|
|
|
@ -42,23 +42,21 @@ |
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
|
|
|
|
|
#define MIN_SIZE 32 |
|
|
|
|
|
|
|
|
|
#define S(x) StreamAccessor::getStream(x) |
|
|
|
|
|
|
|
|
|
// CUDA resize() is fast, but it differs from the CPU analog. Disabling this flag
|
|
|
|
|
// leads to an inefficient code. It's for debug purposes only.
|
|
|
|
|
#define ENABLE_CUDA_RESIZE 1 |
|
|
|
|
|
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::cuda; |
|
|
|
|
|
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
|
|
|
|
|
|
void cv::cuda::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); } |
|
|
|
|
Ptr<FarnebackOpticalFlow> cv::cuda::FarnebackOpticalFlow::create(int, double, bool, int, int, int, double, int) { throw_no_cuda(); return Ptr<BroxOpticalFlow>(); } |
|
|
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
|
|
#define MIN_SIZE 32 |
|
|
|
|
|
|
|
|
|
// CUDA resize() is fast, but it differs from the CPU analog. Disabling this flag
|
|
|
|
|
// leads to an inefficient code. It's for debug purposes only.
|
|
|
|
|
#define ENABLE_CUDA_RESIZE 1 |
|
|
|
|
|
|
|
|
|
namespace cv { namespace cuda { namespace device { namespace optflow_farneback |
|
|
|
|
{ |
|
|
|
|
void setPolynomialExpansionConsts( |
|
|
|
@ -76,8 +74,6 @@ namespace cv { namespace cuda { namespace device { namespace optflow_farneback |
|
|
|
|
void updateFlowGpu( |
|
|
|
|
const PtrStepSzf M, PtrStepSzf flowx, PtrStepSzf flowy, cudaStream_t stream); |
|
|
|
|
|
|
|
|
|
/*void boxFilterGpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);*/ |
|
|
|
|
|
|
|
|
|
void boxFilter5Gpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream); |
|
|
|
|
|
|
|
|
|
void boxFilter5Gpu_CC11(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream); |
|
|
|
@ -93,296 +89,381 @@ namespace cv { namespace cuda { namespace device { namespace optflow_farneback |
|
|
|
|
void gaussianBlur5Gpu_CC11( |
|
|
|
|
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream); |
|
|
|
|
|
|
|
|
|
}}}} // namespace cv { namespace cuda { namespace cudev { namespace optflow_farneback
|
|
|
|
|
}}}} |
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat) |
|
|
|
|
class FarnebackOpticalFlowImpl : public FarnebackOpticalFlow |
|
|
|
|
{ |
|
|
|
|
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols) |
|
|
|
|
return mat(Rect(0, 0, cols, rows)); |
|
|
|
|
public: |
|
|
|
|
FarnebackOpticalFlowImpl(int numLevels, double pyrScale, bool fastPyramids, int winSize, |
|
|
|
|
int numIters, int polyN, double polySigma, int flags) : |
|
|
|
|
numLevels_(numLevels), pyrScale_(pyrScale), fastPyramids_(fastPyramids), winSize_(winSize), |
|
|
|
|
numIters_(numIters), polyN_(polyN), polySigma_(polySigma), flags_(flags) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return mat = GpuMat(rows, cols, type); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
virtual int getNumLevels() const { return numLevels_; } |
|
|
|
|
virtual void setNumLevels(int numLevels) { numLevels_ = numLevels; } |
|
|
|
|
|
|
|
|
|
void cv::cuda::FarnebackOpticalFlow::prepareGaussian( |
|
|
|
|
int n, double sigma, float *g, float *xg, float *xxg, |
|
|
|
|
double &ig11, double &ig03, double &ig33, double &ig55) |
|
|
|
|
{ |
|
|
|
|
double s = 0.; |
|
|
|
|
for (int x = -n; x <= n; x++) |
|
|
|
|
{ |
|
|
|
|
g[x] = (float)std::exp(-x*x/(2*sigma*sigma)); |
|
|
|
|
s += g[x]; |
|
|
|
|
} |
|
|
|
|
virtual double getPyrScale() const { return pyrScale_; } |
|
|
|
|
virtual void setPyrScale(double pyrScale) { pyrScale_ = pyrScale; } |
|
|
|
|
|
|
|
|
|
s = 1./s; |
|
|
|
|
for (int x = -n; x <= n; x++) |
