mirror of https://github.com/opencv/opencv.git
parent
39baa2237e
commit
379dcf87d5
2 changed files with 8635 additions and 0 deletions
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,282 @@ |
||||
#include "opencv2/objdetect/objdetect.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
|
||||
#include <iostream> |
||||
#include <iterator> |
||||
#include <stdio.h> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
static void help() |
||||
{ |
||||
cout << "\nThis program demonstrates the smile detector.\n" |
||||
"Usage:\n" |
||||
"./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n" |
||||
" [--smile-cascade[=smile_cascade_path]]\n" |
||||
" [--scale=<image scale greater or equal to 1, try 1.3 for example. The larger the faster the processing>]\n" |
||||
" [--try-flip]\n" |
||||
" [filename|camera_index]\n\n" |
||||
"Example:\n" |
||||
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=1.3\n\n" |
||||
"During execution:\n\tHit any key to quit.\n" |
||||
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl; |
||||
} |
||||
|
||||
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
||||
CascadeClassifier& nestedCascade, |
||||
double scale, bool tryflip ); |
||||
|
||||
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml"; |
||||
string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml"; |
||||
|
||||
// The number of detected neighbors depends on image size, these are for performing an approximate mapping to a maximum number of neighbors
|
||||
const float coef1 = 0.3190;
|
||||
const float coef2 = -48.7187; |
||||
|
||||
|
||||
int main( int argc, const char** argv ) |
||||
{ |
||||
CvCapture* capture = 0; |
||||
Mat frame, frameCopy, image; |
||||
const string scaleOpt = "--scale="; |
||||
size_t scaleOptLen = scaleOpt.length(); |
||||
const string cascadeOpt = "--cascade="; |
||||
size_t cascadeOptLen = cascadeOpt.length(); |
||||
const string nestedCascadeOpt = "--smile-cascade"; |
||||
size_t nestedCascadeOptLen = nestedCascadeOpt.length(); |
||||
const string tryFlipOpt = "--try-flip"; |
||||
size_t tryFlipOptLen = tryFlipOpt.length(); |
||||
string inputName; |
||||
bool tryflip = false; |
||||
|
||||
help(); |
||||
|
||||
CascadeClassifier cascade, nestedCascade; |
||||
double scale = 1; |
||||
|
||||
for( int i = 1; i < argc; i++ ) |
||||
{ |
||||
cout << "Processing " << i << " " << argv[i] << endl; |
||||
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 ) |
||||
{ |
||||
cascadeName.assign( argv[i] + cascadeOptLen ); |
||||
cout << " from which we have cascadeName= " << cascadeName << endl; |
||||
} |
||||
else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 ) |
||||
{ |
||||
if( argv[i][nestedCascadeOpt.length()] == '=' ) |
||||
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 ); |
||||
if( !nestedCascade.load( nestedCascadeName ) ) |
||||
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl; |
||||
} |
||||
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 ) |
||||
{ |
||||
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 ) |
||||
scale = 1; |
||||
cout << " from which we read scale = " << scale << endl; |
||||
} |
||||
else if( tryFlipOpt.compare( 0, tryFlipOptLen, argv[i], tryFlipOptLen ) == 0 ) |
||||
{ |
||||
tryflip = true; |
||||
cout << " will try to flip image horizontally to detect assymetric objects\n"; |
||||
} |
||||
else if( argv[i][0] == '-' ) |
||||
{ |
||||
cerr << "WARNING: Unknown option " << argv[i] << endl; |
||||
} |
||||
else |
||||
inputName.assign( argv[i] ); |
||||
} |
||||
|
||||
if( !cascade.load( cascadeName ) ) |
||||
{ |
||||
cerr << "ERROR: Could not load classifier cascade" << endl; |
||||
help(); |
||||
return -1; |
||||
} |
||||
|
||||
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') ) |
||||
{ |
||||
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' ); |
||||
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ; |
||||
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl; |
||||
} |
||||
else if( inputName.size() ) |
||||
{ |
||||
image = imread( inputName, 1 ); |
||||
if( image.empty() ) |
||||
{ |
||||
capture = cvCaptureFromAVI( inputName.c_str() ); |
||||
if(!capture) cout << "Capture from AVI didn't work" << endl; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
image = imread( "lena.jpg", 1 ); |
||||
if(image.empty()) cout << "Couldn't read lena.jpg" << endl; |
||||
} |
||||
|
||||
cvNamedWindow( "result", 1 ); |
||||
|
||||
if( capture ) |
||||
{ |
||||
cout << "In capture ..." << endl; |
||||
for(;;) |
||||
{ |
||||
IplImage* iplImg = cvQueryFrame( capture ); |
||||
frame = iplImg; |
