mirror of https://github.com/opencv/opencv.git
rewritten several functions from calib3d: findhomography, findfundamentalmat, findessentialmat, estimateaffine3d, computecorrespondepilines, convert points{to/from}homogeneous to C++.
parent
891d7da6ee
commit
374e3a0890
15 changed files with 2558 additions and 2348 deletions
@ -0,0 +1,430 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
/************************************************************************************\
|
||||
Some backward compatibility stuff, to be moved to legacy or compat module |
||||
\************************************************************************************/ |
||||
|
||||
using cv::Ptr; |
||||
|
||||
////////////////// Levenberg-Marquardt engine (the old variant) ////////////////////////
|
||||
|
||||
CvLevMarq::CvLevMarq() |
||||
{ |
||||
mask = prevParam = param = J = err = JtJ = JtJN = JtErr = JtJV = JtJW = Ptr<CvMat>(); |
||||
lambdaLg10 = 0; state = DONE; |
||||
criteria = cvTermCriteria(0,0,0); |
||||
iters = 0; |
||||
completeSymmFlag = false; |
||||
} |
||||
|
||||
CvLevMarq::CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag ) |
||||
{ |
||||
mask = prevParam = param = J = err = JtJ = JtJN = JtErr = JtJV = JtJW = Ptr<CvMat>(); |
||||
init(nparams, nerrs, criteria0, _completeSymmFlag); |
||||
} |
||||
|
||||
void CvLevMarq::clear() |
||||
{ |
||||
mask.release(); |
||||
prevParam.release(); |
||||
param.release(); |
||||
J.release(); |
||||
err.release(); |
||||
JtJ.release(); |
||||
JtJN.release(); |
||||
JtErr.release(); |
||||
JtJV.release(); |
||||
JtJW.release(); |
||||
} |
||||
|
||||
CvLevMarq::~CvLevMarq() |
||||
{ |
||||
clear(); |
||||
} |
||||
|
||||
void CvLevMarq::init( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag ) |
||||
{ |
||||
if( !param || param->rows != nparams || nerrs != (err ? err->rows : 0) ) |
||||
clear(); |
||||
mask = cvCreateMat( nparams, 1, CV_8U ); |
||||
cvSet(mask, cvScalarAll(1)); |
||||
prevParam = cvCreateMat( nparams, 1, CV_64F ); |
||||
param = cvCreateMat( nparams, 1, CV_64F ); |
||||
JtJ = cvCreateMat( nparams, nparams, CV_64F ); |
||||
JtJN = cvCreateMat( nparams, nparams, CV_64F ); |
||||
JtJV = cvCreateMat( nparams, nparams, CV_64F ); |
||||
JtJW = cvCreateMat( nparams, 1, CV_64F ); |
||||
JtErr = cvCreateMat( nparams, 1, CV_64F ); |
||||
if( nerrs > 0 ) |
||||
{ |
||||
J = cvCreateMat( nerrs, nparams, CV_64F ); |
||||
err = cvCreateMat( nerrs, 1, CV_64F ); |
||||
} |
||||
prevErrNorm = DBL_MAX; |
||||
lambdaLg10 = -3; |
||||
criteria = criteria0; |
||||
if( criteria.type & CV_TERMCRIT_ITER ) |
||||
criteria.max_iter = MIN(MAX(criteria.max_iter,1),1000); |
||||
else |
||||
criteria.max_iter = 30; |
||||
if( criteria.type & CV_TERMCRIT_EPS ) |
||||
criteria.epsilon = MAX(criteria.epsilon, 0); |
||||
else |
||||
criteria.epsilon = DBL_EPSILON; |
||||
state = STARTED; |
||||
iters = 0; |
||||