|
|
|
|
{ |
|
|
|
|
g[x] = (float)(g[x]*s); |
|
|
|
|
xg[x] = (float)(x*g[x]); |
|
|
|
|
xxg[x] = (float)(x*x*g[x]); |
|
|
|
|
} |
|
|
|
|
virtual bool getFastPyramids() const { return fastPyramids_; } |
|
|
|
|
virtual void setFastPyramids(bool fastPyramids) { fastPyramids_ = fastPyramids; } |
|
|
|
|
|
|
|
|
|
Mat_<double> G(6, 6); |
|
|
|
|
G.setTo(0); |
|
|
|
|
virtual int getWinSize() const { return winSize_; } |
|
|
|
|
virtual void setWinSize(int winSize) { winSize_ = winSize; } |
|
|
|
|
|
|
|
|
|
for (int y = -n; y <= n; y++) |
|
|
|
|
{ |
|
|
|
|
for (int x = -n; x <= n; x++) |
|
|
|
|
{ |
|
|
|
|
G(0,0) += g[y]*g[x]; |
|
|
|
|
G(1,1) += g[y]*g[x]*x*x; |
|
|
|
|
G(3,3) += g[y]*g[x]*x*x*x*x; |
|
|
|
|
G(5,5) += g[y]*g[x]*x*x*y*y; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
virtual int getNumIters() const { return numIters_; } |
|
|
|
|
virtual void setNumIters(int numIters) { numIters_ = numIters; } |
|
|
|
|
|
|
|
|
|
//G[0][0] = 1.;
|
|
|
|
|
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1); |
|
|
|
|
G(4,4) = G(3,3); |
|
|
|
|
G(3,4) = G(4,3) = G(5,5); |
|
|
|
|
|
|
|
|
|
// invG:
|
|
|
|
|
// [ x e e ]
|
|
|
|
|
// [ y ]
|
|
|
|
|
// [ y ]
|
|
|
|
|
// [ e z ]
|
|
|
|
|
// [ e z ]
|
|
|
|
|
// [ u ]
|
|
|
|
|
Mat_<double> invG = G.inv(DECOMP_CHOLESKY); |
|
|
|
|
|
|
|
|
|
ig11 = invG(1,1); |
|
|
|
|
ig03 = invG(0,3); |
|
|
|
|
ig33 = invG(3,3); |
|
|
|
|
ig55 = invG(5,5); |
|
|
|
|
} |
|
|
|
|
virtual int getPolyN() const { return polyN_; } |
|
|
|
|
virtual void setPolyN(int polyN) { polyN_ = polyN; } |
|
|
|
|
|
|
|
|
|
virtual double getPolySigma() const { return polySigma_; } |
|
|
|
|
virtual void setPolySigma(double polySigma) { polySigma_ = polySigma; } |
|
|
|
|
|
|
|
|
|
void cv::cuda::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma) |
|
|
|
|
{ |
|
|
|
|
std::vector<float> buf(n*6 + 3); |
|
|
|
|
float* g = &buf[0] + n; |
|
|
|
|
float* xg = g + n*2 + 1; |
|
|
|
|
float* xxg = xg + n*2 + 1; |
|
|
|
|
virtual int getFlags() const { return flags_; } |
|
|
|
|
virtual void setFlags(int flags) { flags_ = flags; } |
|
|
|
|
|
|
|
|
|
if (sigma < FLT_EPSILON) |
|
|
|
|
sigma = n*0.3; |
|
|
|
|
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream); |
|
|
|
|
|
|
|
|
|
double ig11, ig03, ig33, ig55; |
|
|
|
|
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55); |
|
|
|
|
private: |
|
|
|
|
int numLevels_; |
|
|
|
|
double pyrScale_; |
|
|
|
|
bool fastPyramids_; |
|
|
|
|
int winSize_; |
|
|
|
|
int numIters_; |
|
|
|
|
int polyN_; |
|
|
|
|
double polySigma_; |
|
|
|
|
int flags_; |
|
|
|
|
|
|
|
|
|
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55)); |
|
|
|
|
} |
|
|
|
|
private: |
|
|
|
|
void prepareGaussian( |
|
|
|
|
int n, double sigma, float *g, float *xg, float *xxg, |
|
|
|
|
double &ig11, double &ig03, double &ig33, double &ig55); |
|
|
|
|
|
|
|
|
|
void setPolynomialExpansionConsts(int n, double sigma); |
|
|
|
|
|
|
|
|
|
void cv::cuda::FarnebackOpticalFlow::updateFlow_boxFilter( |
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy, |
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) |
|
|
|
|
{ |
|
|
|
|
if (deviceSupports(FEATURE_SET_COMPUTE_12)) |
|
|
|
|
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0])); |
|
|
|
|
else |
|
|
|
|
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, S(streams[0])); |
|
|
|
|
swap(M, bufM); |
|
|
|
|
|
|
|
|
|
for (int i = 1; i < 5; ++i) |
|
|
|
|
streams[i].waitForCompletion(); |
|
|
|
|
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0])); |
|
|
|
|
|
|
|
|
|
if (updateMatrices) |
|
|
|
|
