCALE );
}
if (!img)
{
printf("Unable to load image %s\n",path);
return 0;
}
IplImage* rsp = cvLoadImage( path, CV_LOAD_IMAGE_COLOR );
IplImage* ellipses = cvCloneImage(rsp);
cvCvtColor(img,ellipses,CV_GRAY2BGR);
CvSeq* contours;
CvMemStorage* storage= cvCreateMemStorage();
IplImage* hsv = cvCreateImage( cvGetSize( rsp ), IPL_DEPTH_8U, 3 );
cvCvtColor( rsp, hsv, CV_BGR2YCrCb );
CvMSERParams params = cvMSERParams();//cvMSERParams( 5, 60, cvRound(.2*img->width*img->height), .25, .2 );
double t = (double)cvGetTickCount();
cvExtractMSER( hsv, NULL, &contours, storage, params );
t = cvGetTickCount() - t;
printf( "MSER extracted %d contours in %g ms.\n", contours->total, t/((double)cvGetTickFrequency()*1000.) );
uchar* rsptr = (uchar*)rsp->imageData;
// draw mser with different color
for ( int i = contours->total-1; i >= 0; i-- )
{
CvSeq* r = *(CvSeq**)cvGetSeqElem( contours, i );
for ( int j = 0; j < r->total; j++ )
{
CvPoint* pt = CV_GET_SEQ_ELEM( CvPoint, r, j );
rsptr[pt->x*3+pt->y*rsp->widthStep] = bcolors[i%9][2];
rsptr[pt->x*3+1+pt->y*rsp->widthStep] = bcolors[i%9][1];
rsptr[pt->x*3+2+pt->y*rsp->widthStep] = bcolors[i%9][0];
}
}
// find ellipse ( it seems cvfitellipse2 have error or sth?
for ( int i = 0; i < contours->total; i++ )
{
CvContour* r = *(CvContour**)cvGetSeqElem( contours, i );
CvBox2D box = cvFitEllipse2( r );
box.angle=(float)CV_PI/2-box.angle;
if ( r->color > 0 )
cvEllipseBox( ellipses, box, colors[9], 2 );
else
cvEllipseBox( ellipses, box, colors[2], 2 );
}
cvSaveImage( "rsp.png", rsp );
cvNamedWindow( "original", 0 );
cvShowImage( "original", img );
cvNamedWindow( "response", 0 );
cvShowImage( "response", rsp );
cvNamedWindow( "ellipses", 0 );
cvShowImage( "ellipses", ellipses );
cvWaitKey(0);
cvDestroyWindow( "original" );
cvDestroyWindow( "response" );
cvDestroyWindow( "ellipses" );
cvReleaseImage(&rsp);
cvReleaseImage(&img);
cvReleaseImage(&ellipses);
}

@ -7,24 +7,18 @@
*
*/
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include <string>
void help()
{
printf("\nThis program demonstrates the one way interest point descriptor found in features2d.hpp\n"
"Correspondences are drawn\n"
"Usage: \n"
"./one_way_sample [--path]=<path_to_samples, '../../../opencv/samples/c' as default> \n"
" [--first_image]=<first image file, scene_l.bmp as default> \n"
" [--second_image]=<second image file, scene_r.bmp as default>\n"
"For example: \n"
" ./one_way_sample --path=../../../opencv/samples/c --first_image=scene_l.bmp --second_image=scene_r.bmp \n");
printf("\nThis program demonstrates the one way interest point descriptor found in features2d.hpp\n"
"Correspondences are drawn\n");
printf("Format: \n./one_way_sample [path_to_samples] [image1] [image2]\n");
printf("For example: ./one_way_sample ../../../opencv/samples/c scene_l.bmp scene_r.bmp\n");
}
using namespace cv;
@ -32,19 +26,21 @@ using namespace cv;
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
const vector<KeyPoint>& features2, const vector<int>& desc_idx);
int main(int argc, const char** argv)
int main(int argc, char** argv)
{
help();
CommandLineParser parser(argc, argv);
std::string path_name = parser.get<string>("path", "../../../opencv/samples/c");
std::string img1_name = path_name + "/" + parser.get<string>("first_image", "scene_l.bmp");
std::string img2_name = path_name + "/" + parser.get<string>("second_image", "scene_r.bmp");