completeSymmFlag = _completeSymmFlag; |
||||
} |
||||
|
||||
bool CvLevMarq::update( const CvMat*& _param, CvMat*& matJ, CvMat*& _err ) |
||||
{ |
||||
double change; |
||||
|
||||
matJ = _err = 0; |
||||
|
||||
assert( !err.empty() ); |
||||
if( state == DONE ) |
||||
{ |
||||
_param = param; |
||||
return false; |
||||
} |
||||
|
||||
if( state == STARTED ) |
||||
{ |
||||
_param = param; |
||||
cvZero( J ); |
||||
cvZero( err ); |
||||
matJ = J; |
||||
_err = err; |
||||
state = CALC_J; |
||||
return true; |
||||
} |
||||
|
||||
if( state == CALC_J ) |
||||
{ |
||||
cvMulTransposed( J, JtJ, 1 ); |
||||
cvGEMM( J, err, 1, 0, 0, JtErr, CV_GEMM_A_T ); |
||||
cvCopy( param, prevParam ); |
||||
step(); |
||||
if( iters == 0 ) |
||||
prevErrNorm = cvNorm(err, 0, CV_L2); |
||||
_param = param; |
||||
cvZero( err ); |
||||
_err = err; |
||||
state = CHECK_ERR; |
||||
return true; |
||||
} |
||||
|
||||
assert( state == CHECK_ERR ); |
||||
errNorm = cvNorm( err, 0, CV_L2 ); |
||||
if( errNorm > prevErrNorm ) |
||||
{ |
||||
if( ++lambdaLg10 <= 16 ) |
||||
{ |
||||
step(); |
||||
_param = param; |
||||
cvZero( err ); |
||||
_err = err; |
||||
state = CHECK_ERR; |
||||
return true; |
||||
} |
||||
} |
||||
|
||||
lambdaLg10 = MAX(lambdaLg10-1, -16); |
||||
if( ++iters >= criteria.max_iter || |
||||
(change = cvNorm(param, prevParam, CV_RELATIVE_L2)) < criteria.epsilon ) |
||||
{ |
||||
_param = param; |
||||
state = DONE; |
||||
return true; |
||||
} |
||||
|
||||
prevErrNorm = errNorm; |
||||
_param = param; |
||||
cvZero(J); |
||||
matJ = J; |
||||
_err = err; |
||||
state = CALC_J; |
||||
return true; |
||||
} |
||||
|
||||
|
||||
bool CvLevMarq::updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, double*& _errNorm ) |
||||
{ |
||||
double change; |
||||
|
||||
CV_Assert( err.empty() ); |
||||
if( state == DONE ) |
||||
{ |
||||
_param = param; |
||||
return false; |
||||
} |
||||
|
||||
if( state == STARTED ) |
||||
{ |
||||
_param = param; |
||||
cvZero( JtJ ); |
||||
cvZero( JtErr ); |
||||
errNorm = 0; |
||||
_JtJ = JtJ; |
||||
_JtErr = JtErr; |
||||
_errNorm = &errNorm; |
||||
state = CALC_J; |
||||
return true; |
||||
} |
||||
|
||||
if( state == CALC_J ) |
||||
{ |
||||
cvCopy( param, prevParam ); |
||||
step(); |
||||
_param = param; |
||||
prevErrNorm = errNorm; |
||||
errNorm = 0; |
||||
_errNorm = &errNorm; |
||||
state = CHECK_ERR; |
||||
return true; |
||||
} |
||||
|
||||
assert( state == CHECK_ERR ); |
||||
if( errNorm > prevErrNorm ) |
||||
{ |
||||
if( ++lambdaLg10 <= 16 ) |
||||
{ |
||||
step(); |
||||
_param = param; |
||||
errNorm = 0; |
||||
_errNorm = &errNorm; |
||||
state = CHECK_ERR; |
||||
return true; |
||||
} |
||||
} |
||||
|
||||
lambdaLg10 = MAX(lambdaLg10-1, -16); |
||||
if( ++iters >= criteria.max_iter || |
||||
(change = cvNorm(param, prevParam, CV_RELATIVE_L2)) < criteria.epsilon ) |
||||
{ |
||||
_param = param; |