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0])); |
|
|
|
|
} |
|
|
|
|
void updateFlow_boxFilter( |
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy, |
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]); |
|
|
|
|
|
|
|
|
|
void updateFlow_gaussianBlur( |
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy, |
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]); |
|
|
|
|
|
|
|
|
|
void cv::cuda::FarnebackOpticalFlow::updateFlow_gaussianBlur( |
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy, |
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) |
|
|
|
|
{ |
|
|
|
|
if (deviceSupports(FEATURE_SET_COMPUTE_12)) |
|
|
|
|
device::optflow_farneback::gaussianBlur5Gpu( |
|
|
|
|
M, blockSize/2, bufM, BORDER_REPLICATE, S(streams[0])); |
|
|
|
|
else |
|
|
|
|
device::optflow_farneback::gaussianBlur5Gpu_CC11( |
|
|
|
|
M, blockSize/2, bufM, BORDER_REPLICATE, S(streams[0])); |
|
|
|
|
swap(M, bufM); |
|
|
|
|
|
|
|
|
|
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0])); |
|
|
|
|
|
|
|
|
|
if (updateMatrices) |
|
|
|
|
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0])); |
|
|
|
|
} |
|
|
|
|
void calcImpl(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &stream); |
|
|
|
|
|
|
|
|
|
GpuMat frames_[2]; |
|
|
|
|
GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2]; |
|
|
|
|
std::vector<GpuMat> pyramid0_, pyramid1_; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void cv::cuda::FarnebackOpticalFlow::operator ()( |
|
|
|
|
const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1); |
|
|
|
|
CV_Assert(frame0.size() == frame1.size()); |
|
|
|
|
CV_Assert(polyN == 5 || polyN == 7); |
|
|
|
|
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6); |
|
|
|
|
|
|
|
|
|
Stream streams[5]; |
|
|
|
|
if (S(s)) |
|
|
|
|
streams[0] = s; |
|
|
|
|
|
|
|
|
|
Size size = frame0.size(); |
|
|
|
|
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY; |
|
|
|
|
|
|
|
|
|
flowx.create(size, CV_32F); |
|
|
|
|
flowy.create(size, CV_32F); |
|
|
|
|
GpuMat flowx0 = flowx; |
|
|
|
|
GpuMat flowy0 = flowy; |
|
|
|
|
|
|
|
|
|
// Crop unnecessary levels
|
|
|
|
|
double scale = 1; |
|
|
|
|
int numLevelsCropped = 0; |
|
|
|
|
for (; numLevelsCropped < numLevels; numLevelsCropped++) |
|
|
|
|
void FarnebackOpticalFlowImpl::calc(InputArray _frame0, InputArray _frame1, InputOutputArray _flow, Stream& stream) |
|
|
|
|
{ |
|
|
|
|
scale *= pyrScale; |
|
|
|
|
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE) |
|
|
|
|
break; |
|
|
|
|
const GpuMat frame0 = _frame0.getGpuMat(); |
|
|
|
|
const GpuMat frame1 = _frame1.getGpuMat(); |
|
|
|
|
|
|
|
|
|
BufferPool pool(stream); |
|
|
|
|
GpuMat flowx = pool.getBuffer(frame0.size(), CV_32FC1); |
|
|
|
|
GpuMat flowy = pool.getBuffer(frame0.size(), CV_32FC1); |
|
|
|
|
|
|
|
|
|
calcImpl(frame0, frame1, flowx, flowy, stream); |
|
|
|
|
|
|
|
|
|
GpuMat flows[] = {flowx, flowy}; |
|
|
|
|
cuda::merge(flows, 2, _flow, stream); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
frame0.convertTo(frames_[0], CV_32F, streams[0]); |
|
|
|
|
frame1.convertTo(frames_[1], CV_32F, streams[1]); |
|
|
|
|
GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat) |
|
|
|
|
{ |
|
|
|
|
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols) |
|
|
|
|
return mat(Rect(0, 0, cols, rows)); |
|
|
|
|
|
|
|
|
|
return mat = GpuMat(rows, cols, type); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (fastPyramids) |
|
|
|
|
void FarnebackOpticalFlowImpl::prepareGaussian( |
|
|
|
|
int n, double sigma, float *g, float *xg, float *xxg, |
|
|
|
|
double &ig11, double &ig03, double &ig33, double &ig55) |