const char images_list[] = "one_way_train_images.txt";
const CvSize patch_size = cvSize(24, 24);
const int pose_count = 1; //50
const int pose_count = 50;
if (argc != 3 && argc != 4)
{
help();
return 0;
}
std::string path_name = argv[1];
std::string img1_name = path_name + "/" + std::string(argv[2]);
std::string img2_name = path_name + "/" + std::string(argv[3]);
printf("Reading the images...\n");
IplImage* img1 = cvLoadImage(img1_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);

@ -1,26 +1,21 @@
#include "opencv2/core/core.hpp"
#include "opencv2/ml/ml.hpp"
#include "opencv2/core/core_c.h"
#include <stdio.h>
#include <map>
using namespace std;
using namespace cv;
void help()
{
printf(
"\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees:\n"
"CvDTree dtree;\n"
"CvBoost boost;\n"
"CvRTrees rtrees;\n"
"CvERTrees ertrees;\n"
"CvGBTrees gbtrees;\n"
"Usage: \n"
" ./tree_engine [--response_column]=<specified the 0-based index of the response, 0 as default> \n"
"[--categorical_response]=<specifies that the response is categorical, 0-false, 1-true, 0 as default> \n"
"[--csv_filename]=<is the name of training data file in comma-separated value format> \n"
);
printf(
"\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees:\n"
"CvDTree dtree;\n"
"CvBoost boost;\n"
"CvRTrees rtrees;\n"
"CvERTrees ertrees;\n"
"CvGBTrees gbtrees;\n"
"Call:\n\t./tree_engine [-r <response_column>] [-c] <csv filename>\n"
"where -r <response_column> specified the 0-based index of the response (0 by default)\n"
"-c specifies that the response is categorical (it's ordered by default) and\n"
"<csv filename> is the name of training data file in comma-separated value format\n\n");
}
@ -64,24 +59,34 @@ void print_result(float train_err, float test_err, const CvMat* _var_imp)
printf("\n");
}
int main(int argc, const char** argv)
int main(int argc, char** argv)
{
help();
CommandLineParser parser(argc, argv);
string filename = parser.get<string>("csv_filename");
int response_idx = parser.get<int>("response_column", 0);
bool categorical_response = (bool)parser.get<int>("categorical_response", 1);
if(filename.empty())
if(argc < 2)
{
printf("\n Please, select value for --csv_filename key \n");
help();
return -1;
return 0;
}
const char* filename = 0;
int response_idx = 0;
bool categorical_response = false;
for(int i = 1; i < argc; i++)
{
if(strcmp(argv[i], "-r") == 0)
sscanf(argv[++i], "%d", &response_idx);
else if(strcmp(argv[i], "-c") == 0)
categorical_response = true;
else if(argv[i][0] != '-' )
filename = argv[i];
else
{
printf("Error. Invalid option %s\n", argv[i]);
help();
return -1;
}
}
printf("\nReading in %s...\n\n",filename.c_str());
printf("\nReading in %s...\n\n",filename);
CvDTree dtree;
CvBoost boost;
CvRTrees rtrees;
@ -93,7 +98,7 @@ int main(int argc, const char** argv)
CvTrainTestSplit spl( 0.5f );
if ( data.read_csv( filename.c_str() ) == 0)
if ( data.read_csv( filename ) == 0)
{
data.set_response_idx( response_idx );
if(categorical_response)

@ -1,4 +1,3 @@
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
@ -28,26 +27,29 @@ const string bowImageDescriptorsDir = "/bowImageDescriptors";
const string svmsDir = "/svms";
const string plotsDir = "/plots";
void help()
{
printf("\nThis program shows how to read in, train on and produce test results for the PASCAL VOC (Visual Object Challenge) data. \n"
"It shows how to use detectors, descriptors and recognition methods \n"