||||
state = DONE; |
||||
return false; |
||||
} |
||||
|
||||
prevErrNorm = errNorm; |
||||
cvZero( JtJ ); |
||||
cvZero( JtErr ); |
||||
_param = param; |
||||
_JtJ = JtJ; |
||||
_JtErr = JtErr; |
||||
state = CALC_J; |
||||
return true; |
||||
} |
||||
|
||||
void CvLevMarq::step() |
||||
{ |
||||
const double LOG10 = log(10.); |
||||
double lambda = exp(lambdaLg10*LOG10); |
||||
int i, j, nparams = param->rows; |
||||
|
||||
for( i = 0; i < nparams; i++ ) |
||||
if( mask->data.ptr[i] == 0 ) |
||||
{ |
||||
double *row = JtJ->data.db + i*nparams, *col = JtJ->data.db + i; |
||||
for( j = 0; j < nparams; j++ ) |
||||
row[j] = col[j*nparams] = 0; |
||||
JtErr->data.db[i] = 0; |
||||
} |
||||
|
||||
if( !err ) |
||||
cvCompleteSymm( JtJ, completeSymmFlag ); |
||||
#if 1 |
||||
cvCopy( JtJ, JtJN ); |
||||
for( i = 0; i < nparams; i++ ) |
||||
JtJN->data.db[(nparams+1)*i] *= 1. + lambda; |
||||
#else |
||||
cvSetIdentity(JtJN, cvRealScalar(lambda)); |
||||
cvAdd( JtJ, JtJN, JtJN ); |
||||
#endif |
||||
cvSVD( JtJN, JtJW, 0, JtJV, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); |
||||
cvSVBkSb( JtJW, JtJV, JtJV, JtErr, param, CV_SVD_U_T + CV_SVD_V_T ); |
||||
for( i = 0; i < nparams; i++ ) |
||||
param->data.db[i] = prevParam->data.db[i] - (mask->data.ptr[i] ? param->data.db[i] : 0); |
||||
} |
||||
|
||||
|
||||
CV_IMPL int cvRANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters ) |
||||
{ |
||||
return cv::RANSACUpdateNumIters(p, ep, modelPoints, maxIters); |
||||
} |
||||
|
||||
|
||||
CV_IMPL int cvFindHomography( const CvMat* _src, const CvMat* _dst, CvMat* __H, int method, |
||||
double ransacReprojThreshold, CvMat* _mask ) |
||||
{ |
||||
cv::Mat src = cv::cvarrToMat(_src), dst = cv::cvarrToMat(_dst); |
||||
|
||||
if( src.channels() == 1 && (src.rows == 2 || src.rows == 3) && src.cols > 3 ) |
||||
cv::transpose(src, src); |
||||
if( dst.channels() == 1 && (dst.rows == 2 || dst.rows == 3) && dst.cols > 3 ) |
||||
cv::transpose(dst, dst); |
||||
|
||||
const cv::Mat H = cv::cvarrToMat(__H), mask = cv::cvarrToMat(_mask); |
||||
cv::Mat H0 = cv::findHomography(src, dst, method, ransacReprojThreshold, |
||||
_mask ? cv::_OutputArray(mask) : cv::_OutputArray()); |
||||
|
||||
if( H0.empty() ) |
||||
{ |
||||
cv::Mat Hz = cv::cvarrToMat(__H); |
||||
Hz.setTo(cv::Scalar::all(0)); |
||||
return 0; |
||||
} |
||||
H0.convertTo(H, H.type()); |
||||
return 1; |
||||
} |
||||
|
||||
|
||||
CV_IMPL int cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, |
||||
CvMat* fmatrix, int method, |
||||
double param1, double param2, CvMat* _mask ) |
||||
{ |
||||
cv::Mat m1 = cv::cvarrToMat(points1), m2 = cv::cvarrToMat(points2); |
||||
|
||||
if( m1.channels() == 1 && (m1.rows == 2 || m1.rows == 3) && m1.cols > 3 ) |
||||
cv::transpose(m1, m1); |
||||
if( m2.channels() == 1 && (m2.rows == 2 || m2.rows == 3) && m2.cols > 3 ) |
||||