|
|
|
|
{ |
|
|
|
|
// Build Gaussian pyramids using pyrDown()
|
|
|
|
|
pyramid0_.resize(numLevelsCropped + 1); |
|
|
|
|
pyramid1_.resize(numLevelsCropped + 1); |
|
|
|
|
pyramid0_[0] = frames_[0]; |
|
|
|
|
pyramid1_[0] = frames_[1]; |
|
|
|
|
for (int i = 1; i <= numLevelsCropped; ++i) |
|
|
|
|
double s = 0.; |
|
|
|
|
for (int x = -n; x <= n; x++) |
|
|
|
|
{ |
|
|
|
|
cuda::pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]); |
|
|
|
|
cuda::pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]); |
|
|
|
|
g[x] = (float)std::exp(-x*x/(2*sigma*sigma)); |
|
|
|
|
s += g[x]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
s = 1./s; |
|
|
|
|
for (int x = -n; x <= n; x++) |
|
|
|
|
{ |
|
|
|
|
g[x] = (float)(g[x]*s); |
|
|
|
|
xg[x] = (float)(x*g[x]); |
|
|
|
|
xxg[x] = (float)(x*x*g[x]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat_<double> G(6, 6); |
|
|
|
|
G.setTo(0); |
|
|
|
|
|
|
|
|
|
for (int y = -n; y <= n; y++) |
|
|
|
|
{ |
|
|
|
|
for (int x = -n; x <= n; x++) |
|
|
|
|
{ |
|
|
|
|
G(0,0) += g[y]*g[x]; |
|
|
|
|
G(1,1) += g[y]*g[x]*x*x; |
|
|
|
|
G(3,3) += g[y]*g[x]*x*x*x*x; |
|
|
|
|
G(5,5) += g[y]*g[x]*x*x*y*y; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//G[0][0] = 1.;
|
|
|
|
|
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1); |
|
|
|
|
G(4,4) = G(3,3); |
|
|
|
|
G(3,4) = G(4,3) = G(5,5); |
|
|
|
|
|
|
|
|
|
// invG:
|
|
|
|
|
// [ x e e ]
|
|
|
|
|
// [ y ]
|
|
|
|
|
// [ y ]
|
|
|
|
|
// [ e z ]
|
|
|
|
|
// [ e z ]
|
|
|
|
|
// [ u ]
|
|
|
|
|
Mat_<double> invG = G.inv(DECOMP_CHOLESKY); |
|
|
|
|
|
|
|
|
|
ig11 = invG(1,1); |
|
|
|
|
ig03 = invG(0,3); |
|
|
|
|
ig33 = invG(3,3); |
|
|
|
|
ig55 = invG(5,5); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
setPolynomialExpansionConsts(polyN, polySigma); |
|
|
|
|
device::optflow_farneback::setUpdateMatricesConsts(); |
|
|
|
|
void FarnebackOpticalFlowImpl::setPolynomialExpansionConsts(int n, double sigma) |
|
|
|
|
{ |
|
|
|
|
std::vector<float> buf(n*6 + 3); |
|
|
|
|
float* g = &buf[0] + n; |
|
|
|
|
float* xg = g + n*2 + 1; |
|
|
|
|
float* xxg = xg + n*2 + 1; |
|
|
|
|
|
|
|
|
|
if (sigma < FLT_EPSILON) |
|
|
|
|
sigma = n*0.3; |
|
|
|
|
|
|
|
|
|
double ig11, ig03, ig33, ig55; |
|
|
|
|
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55); |
|
|
|
|
|
|
|
|
|
for (int k = numLevelsCropped; k >= 0; k--) |
|
|
|
|
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void FarnebackOpticalFlowImpl::updateFlow_boxFilter( |
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy, |
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) |
|
|
|
|
{ |
|
|
|
|
streams[0].waitForCompletion(); |
|
|
|
|
if (deviceSupports(FEATURE_SET_COMPUTE_12)) |
|
|
|
|
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, StreamAccessor::getStream(streams[0])); |
|
|
|
|
else |
|
|
|
|
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, StreamAccessor::getStream(streams[0])); |
|
|
|
|
swap(M, bufM); |
|
|
|
|
|
|
|
|
|
scale = 1; |
|
|
|
|
for (int i = 0; i < k; i++) |
|
|
|
|
scale *= pyrScale; |
|
|
|
|
for (int i = 1; i < 5; ++i) |
|
|
|
|
streams[i].waitForCompletion(); |
|
|
|
|
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, StreamAccessor::getStream(streams[0])); |
|
|
|
|
|
|
|
|
|
double sigma = (1./scale - 1) * 0.5; |
|
|
|
|
int smoothSize = cvRound(sigma*5) | 1; |
|
|
|
|
smoothSize = std::max(smoothSize, 3); |
|
|
|
|
if (updateMatrices) |
|
|
|
|
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, StreamAccessor::getStream(streams[0])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int width = cvRound(size.width*scale); |