"Usage: \n"
"Format:\n"
"./bagofwords_classification \n"
"--voc_path=<Path to Pascal VOC data (e.g. /home/my/VOCdevkit/VOC2010). \n"
" Note: VOC2007-VOC2010 are supported.> \n"
"--result_directory=<Path to result directory. Following folders will be created in [result directory]: \n"
" bowImageDescriptors - to store image descriptors, \n"
" svms - to store trained svms, \n"
" plots - to store files for plots creating. \n"
"[--feature_detector]=<Feature detector name (e.g. SURF, FAST...) - see createFeatureDetector() function in detectors.cpp \n"
" Currently 12/2010, this is FAST, STAR, SIFT, SURF, MSER, GFTT, HARRIS> \n"
"[--descriptor_extractor]=<Descriptor extractor name (e.g. SURF, SIFT) - see createDescriptorExtractor() function in descriptors.cpp \n"
" Currently 12/2010, this is SURF, OpponentSIFT, SIFT, OpponentSURF, BRIEF> \n"
"[--descriptor_matcher]=<Descriptor matcher name (e.g. BruteForce) - see createDescriptorMatcher() function in matchers.cpp \n"
" Currently 12/2010, this is BruteForce, BruteForce-L1, FlannBased, BruteForce-Hamming, BruteForce-HammingLUT> \n"
"\n");
void help(char** argv)
{
cout << "\nThis program shows how to read in, train on and produce test results for the PASCAL VOC (Visual Object Challenge) data. \n"
<< "It shows how to use detectors, descriptors and recognition methods \n"
"Using OpenCV version %s\n" << CV_VERSION << "\n"
<< "Call: \n"
<< "Format:\n ./" << argv[0] << " [VOC path] [result directory] \n"
<< " or: \n"
<< " ./" << argv[0] << " [VOC path] [result directory] [feature detector] [descriptor extractor] [descriptor matcher] \n"
<< "\n"
<< "Input parameters: \n"
<< "[VOC path] Path to Pascal VOC data (e.g. /home/my/VOCdevkit/VOC2010). Note: VOC2007-VOC2010 are supported. \n"
<< "[result directory] Path to result diractory. Following folders will be created in [result directory]: \n"
<< " bowImageDescriptors - to store image descriptors, \n"
<< " svms - to store trained svms, \n"
<< " plots - to store files for plots creating. \n"
<< "[feature detector] Feature detector name (e.g. SURF, FAST...) - see createFeatureDetector() function in detectors.cpp \n"
<< " Currently 12/2010, this is FAST, STAR, SIFT, SURF, MSER, GFTT, HARRIS \n"
<< "[descriptor extractor] Descriptor extractor name (e.g. SURF, SIFT) - see createDescriptorExtractor() function in descriptors.cpp \n"
<< " Currently 12/2010, this is SURF, OpponentSIFT, SIFT, OpponentSURF, BRIEF \n"
<< "[descriptor matcher] Descriptor matcher name (e.g. BruteForce) - see createDescriptorMatcher() function in matchers.cpp \n"
<< " Currently 12/2010, this is BruteForce, BruteForce-L1, FlannBased, BruteForce-Hamming, BruteForce-HammingLUT \n"
<< "\n";
}
@ -2505,24 +2507,16 @@ void computeGnuPlotOutput( const string& resPath, const string& objClassName, Vo
int main(int argc, const char** argv)
int main(int argc, char** argv)
{
help();
CommandLineParser parser(argc, argv);
const string vocPath = parser.get<string>("--voc_path");
const string resPath = parser.get<string>("--result_directory");
const string featureDetectName = parser.get<string>("--feature_detector");
const string descExtName = parser.get<string>("--descriptor_extractor");
const string descMatchName = parser.get<string>("--descriptor_matcher");
if( vocPath.empty() || resPath.empty())
if( argc != 3 && argc != 6 )
{
help();
printf("Cannot find --voc_path=%s or --result_directory=%s\n", vocPath.c_str(), resPath.c_str());