cv::transpose(m2, m2); |
||||
|
||||
const cv::Mat FM = cv::cvarrToMat(fmatrix), mask = cv::cvarrToMat(_mask); |
||||
cv::Mat FM0 = cv::findFundamentalMat(m1, m2, method, param1, param2, |
||||
_mask ? cv::_OutputArray(mask) : cv::_OutputArray()); |
||||
|
||||
if( FM0.empty() ) |
||||
{ |
||||
cv::Mat FM0z = cv::cvarrToMat(fmatrix); |
||||
FM0z.setTo(cv::Scalar::all(0)); |
||||
return 0; |
||||
} |
||||
|
||||
CV_Assert( FM0.cols == 3 && FM0.rows % 3 == 0 && FM.cols == 3 && FM.rows % 3 == 0 && FM.channels() == 1 ); |
||||
cv::Mat FM1 = FM.rowRange(0, MIN(FM0.rows, FM.rows)); |
||||
FM0.rowRange(0, FM1.rows).convertTo(FM1, FM1.type()); |
||||
return FM1.rows / 3; |
||||
} |
||||
|
||||
|
||||
CV_IMPL void cvComputeCorrespondEpilines( const CvMat* points, int pointImageID, |
||||
const CvMat* fmatrix, CvMat* _lines ) |
||||
{ |
||||
cv::Mat pt = cv::cvarrToMat(points), fm = cv::cvarrToMat(fmatrix); |
||||
cv::Mat lines = cv::cvarrToMat(_lines); |
||||
const cv::Mat lines0 = lines; |
||||
|
||||
if( pt.channels() == 1 && (pt.rows == 2 || pt.rows == 3) && pt.cols > 3 ) |
||||
cv::transpose(pt, pt); |
||||
|
||||
cv::computeCorrespondEpilines(pt, pointImageID, fm, lines); |
||||
|
||||
bool tflag = lines0.channels() == 1 && lines0.rows == 3 && lines0.cols > 3; |
||||
lines = lines.reshape(lines0.channels(), (tflag ? lines0.cols : lines0.rows)); |
||||
|
||||
if( tflag ) |
||||
{ |
||||
CV_Assert( lines.rows == lines0.cols && lines.cols == lines0.rows ); |
||||
if( lines0.type() == lines.type() ) |
||||
transpose( lines, lines0 ); |
||||
else |
||||
{ |
||||
transpose( lines, lines ); |
||||
lines.convertTo( lines0, lines0.type() ); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
CV_Assert( lines.size() == lines0.size() ); |
||||
if( lines.data != lines0.data ) |
||||
lines.convertTo(lines0, lines0.type()); |
||||
} |
||||
} |
||||
|
||||
|
||||
CV_IMPL void cvConvertPointsHomogeneous( const CvMat* _src, CvMat* _dst ) |
||||
{ |
||||
cv::Mat src = cv::cvarrToMat(_src), dst = cv::cvarrToMat(_dst); |
||||
const cv::Mat dst0 = dst; |
||||
|
||||
int d0 = src.channels() > 1 ? src.channels() : MIN(src.cols, src.rows); |
||||
|
||||
if( src.channels() == 1 && src.cols > d0 ) |
||||
cv::transpose(src, src); |
||||
|
||||
int d1 = dst.channels() > 1 ? dst.channels() : MIN(dst.cols, dst.rows); |
||||
|
||||
if( d0 == d1 ) |
||||
src.copyTo(dst); |
||||
else if( d0 < d1 ) |
||||
cv::convertPointsToHomogeneous(src, dst); |
||||
else |
||||
cv::convertPointsFromHomogeneous(src, dst); |
||||
|
||||
bool tflag = dst0.channels() == 1 && dst0.cols > d1; |
||||
dst = dst.reshape(dst0.channels(), (tflag ? dst0.cols : dst0.rows)); |
||||
|
||||
if( tflag ) |
||||
{ |
||||
CV_Assert( dst.rows == dst0.cols && dst.cols == dst0.rows ); |
||||
if( dst0.type() == dst.type() ) |
||||
transpose( dst, dst0 ); |
||||
else |
||||
{ |
||||
transpose( dst, dst ); |
||||