|
|
|
|
int height = cvRound(size.height*scale); |
|
|
|
|
void FarnebackOpticalFlowImpl::updateFlow_gaussianBlur( |
|
|
|
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy, |
|
|
|
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) |
|
|
|
|
{ |
|
|
|
|
if (deviceSupports(FEATURE_SET_COMPUTE_12)) |
|
|
|
|
device::optflow_farneback::gaussianBlur5Gpu( |
|
|
|
|
M, blockSize/2, bufM, BORDER_REPLICATE, StreamAccessor::getStream(streams[0])); |
|
|
|
|
else |
|
|
|
|
device::optflow_farneback::gaussianBlur5Gpu_CC11( |
|
|
|
|
M, blockSize/2, bufM, BORDER_REPLICATE, StreamAccessor::getStream(streams[0])); |
|
|
|
|
swap(M, bufM); |
|
|
|
|
|
|
|
|
|
if (fastPyramids) |
|
|
|
|
{ |
|
|
|
|
width = pyramid0_[k].cols; |
|
|
|
|
height = pyramid0_[k].rows; |
|
|
|
|
} |
|
|
|
|
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, StreamAccessor::getStream(streams[0])); |
|
|
|
|
|
|
|
|
|
if (k > 0) |
|
|
|
|
if (updateMatrices) |
|
|
|
|
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, StreamAccessor::getStream(streams[0])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void FarnebackOpticalFlowImpl::calcImpl(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &stream) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1); |
|
|
|
|
CV_Assert(frame0.size() == frame1.size()); |
|
|
|
|
CV_Assert(polyN_ == 5 || polyN_ == 7); |
|
|
|
|
CV_Assert(!fastPyramids_ || std::abs(pyrScale_ - 0.5) < 1e-6); |
|
|
|
|
|
|
|
|
|
Stream streams[5]; |
|
|
|
|
if (stream) |
|
|
|
|
streams[0] = stream; |
|
|
|
|
|
|
|
|
|
Size size = frame0.size(); |
|
|
|
|
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY; |
|
|
|
|
|
|
|
|
|
flowx.create(size, CV_32F); |
|
|
|
|
flowy.create(size, CV_32F); |
|
|
|
|
GpuMat flowx0 = flowx; |
|
|
|
|
GpuMat flowy0 = flowy; |
|
|
|
|
|
|
|
|
|
// Crop unnecessary levels
|
|
|
|
|
double scale = 1; |
|
|
|
|
int numLevelsCropped = 0; |
|
|
|
|
for (; numLevelsCropped < numLevels_; numLevelsCropped++) |
|
|
|
|
{ |
|
|
|
|
curFlowX.create(height, width, CV_32F); |
|
|
|
|
curFlowY.create(height, width, CV_32F); |
|
|
|
|
scale *= pyrScale_; |
|
|
|
|
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE) |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
|
|
|
|
|
frame0.convertTo(frames_[0], CV_32F, streams[0]); |
|
|
|
|
frame1.convertTo(frames_[1], CV_32F, streams[1]); |
|
|
|
|
|
|
|
|
|
if (fastPyramids_) |
|
|
|
|
{ |
|
|
|
|
curFlowX = flowx0; |
|
|
|
|
curFlowY = flowy0; |
|
|
|
|
// Build Gaussian pyramids using pyrDown()
|
|
|
|
|
pyramid0_.resize(numLevelsCropped + 1); |
|
|
|
|
pyramid1_.resize(numLevelsCropped + 1); |
|
|
|
|
pyramid0_[0] = frames_[0]; |
|
|
|
|
pyramid1_[0] = frames_[1]; |
|
|
|
|
for (int i = 1; i <= numLevelsCropped; ++i) |
|
|
|
|
{ |
|
|
|
|
cuda::pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]); |
|
|
|
|
cuda::pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (!prevFlowX.data) |
|
|
|
|
setPolynomialExpansionConsts(polyN_, polySigma_); |
|
|
|
|
device::optflow_farneback::setUpdateMatricesConsts(); |
|
|
|
|
|
|
|
|
|
for (int k = numLevelsCropped; k >= 0; k--) |
|
|
|
|
{ |
|
|
|
|
if (flags & OPTFLOW_USE_INITIAL_FLOW) |
|
|
|
|
streams[0].waitForCompletion(); |
|
|
|
|
|
|
|
|
|
scale = 1; |
|
|
|
|
for (int i = 0; i < k; i++) |
|
|
|
|
scale *= pyrScale_; |
|
|
|
|
|
|
|
|
|
double sigma = (1./scale - 1) * 0.5; |
|
|
|
|
int smoothSize = cvRound(sigma*5) | 1; |
|
|
|
|
smoothSize = std::max(smoothSize, 3); |
|
|
|
|
|
|
|
|
|
int width = cvRound(size.width*scale); |
|
|
|
|
int height = cvRound(size.height*scale); |