help(argv);
return -1;
}
const string vocPath = argv[1], resPath = argv[2];
// Read or set default parameters
string vocName;
DDMParams ddmParams;
@ -2540,12 +2534,12 @@ int main(int argc, const char** argv)
else
{
vocName = getVocName(vocPath);
if( featureDetectName.empty() || descExtName.empty() || descMatchName.empty())
if( argc!= 6 )
{
cout << "Feature detector, descriptor extractor, descriptor matcher must be set" << endl;
return -1;
}
ddmParams = DDMParams( featureDetectName.c_str(), descExtName.c_str(), descMatchName.c_str()); // from command line
ddmParams = DDMParams( argv[3], argv[4], argv[5] ); // from command line
// vocabTrainParams and svmTrainParamsExt is set by defaults
paramsFS.open( resPath + "/" + paramsFile, FileStorage::WRITE );
if( paramsFS.isOpened() )

@ -1,40 +1,32 @@
#include "opencv2/core/core.hpp"
#include "opencv2/video/background_segm.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdio.h>
using namespace cv;
using namespace std;
void help()
{
printf("\nDo background segmentation, especially demonstrating the use of cvUpdateBGStatModel().\n"
" Learns the background at the start and then segments.\n"
" Learning is togged by the space key. Will read from file or camera\n"
"Usage: \n"
" ./bgfg_segm [--file_name]=<input file, camera as defautl>\n\n");
"Learns the background at the start and then segments.\n"
"Learning is togged by the space key. Will read from file or camera\n"
"Call:\n"
"./ bgfg_segm [file name -- if no name, read from camera]\n\n");
}
//this is a sample for foreground detection functions
int main(int argc, const char** argv)
int main(int argc, char** argv)
{
help();
CommandLineParser parser(argc, argv);
string fileName = parser.get<string>("file_name", "0");
VideoCapture cap;
bool update_bg_model = true;
if(fileName == "0" )
if( argc < 2 )
cap.open(0);
else
cap.open(fileName.c_str());
cap.open(argv[1]);
help();
if( !cap.isOpened() )
{
help();
printf("can not open camera or video file\n");
return -1;
}

@ -4,7 +4,6 @@
* Created on: Oct 17, 2010
* Author: ethan
*/
#include "opencv2/core/core.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
@ -12,7 +11,6 @@
#include <vector>
#include <iostream>
using namespace std;
using namespace cv;
using std::cout;
@ -20,15 +18,13 @@ using std::cerr;
using std::endl;
using std::vector;
void help()
{
printf("\nThis program shows how to use BRIEF descriptor to match points in features2d\n"
"It takes in two images, finds keypoints and matches them displaying matches and final homography warped results\n"
"Usage: \n"
" ./brief_match_test [--first_file]=<first file name, left01.jpg as default> \n"
" [--second_file]=<second file name, left02.jpg as default> \n"
"Example: \n"
"./brief_match_test --first_file=left01.jpg --second_file=left02.jpg \n");
void help(char **av)
{
cerr << "usage: " << av[0] << " im1.jpg im2.jpg"
<< "\n"
<< "This program shows how to use BRIEF descriptor to match points in features2d\n"
<< "It takes in two images, finds keypoints and matches them displaying matches and final homography warped results\n"
<< endl;
}
//Copy (x,y) location of descriptor matches found from KeyPoint data structures into Point2f vectors
@ -59,22 +55,16 @@ double match(const vector<KeyPoint>& /*kpts_train*/, const vector<KeyPoint>& /*k
int main(int ac, const char ** av)
int main(int ac, char ** av)
{