||||
if( frame.empty() ) |
||||
break; |
||||
if( iplImg->origin == IPL_ORIGIN_TL ) |
||||
frame.copyTo( frameCopy ); |
||||
else |
||||
flip( frame, frameCopy, 0 ); |
||||
|
||||
detectAndDraw( frameCopy, cascade, nestedCascade, scale, tryflip ); |
||||
|
||||
if( waitKey( 10 ) >= 0 ) |
||||
goto _cleanup_; |
||||
} |
||||
|
||||
waitKey(0); |
||||
|
||||
_cleanup_: |
||||
cvReleaseCapture( &capture ); |
||||
} |
||||
else |
||||
{ |
||||
cout << "In image read" << endl; |
||||
if( !image.empty() ) |
||||
{ |
||||
detectAndDraw( image, cascade, nestedCascade, scale, tryflip ); |
||||
waitKey(0); |
||||
} |
||||
else if( !inputName.empty() ) |
||||
{ |
||||
/* assume it is a text file containing the
|
||||
list of the image filenames to be processed - one per line */ |
||||
FILE* f = fopen( inputName.c_str(), "rt" ); |
||||
if( f ) |
||||
{ |
||||
char buf[1000+1]; |
||||
while( fgets( buf, 1000, f ) ) |
||||
{ |
||||
int len = (int)strlen(buf), c; |
||||
while( len > 0 && isspace(buf[len-1]) ) |
||||
len--; |
||||
buf[len] = '\0'; |
||||
cout << "file " << buf << endl; |
||||
image = imread( buf, 1 ); |
||||
if( !image.empty() ) |
||||
{ |
||||
detectAndDraw( image, cascade, nestedCascade, scale, tryflip ); |
||||
c = waitKey(0); |
||||
if( c == 27 || c == 'q' || c == 'Q' ) |
||||
break; |
||||
} |
||||
else |
||||
{
|
||||
cerr << "Aw snap, couldn't read image " << buf << endl; |
||||
} |
||||
} |
||||
fclose(f); |
||||
} |
||||
} |
||||
} |
||||
|
||||
cvDestroyWindow("result"); |
||||
return 0; |
||||
} |
||||
|
||||
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
||||
CascadeClassifier& nestedCascade, |
||||
double scale, bool tryflip) |
||||
{ |
||||
int i = 0; |
||||
vector<Rect> faces, faces2; |
||||
const static Scalar colors[] = { CV_RGB(0,0,255), |
||||
CV_RGB(0,128,255), |
||||
CV_RGB(0,255,255), |
||||
CV_RGB(0,255,0), |
||||
CV_RGB(255,128,0), |
||||
CV_RGB(255,255,0), |
||||
CV_RGB(255,0,0), |
||||
CV_RGB(255,0,255)} ; |
||||
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); |
||||
|
||||
const int max_neighbors = MAX(0, cvRound((float)coef1*smallImg.cols + coef2));
|
||||
|
||||
cvtColor( img, gray, CV_BGR2GRAY ); |
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); |
||||
equalizeHist( smallImg, smallImg ); |
||||
|
||||
cascade.detectMultiScale( smallImg, faces, |
||||
1.1, 2, 0 |
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
|CV_HAAR_SCALE_IMAGE |
||||
, |
||||
Size(30, 30) ); |
||||
if( tryflip ) |
||||
{ |
||||
flip(smallImg, smallImg, 1); |
||||
cascade.detectMultiScale( smallImg, faces2, |
||||
1.1, 2, 0 |
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
|CV_HAAR_SCALE_IMAGE |
||||
, |
||||
Size(30, 30) ); |
||||
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ ) |
||||
{ |
||||
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height)); |
||||
} |
||||
} |
||||
for( vector<Rect>::iterator r = faces.begin(); r != faces.end(); r++, i++ ) |
||||
{ |
||||
Mat smallImgROI; |
||||
vector<Rect> nestedObjects; |
||||
Point center; |
||||
Scalar color = colors[i%8]; |
||||
int radius; |
||||
|
||||
double aspect_ratio = (double)r->width/r->height; |
||||
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ) |
||||
{ |
||||
center.x = cvRound((r->x + r->width*0.5)*scale); |
||||
center.y = cvRound((r->y + r->height*0.5)*scale); |
||||
radius = cvRound((r->width + r->height)*0.25*scale); |
||||
circle( img, center, radius, color, 3, 8, 0 ); |
||||
} |
||||
else |
||||
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)), |
||||
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)), |
||||
color, 3, 8, 0); |
||||
if( nestedCascade.empty() ) |
||||
continue; |
||||
|
||||
const int half_height=cvRound((float)r->height/2); |
||||
r->y=r->y + half_height; |
||||
r->height = half_height; |
||||
smallImgROI = smallImg(*r); |
||||
nestedCascade.detectMultiScale( smallImgROI, nestedObjects, |
||||
1.1, 0, 0 |
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
//|CV_HAAR_DO_CANNY_PRUNING
|
||||
|CV_HAAR_SCALE_IMAGE |
||||
, |
||||
Size(30, 30) ); |
||||
|
||||
// Draw rectangle reflecting confidence
|
||||
const int smile_neighbors = nestedObjects.size(); |
||||
cout << "Detected " << smile_neighbors << " smile neighbors" << endl; |
||||
const int rect_height = cvRound((float)img.rows * smile_neighbors / max_neighbors); |
||||
CvScalar col = CV_RGB((float)255 * smile_neighbors / max_neighbors, 0, 0); |
||||
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1); |
||||
} |
||||
|
||||
cv::imshow( "result", img ); |
||||
} |
Loading…
Reference in new issue