|
|
|
|
|
|
|
|
|
if (fastPyramids_) |
|
|
|
|
{ |
|
|
|
|
cuda::resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); |
|
|
|
|
cuda::resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); |
|
|
|
|
curFlowX.convertTo(curFlowX, curFlowX.depth(), scale, streams[0]); |
|
|
|
|
curFlowY.convertTo(curFlowY, curFlowY.depth(), scale, streams[1]); |
|
|
|
|
width = pyramid0_[k].cols; |
|
|
|
|
height = pyramid0_[k].rows; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (k > 0) |
|
|
|
|
{ |
|
|
|
|
curFlowX.create(height, width, CV_32F); |
|
|
|
|
curFlowY.create(height, width, CV_32F); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
curFlowX.setTo(0, streams[0]); |
|
|
|
|
curFlowY.setTo(0, streams[1]); |
|
|
|
|
curFlowX = flowx0; |
|
|
|
|
curFlowY = flowy0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cuda::resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); |
|
|
|
|
cuda::resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); |
|
|
|
|
curFlowX.convertTo(curFlowX, curFlowX.depth(), 1./pyrScale, streams[0]); |
|
|
|
|
curFlowY.convertTo(curFlowY, curFlowY.depth(), 1./pyrScale, streams[1]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_); |
|
|
|
|
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_); |
|
|
|
|
GpuMat R[2] = |
|
|
|
|
{ |
|
|
|
|
allocMatFromBuf(5*height, width, CV_32F, R_[0]), |
|
|
|
|
allocMatFromBuf(5*height, width, CV_32F, R_[1]) |
|
|
|
|
}; |
|
|
|
|
if (!prevFlowX.data) |
|
|
|
|
{ |
|
|
|
|
if (flags_ & OPTFLOW_USE_INITIAL_FLOW) |
|
|
|
|
{ |
|
|
|
|
cuda::resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); |
|
|
|
|
cuda::resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); |
|
|
|
|
curFlowX.convertTo(curFlowX, curFlowX.depth(), scale, streams[0]); |
|
|
|
|
curFlowY.convertTo(curFlowY, curFlowY.depth(), scale, streams[1]); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
curFlowX.setTo(0, streams[0]); |
|
|
|
|
curFlowY.setTo(0, streams[1]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
cuda::resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); |
|
|
|
|
cuda::resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); |
|
|
|
|
curFlowX.convertTo(curFlowX, curFlowX.depth(), 1./pyrScale_, streams[0]); |
|
|
|
|
curFlowY.convertTo(curFlowY, curFlowY.depth(), 1./pyrScale_, streams[1]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (fastPyramids) |
|
|
|
|
{ |
|
|
|
|
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0])); |
|
|
|
|
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1])); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
GpuMat blurredFrame[2] = |
|
|
|
|
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_); |
|
|
|
|
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_); |
|
|
|
|
GpuMat R[2] = |
|
|
|
|
{ |
|
|
|
|
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]), |
|
|
|
|
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1]) |
|
|
|
|
allocMatFromBuf(5*height, width, CV_32F, R_[0]), |
|
|
|
|
allocMatFromBuf(5*height, width, CV_32F, R_[1]) |
|
|
|
|
}; |
|
|
|
|
GpuMat pyrLevel[2] = |
|
|
|
|
|
|
|
|
|
if (fastPyramids_) |
|
|
|
|
{ |
|
|
|
|
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]), |
|
|
|
|
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1]) |
|
|
|
|
}; |
|
|
|
|
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN_, R[0], StreamAccessor::getStream(streams[0])); |
|
|
|
|
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN_, R[1], StreamAccessor::getStream(streams[1])); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
GpuMat blurredFrame[2] = |