help();
CommandLineParser parser(ac, av);
string im1_name, im2_name;
im1_name = parser.get<string>("first_file", "left01.jpg");
im2_name = parser.get<string>("second_file", "left02.jpg");
if (im1_name.empty() || im2_name.empty())
if (ac != 3)
{
help();
printf("\n You have to indicate two files first_file and second_file \n");
return -1;
help(av);
return 1;
}
string im1_name, im2_name;
im1_name = av[1];
im2_name = av[2];
Mat im1 = imread(im1_name, CV_LOAD_IMAGE_GRAYSCALE);
Mat im2 = imread(im2_name, CV_LOAD_IMAGE_GRAYSCALE);

@ -9,59 +9,69 @@
using namespace cv;
using namespace std;
const char * usage =
" \nexample command line for calibration from a live feed.\n"
" calibration -w 4 -h 5 -s 0.025 -o camera.yml -op -oe\n"
" \n"
" example command line for calibration from a list of stored images:\n"
" imagelist_creator image_list.xml *.png\n"
" calibration -w 4 -h 5 -s 0.025 -o camera.yml -op -oe image_list.xml\n"
" where image_list.xml is the standard OpenCV XML/YAML\n"
" use imagelist_creator to create the xml or yaml list\n"
" file consisting of the list of strings, e.g.:\n"
" \n"
"<?xml version=\"1.0\"?>\n"
"<opencv_storage>\n"
"<images>\n"
"view000.png\n"
"view001.png\n"
"<!-- view002.png -->\n"
"view003.png\n"
"view010.png\n"
"one_extra_view.jpg\n"
"</images>\n"
"</opencv_storage>\n";
const char* liveCaptureHelp =
"When the live video from camera is used as input, the following hot-keys may be used:\n"
" <ESC>, 'q' - quit the program\n"
" 'g' - start capturing images\n"
" 'u' - switch undistortion on/off\n";
void help()
{
printf( "This is a camera calibration sample.\n"
"Usage: calibration\n"
" -w=<board_width> # the number of inner corners per one of board dimension\n"
" -h=<board_height> # the number of inner corners per another board dimension\n"
" [-pt]=<pattern> # the type of pattern: chessboard or circles' grid\n"
" [-n]=<number_of_frames> # the number of frames to use for calibration\n"
" -w <board_width> # the number of inner corners per one of board dimension\n"
" -h <board_height> # the number of inner corners per another board dimension\n"
" [-pt <pattern>] # the type of pattern: chessboard or circles' grid\n"
" [-n <number_of_frames>] # the number of frames to use for calibration\n"
" # (if not specified, it will be set to the number\n"
" # of board views actually available)\n"
" [-d]=<delay> # a minimum delay in ms between subsequent attempts to capture a next view\n"
" [-d <delay>] # a minimum delay in ms between subsequent attempts to capture a next view\n"
" # (used only for video capturing)\n"
" [-s]=<squareSize> # square size in some user-defined units (1 by default)\n"
" [-o]=<out_camera_params> # the output filename for intrinsic [and extrinsic] parameters\n"
" [-s <squareSize>] # square size in some user-defined units (1 by default)\n"
" [-o <out_camera_params>] # the output filename for intrinsic [and extrinsic] parameters\n"
" [-op] # write detected feature points\n"
" [-oe] # write extrinsic parameters\n"
" [-zt] # assume zero tangential distortion\n"
" [-a]=<aspectRatio> # fix aspect ratio (fx/fy)\n"
" [-a <aspectRatio>] # fix aspect ratio (fx/fy)\n"
" [-p] # fix the principal point at the center\n"
" [-v] # flip the captured images around the horizontal axis\n"
" [-V] # use a video file, and not an image list, uses\n"
" # [input_data] string for the video file name\n"
" [-su] # show undistorted images after calibration\n"