dst.convertTo( dst0, dst0.type() ); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
CV_Assert( dst.size() == dst0.size() ); |
||||
if( dst.data != dst0.data ) |
||||
dst.convertTo(dst0, dst0.type()); |
||||
} |
||||
} |
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,226 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include <stdio.h> |
||||
|
||||
/*
|
||||
This is translation to C++ of the Matlab's LMSolve package by Miroslav Balda. |
||||
Here is the original copyright: |
||||
============================================================================ |
||||
|
||||
Copyright (c) 2007, Miroslav Balda |
||||
All rights reserved. |
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met: |
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer. |
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the distribution |
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE. |
||||
*/ |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
class LMSolverImpl : public LMSolver |
||||
{ |
||||
public: |
||||
LMSolverImpl() : maxIters(100) { init(); }; |
||||
LMSolverImpl(const Ptr<LMSolver::Callback>& _cb, int _maxIters) : cb(_cb), maxIters(_maxIters) { init(); } |
||||
|
||||
void init() |
||||
{ |
||||
epsx = epsf = FLT_EPSILON; |
||||
printInterval = 0; |
||||
} |
||||
|
||||
int run(InputOutputArray _param0) const |
||||
{ |
||||
Mat param0 = _param0.getMat(), x, xd, r, rd, J, A, Ap, v, temp_d, d; |
||||
int ptype = param0.type(); |
||||
|
||||
CV_Assert( (param0.cols == 1 || param0.rows == 1) && (ptype == CV_32F || ptype == CV_64F)); |
||||
CV_Assert( !cb.empty() ); |
||||
|
||||
int lx = param0.rows + param0.cols - 1; |
||||
param0.convertTo(x, CV_64F); |
||||
|
||||
if( x.cols != 1 ) |
||||
transpose(x, x); |
||||
|
||||
if( !cb->compute(x, r, J) ) |
||||
return -1; |
||||
double S = norm(r, NORM_L2SQR); |
||||
int nfJ = 2; |
||||
|
||||
mulTransposed(J, A, true); |
||||
gemm(J, r, 1, noArray(), 0, v, GEMM_1_T); |
||||
|
||||
Mat D = A.diag().clone(); |
||||
|
||||
const double Rlo = 0.25, Rhi = 0.75; |
||||
double lambda = 1, lc = 0.75; |
||||
int i, iter = 0; |
||||
|
||||
if( printInterval != 0 ) |
||||
{ |
||||
printf("************************************************************************************\n"); |
||||
printf("\titr\tnfJ\t\tSUM(r^2)\t\tx\t\tdx\t\tl\t\tlc\n"); |
||||
printf("************************************************************************************\n"); |
||||
} |
||||
|
||||
for( ;; ) |
||||
{ |
||||
CV_Assert( A.type() == CV_64F && A.rows == lx ); |
||||
A.copyTo(Ap); |
||||
for( i = 0; i < lx; i++ ) |
||||
Ap.at<double>(i, i) += lambda*D.at<double>(i); |
||||
solve(Ap, v, d, DECOMP_EIG); |
||||
subtract(x, d, xd); |
||||
if( !cb->compute(xd, rd, noArray()) ) |
||||
return -1; |
||||
nfJ++; |
||||
double Sd = norm(rd, NORM_L2SQR); |
||||
gemm(A, d, -1, v, 2, temp_d); |
||||
double dS = d.dot(temp_d); |
||||
