Merge pull request #23691 from dkurt:pycv_float16_fixes

Import and export np.float16 in Python #23691

### Pull Request Readiness Checklist

* Also, fixes `cv::norm` with `NORM_INF` and `CV_16F`

resolves https://github.com/opencv/opencv/issues/23687

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
pull/23695/head
Dmitry Kurtaev 2 years ago committed by GitHub
parent 900f17d563
commit 380caa1a87
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 12
      modules/core/src/norm.cpp
  2. 1
      modules/python/src2/cv2_convert.cpp
  3. 2
      modules/python/src2/cv2_numpy.cpp
  4. 2
      modules/python/test/test_norm.py

@ -753,7 +753,7 @@ double norm( InputArray _src, int normType, InputArray _mask )
{
int bsz = std::min(total - j, blockSize);
hal::cvt16f32f((const float16_t*)ptrs[0], data0, bsz * cn);
func((uchar*)data0, ptrs[1], (uchar*)&result.d, bsz, cn);
func((uchar*)data0, ptrs[1], (uchar*)&result.f, bsz, cn);
ptrs[0] += bsz*esz;
if (ptrs[1])
ptrs[1] += bsz;
@ -771,9 +771,9 @@ double norm( InputArray _src, int normType, InputArray _mask )
if( normType == NORM_INF )
{
if(depth == CV_64F || depth == CV_16F)
if(depth == CV_64F)
return result.d;
else if (depth == CV_32F)
else if (depth == CV_32F || depth == CV_16F)
return result.f;
else
return result.i;
@ -1224,7 +1224,7 @@ double norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask
int bsz = std::min(total - j, blockSize);
hal::cvt16f32f((const float16_t*)ptrs[0], data0, bsz * cn);
hal::cvt16f32f((const float16_t*)ptrs[1], data1, bsz * cn);
func((uchar*)data0, (uchar*)data1, ptrs[2], (uchar*)&result.d, bsz, cn);
func((uchar*)data0, (uchar*)data1, ptrs[2], (uchar*)&result.f, bsz, cn);
ptrs[0] += bsz*esz;
ptrs[1] += bsz*esz;
if (ptrs[2])
@ -1243,9 +1243,9 @@ double norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask
if( normType == NORM_INF )
{
if (depth == CV_64F || depth == CV_16F)
if (depth == CV_64F)
return result.d;
else if (depth == CV_32F)
else if (depth == CV_32F || depth == CV_16F)
return result.f;
else
return result.u;

@ -88,6 +88,7 @@ bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT ? CV_32S :
typenum == NPY_INT32 ? CV_32S :
typenum == NPY_HALF ? CV_16F :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;

@ -39,7 +39,7 @@ UMatData* NumpyAllocator::allocate(int dims0, const int* sizes, int type, void*
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
depth == CV_64F ? NPY_DOUBLE : depth == CV_16F ? NPY_HALF : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i, dims = dims0;
cv::AutoBuffer<npy_intp> _sizes(dims + 1);
for( i = 0; i < dims; i++ )

@ -88,7 +88,7 @@ def get_element_types(norm_type):
return (np.uint8,)
else:
return (np.uint8, np.int8, np.uint16, np.int16, np.int32, np.float32,
np.float64)
np.float64, np.float16)
def generate_vector(shape, dtype):

Loading…
Cancel
Save