|
|
|
|
{ |
|
|
|
|
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]), |
|
|
|
|
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1]) |
|
|
|
|
}; |
|
|
|
|
GpuMat pyrLevel[2] = |
|
|
|
|
{ |
|
|
|
|
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]), |
|
|
|
|
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1]) |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F); |
|
|
|
|
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; i++) |
|
|
|
|
{ |
|
|
|
|
device::optflow_farneback::gaussianBlurGpu( |
|
|
|
|
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101, StreamAccessor::getStream(streams[i])); |
|
|
|
|
cuda::resize(blurredFrame[i], pyrLevel[i], Size(width, height), 0.0, 0.0, INTER_LINEAR, streams[i]); |
|
|
|
|
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN_, R[i], StreamAccessor::getStream(streams[i])); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F); |
|
|
|
|
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2); |
|
|
|
|
streams[1].waitForCompletion(); |
|
|
|
|
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, StreamAccessor::getStream(streams[0])); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 2; i++) |
|
|
|
|
if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN) |
|
|
|
|
{ |
|
|
|
|
device::optflow_farneback::gaussianBlurGpu( |
|
|
|
|
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101, S(streams[i])); |
|
|
|
|
cuda::resize(blurredFrame[i], pyrLevel[i], Size(width, height), 0.0, 0.0, INTER_LINEAR, streams[i]); |
|
|
|
|
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i])); |
|
|
|
|
Mat g = getGaussianKernel(winSize_, winSize_/2*0.3f, CV_32F); |
|
|
|
|
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize_/2), winSize_/2); |
|
|
|
|
} |
|
|
|
|
for (int i = 0; i < numIters_; i++) |
|
|
|
|
{ |
|
|
|
|
if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN) |
|
|
|
|
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1, streams); |
|
|
|
|
else |
|
|
|
|
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1, streams); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
streams[1].waitForCompletion(); |
|
|
|
|
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0])); |
|
|
|
|
|
|
|
|
|
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN) |
|
|
|
|
{ |
|
|
|
|
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F); |
|
|
|
|
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2); |
|
|
|
|
} |
|
|
|
|
for (int i = 0; i < numIters; i++) |
|
|
|
|
{ |
|
|
|
|
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN) |
|
|
|
|
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams); |
|
|
|
|
else |
|
|
|
|
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams); |
|
|
|
|
prevFlowX = curFlowX; |
|
|
|
|
prevFlowY = curFlowY; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
prevFlowX = curFlowX; |
|
|
|
|
prevFlowY = curFlowY; |
|
|
|
|
} |
|
|
|
|
flowx = curFlowX; |
|
|
|
|
flowy = curFlowY; |
|
|
|
|
|
|
|
|
|
flowx = curFlowX; |
|
|
|
|
flowy = curFlowY; |
|
|
|
|
if (!stream) |
|
|
|
|
streams[0].waitForCompletion(); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (!S(s)) |
|
|
|
|
streams[0].waitForCompletion(); |
|
|
|
|
Ptr<FarnebackOpticalFlow> cv::cuda::FarnebackOpticalFlow::create(int numLevels, double pyrScale, bool fastPyramids, int winSize, |
|
|
|
|
int numIters, int polyN, double polySigma, int flags) |
|
|
|
|
{ |
|
|
|
|
return makePtr<FarnebackOpticalFlowImpl>(numLevels, pyrScale, fastPyramids, winSize, |
|
|
|
|
numIters, polyN, polySigma, flags); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|