" [-input_data]=<data file> # input data, one of the following:\n"
" [input_data] # input data, one of the following:\n"
" # - text file with a list of the images of the board\n"
" # the text file can be generated with imagelist_creator\n"
" # - name of video file with a video of the board\n"
" [-cameraId]=<camera index># if input_data not specified, a live view from the camera is used\n"
" \nExample command line for calibration from a live feed:\n"
" ./calibration -w=4 -h=5 -s=0.025 -o=camera.yml -op -oe\n"
" \n"
" Example command line for calibration from a list of stored images:\n"
" imagelist_creator image_list.xml *.png\n"
" ./calibration -w=4 -h-5 -s=0.025 -o=camera.yml -op -oe -input_data=image_list.xml\n"
" where image_list.xml is the standard OpenCV XML/YAML\n"
" use imagelist_creator to create the xml or yaml list\n"
" file consisting of the list of strings, e.g.:\n"
" \n"
"<?xml version=\"1.0\"?>\n"
"<opencv_storage>\n"
"<images>\n"
"view000.png\n"
"view001.png\n"
"<!-- view002.png -->\n"
"view003.png\n"
"view010.png\n"
"one_extra_view.jpg\n"
"</images>\n"
"</opencv_storage>\n"
"\nWhen the live video from camera is used as input, the following hot-keys may be used:\n"
" <ESC>, 'q' - quit the program\n"
" 'g' - start capturing images\n"
" 'u' - switch undistortion on/off\n");
" # if input_data not specified, a live view from the camera is used\n"
"\n" );
printf("\n%s",usage);
printf( "\n%s", liveCaptureHelp );
}
enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
@ -279,74 +289,126 @@ bool runAndSave(const string& outputFilename,
}
int main( int argc, const char** argv )
int main( int argc, char** argv )
{
help();
CommandLineParser parser(argc, argv);
Size boardSize, imageSize;
boardSize.width = parser.get<int>("w");
boardSize.height = parser.get<int>("h");
float squareSize = parser.get<float>("s", 1.f);
float aspectRatio = parser.get<float>("a", 1.f);
float squareSize = 1.f, aspectRatio = 1.f;
Mat cameraMatrix, distCoeffs;
string outputFilename = parser.get<string>("o","out_camera_data.yml");
string inputFilename = parser.get<string>("input_data");
int nframes = parser.get<int>("n", 10);
bool writeExtrinsics = parser.get<bool>("oe");
bool writePoints = parser.get<bool>("op");
bool flipVertical = parser.get<bool>("v");
bool showUndistorted = parser.get<bool>("su");
bool videofile = parser.get<bool>("V");
unsigned int delay = parser.get<unsigned int>("d", 1000);
unsigned int cameraId = parser.get<unsigned int>("cameraId",0);
const char* outputFilename = "out_camera_data.yml";
const char* inputFilename = 0;
int i, nframes = 10;
bool writeExtrinsics = false, writePoints = false;
bool undistortImage = false;
int flags = 0;
VideoCapture capture;
bool flipVertical = false;
bool showUndistorted = false;
bool videofile = false;
int delay = 1000;
clock_t prevTimestamp = 0;
int mode = DETECTION;
int cameraId = 0;
vector<vector<Point2f> > imagePoints;
vector<string> imageList;
Pattern pattern = CHESSBOARD;
if( (boardSize.width < 1) || (boardSize.height < 1))
if( argc < 2 )
{
help();
return fprintf( stderr, "Invalid board width or height. It must be more than zero\n" ), -1;
return 0;
}
if(parser.get<string>("pt")=="circles")
pattern = CIRCLES_GRID;
else if(parser.get<string>("pt")=="acircles")
pattern = ASYMMETRIC_CIRCLES_GRID;
if(squareSize <= 0)
{
help();
return fprintf( stderr, "Invalid board square width. It must be more than zero.\n" ), -1;