double R = (S - Sd)/(fabs(dS) > DBL_EPSILON ? dS : 1); |
||||
|
||||
if( R > Rhi ) |
||||
{ |
||||
lambda *= 0.5; |
||||
if( lambda < lc ) |
||||
lambda = 0; |
||||
} |
||||
else if( R < Rlo ) |
||||
{ |
||||
// find new nu if R too low
|
||||
double t = d.dot(v); |
||||
double nu = (Sd - S)/(fabs(t) > DBL_EPSILON ? t : 1) + 2; |
||||
nu = std::min(std::max(nu, 2.), 10.); |
||||
if( lambda == 0 ) |
||||
{ |
||||
invert(A, Ap, DECOMP_EIG); |
||||
double maxval = DBL_EPSILON; |
||||
for( i = 0; i < lx; i++ ) |
||||
maxval = std::max(maxval, std::abs(Ap.at<double>(i,i))); |
||||
lambda = lc = 1./maxval; |
||||
nu *= 0.5; |
||||
} |
||||
lambda *= nu; |
||||
} |
||||
|
||||
if( Sd < S ) |
||||
{ |
||||
nfJ++; |
||||
S = Sd; |
||||
std::swap(x, xd); |
||||
if( !cb->compute(x, r, J) ) |
||||
return -1; |
||||
mulTransposed(J, A, true); |
||||
gemm(J, r, 1, noArray(), 0, v, GEMM_1_T); |
||||
} |
||||
|
||||
iter++; |
||||
bool proceed = iter < maxIters && norm(d, NORM_INF) >= epsx && norm(r, NORM_INF) >= epsf; |
||||
|
||||
if( printInterval != 0 && (iter % printInterval == 0 || iter == 1 || !proceed) ) |
||||
{ |
||||
printf("%c%10d %10d %15.4e %16.4e %17.4e %16.4e %17.4e\n", |
||||
(proceed ? ' ' : '*'), iter, nfJ, S, x.at<double>(0), d.at<double>(0), lambda, lc); |
||||
} |
||||
|
||||
if(!proceed) |
||||
break; |
||||
} |
||||
|
||||
if( param0.size != x.size ) |
||||
transpose(x, x); |
||||
|
||||
x.convertTo(param0, ptype); |
||||
if( iter == maxIters ) |
||||
iter = -iter; |
||||
|
||||
return iter; |
||||
} |
||||
|
||||
void setCallback(const Ptr<LMSolver::Callback>& _cb) { cb = _cb; } |
||||
|
||||
AlgorithmInfo* info() const; |
||||
|
||||
Ptr<LMSolver::Callback> cb; |
||||
|
||||
double epsx; |
||||
double epsf; |
||||
int maxIters; |
||||
int printInterval; |
||||
}; |
||||
|
||||
|
||||
CV_INIT_ALGORITHM(LMSolverImpl, "LMSolver", |
||||
obj.info()->addParam(obj, "epsx", obj.epsx); |
||||
obj.info()->addParam(obj, "epsf", obj.epsf); |
||||
obj.info()->addParam(obj, "maxIters", obj.maxIters); |
||||
obj.info()->addParam(obj, "printInterval", obj.printInterval)); |
||||
|
||||
CV_EXPORTS Ptr<LMSolver> createLMSolver(const Ptr<LMSolver::Callback>& cb, int maxIters) |
||||
{ |
||||
CV_Assert( !LMSolverImpl_info_auto.name().empty() ); |
||||
return new LMSolverImpl(cb, maxIters); |
||||
} |
||||
|
||||
} |
@ -1,502 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "_modelest.h" |
||||
#include <algorithm> |
||||
#include <iterator> |
||||
#include <limits> |
||||
|
||||
CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions) |
||||
{ |
||||
modelPoints = _modelPoints; |
||||
modelSize = _modelSize; |
||||
maxBasicSolutions = _maxBasicSolutions; |
||||
checkPartialSubsets = true; |
||||
rng = cvRNG(-1); |
||||
} |
||||
|
||||
CvModelEstimator2::~CvModelEstimator2() |
||||
{ |
||||
} |
||||
|
||||
void CvModelEstimator2::setSeed( int64 seed ) |