}
if(nframes < 4)
for( i = 1; i < argc; i++ )
{
help();
return printf("Invalid number of images. It must be more than 3\n" ), -1;
}
if(aspectRatio <= 0)
{
help();
return printf("Invalid aspect ratio. It must be more than zero\n" ), -1;
}
const char* s = argv[i];
if( strcmp( s, "-w" ) == 0 )
{
if( sscanf( argv[++i], "%u", &boardSize.width ) != 1 || boardSize.width <= 0 )
return fprintf( stderr, "Invalid board width\n" ), -1;
}
else if( strcmp( s, "-h" ) == 0 )
{
if( sscanf( argv[++i], "%u", &boardSize.height ) != 1 || boardSize.height <= 0 )
return fprintf( stderr, "Invalid board height\n" ), -1;
}
else if( strcmp( s, "-pt" ) == 0 )
{
i++;
if( !strcmp( argv[i], "circles" ) )
pattern = CIRCLES_GRID;
else if( !strcmp( argv[i], "acircles" ) )
pattern = ASYMMETRIC_CIRCLES_GRID;
else if( !strcmp( argv[i], "chessboard" ) )
pattern = CHESSBOARD;
else
return fprintf( stderr, "Invalid pattern type: must be chessboard or circles\n" ), -1;
}
else if( strcmp( s, "-s" ) == 0 )
{
if( sscanf( argv[++i], "%f", &squareSize ) != 1 || squareSize <= 0 )
return fprintf( stderr, "Invalid board square width\n" ), -1;
}
else if( strcmp( s, "-n" ) == 0 )
{
if( sscanf( argv[++i], "%u", &nframes ) != 1 || nframes <= 3 )
return printf("Invalid number of images\n" ), -1;
}
else if( strcmp( s, "-a" ) == 0 )
{
if( sscanf( argv[++i], "%f", &aspectRatio ) != 1 || aspectRatio <= 0 )
return printf("Invalid aspect ratio\n" ), -1;
flags |= CV_CALIB_FIX_ASPECT_RATIO;
}
else if( strcmp( s, "-d" ) == 0 )
{
if( sscanf( argv[++i], "%u", &delay ) != 1 || delay <= 0 )
return printf("Invalid delay\n" ), -1;
}
else if( strcmp( s, "-op" ) == 0 )
{
writePoints = true;
}
else if( strcmp( s, "-oe" ) == 0 )
{
writeExtrinsics = true;
}
else if( strcmp( s, "-zt" ) == 0 )
{
flags |= CV_CALIB_ZERO_TANGENT_DIST;
}
else if( strcmp( s, "-p" ) == 0 )
{
flags |= CV_CALIB_FIX_PRINCIPAL_POINT;
}
else if( strcmp( s, "-v" ) == 0 )
{
flipVertical = true;
}
else if( strcmp( s, "-V" ) == 0 )
{
videofile = true;
}
else if( strcmp( s, "-o" ) == 0 )
{
outputFilename = argv[++i];
}
else if( strcmp( s, "-su" ) == 0 )
{
showUndistorted = true;
}
else if( s[0] != '-' )
{
if( isdigit(s[0]) )
sscanf(s, "%d", &cameraId);
else
inputFilename = s;
}
else
flags |= CV_CALIB_FIX_ASPECT_RATIO;
if(!delay)
{
help();
return printf("Invalid delay. It must be more than zero.\n" ), -1;
return fprintf( stderr, "Unknown option %s", s ), -1;
}
if(parser.get<bool>("zt"))
flags |= CV_CALIB_ZERO_TANGENT_DIST;
if(parser.get<bool>("p"))
flags |= CV_CALIB_FIX_PRINCIPAL_POINT;
if( !inputFilename.empty() )
if( inputFilename )
{
if( !videofile && readStringList(inputFilename, imageList) )
mode = CAPTURING;
@ -362,9 +424,11 @@ int main( int argc, const char** argv )
if( !imageList.empty() )
nframes = (int)imageList.size();
if( capture.isOpened() )
printf( "%s", liveCaptureHelp );
namedWindow( "Image View", 1 );
int i;
for(i = 0;;i++)
{
Mat view, viewGray;

@ -1,9 +1,8 @@
#include "opencv2/core/core.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdio.h>
#include <iostream>
#include <ctype.h>
using namespace cv;
@ -11,17 +10,19 @@ using namespace std;
void help()
{
printf("\nThis is a demo that shows mean-shift based tracking\n"
"You select a color objects such as your face and it tracks it.\n"
"This reads from video camera (0 by default, or the camera number the user enters\n"
"Usage:\n"
"./camshiftdemo [--cameraIndex]=<camera number, zero as default>\n"
"\nHot keys: \n"
"\tESC - quit the program\n"
"\tc - stop the tracking\n"
"\tb - switch to/from backprojection view\n"
"\th - show/hide object histogram\n"
"To initialize tracking, select the object with mouse\n");
cout << "\nThis is a demo that shows mean-shift based tracking\n"
<< "You select a color objects such as your face and it tracks it.\n"
<< "This reads from video camera (0 by default, or the camera number the user enters\n"
<< "Call:\n"
<< "\n./camshiftdemo [camera number]"
<< "\n" << endl;
cout << "\n\nHot keys: \n"
"\tESC - quit the program\n"
"\tc - stop the tracking\n"
"\tb - switch to/from backprojection view\n"
"\th - show/hide object histogram\n"
"To initialize tracking, select the object with mouse\n" << endl;
}
Mat image;
@ -63,13 +64,8 @@ void onMouse( int event, int x, int y, int, void* )
int main( int argc, const char** argv )
int main( int argc, char** argv )
{
help();
CommandLineParser parser(argc, argv);
unsigned int cameraInd = parser.get<unsigned int>("cameraIndex", 0);
VideoCapture cap;
Rect trackWindow;
RotatedRect trackBox;
@ -77,15 +73,20 @@ int main( int argc, const char** argv )
float hranges[] = {0,180};
const float* phranges = hranges;
cap.open(cameraInd);
if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
cap.open(argc == 2 ? argv[1][0] - '0' : 0);
else if( argc == 2 )
cap.open(argv[1]);
if( !cap.isOpened() )
{
help();
printf("***Could not initialize capturing...***\n");
cout << "***Could not initialize capturing...***\n";
return 0;
}
help();
namedWindow( "Histogram", 1 );
namedWindow( "CamShift Demo", 1 );
setMouseCallback( "CamShift Demo", onMouse, 0 );

@ -2,34 +2,33 @@
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/contrib/contrib.hpp"
#include <stdio.h>
#include <iostream>
using namespace cv;
using namespace std;
void help()
{
printf("\nThis program demonstrates Chamfer matching -- computing a distance between an \n"
"edge template and a query edge image.\n"
"Usage:\n"
"./chamfer [<image edge map, logo_in_clutter.png as default>\n"
"<template edge map, logo.png as default>]\n"
"Example: \n"
" ./chamfer logo_in_clutter.png logo.png\n");
cout <<
"\nThis program demonstrates Chamfer matching -- computing a distance between an \n"
"edge template and a query edge image.\n"
"Call:\n"
"./chamfer [<image edge map> <template edge map>]\n"
"By default\n"
"the inputs are ./chamfer logo_in_clutter.png logo.png\n"<< endl;
}
int main( int argc, const char** argv )
int main( int argc, char** argv )
{
help();
CommandLineParser parser(argc, argv);
string image = parser.get<string>("0","logo_in_clutter.png");
string tempLate = parser.get<string>("1","logo.png");
Mat img = imread(image,0);
if( argc != 1 && argc != 3 )
{
help();
return 0;
}
Mat img = imread(argc == 3 ? argv[1] : "logo_in_clutter.png", 0);
Mat cimg;
cvtColor(img, cimg, CV_GRAY2BGR);
Mat tpl = imread(tempLate,0);
Mat tpl = imread(argc == 3 ? argv[2] : "logo.png", 0);
// if the image and the template are not edge maps but normal grayscale images,
// you might want to uncomment the lines below to produce the maps. You can also
// run Sobel instead of Canny.
@ -42,7 +41,7 @@ int main( int argc, const char** argv )
int best = chamerMatching( img, tpl, results, costs );
if( best < 0 )
{
printf("not found;\n");
cout << "not found;\n";
return 0;
}

Loading…
Cancel
Save