||||
{ |
||||
rng = cvRNG(seed); |
||||
} |
||||
|
||||
|
||||
int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2, |
||||
const CvMat* model, CvMat* _err, |
||||
CvMat* _mask, double threshold ) |
||||
{ |
||||
int i, count = _err->rows*_err->cols, goodCount = 0; |
||||
const float* err = _err->data.fl; |
||||
uchar* mask = _mask->data.ptr; |
||||
|
||||
computeReprojError( m1, m2, model, _err ); |
||||
threshold *= threshold; |
||||
for( i = 0; i < count; i++ ) |
||||
goodCount += mask[i] = err[i] <= threshold; |
||||
return goodCount; |
||||
} |
||||
|
||||
|
||||
CV_IMPL int |
||||
cvRANSACUpdateNumIters( double p, double ep, |
||||
int model_points, int max_iters ) |
||||
{ |
||||
if( model_points <= 0 ) |
||||
CV_Error( CV_StsOutOfRange, "the number of model points should be positive" ); |
||||
|
||||
p = MAX(p, 0.); |
||||
p = MIN(p, 1.); |
||||
ep = MAX(ep, 0.); |
||||
ep = MIN(ep, 1.); |
||||
|
||||
// avoid inf's & nan's
|
||||
double num = MAX(1. - p, DBL_MIN); |
||||
double denom = 1. - pow(1. - ep,model_points); |
||||
if( denom < DBL_MIN ) |
||||
return 0; |
||||
|
||||
num = log(num); |
||||
denom = log(denom); |
||||
|
||||
return denom >= 0 || -num >= max_iters*(-denom) ? |
||||
max_iters : cvRound(num/denom); |
||||
} |
||||
|
||||
bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model, |
||||
CvMat* mask0, double reprojThreshold, |
||||
double confidence, int maxIters ) |
||||
{ |
||||
bool result = false; |
||||
cv::Ptr<CvMat> mask = cvCloneMat(mask0); |
||||
cv::Ptr<CvMat> models, err, tmask; |
||||
cv::Ptr<CvMat> ms1, ms2; |
||||
|
||||
int iter, niters = maxIters; |
||||
int count = m1->rows*m1->cols, maxGoodCount = 0; |
||||
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); |
||||
|
||||
if( count < modelPoints ) |
||||
return false; |
||||
|
||||
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); |
||||
err = cvCreateMat( 1, count, CV_32FC1 ); |
||||
tmask = cvCreateMat( 1, count, CV_8UC1 ); |
||||
|
||||
if( count > modelPoints ) |
||||
{ |
||||
ms1 = cvCreateMat( 1, modelPoints, m1->type ); |
||||
ms2 = cvCreateMat( 1, modelPoints, m2->type ); |
||||
} |
||||
else |
||||
{ |
||||
niters = 1; |
||||
ms1 = cvCloneMat(m1); |
||||
ms2 = cvCloneMat(m2); |
||||
} |
||||
|
||||
for( iter = 0; iter < niters; iter++ ) |
||||
{ |
||||
int i, goodCount, nmodels; |
||||
if( count > modelPoints ) |
||||
{ |
||||
bool found = getSubset( m1, m2, ms1, ms2, 300 ); |
||||
if( !found ) |
||||
{ |
||||
if( iter == 0 ) |
||||
return false; |
||||
break; |
||||
} |
||||
|
||||
// Here we check for model specific geometrical
|
||||
// constraints that allow to avoid "runKernel"
|
||||
// and not checking for inliers if not fulfilled.
|
||||
//
|
||||
// The usefullness of this constraint for homographies is explained in the paper:
|
||||
//
|
||||
// "Speeding-up homography estimation in mobile devices"
|
||||
// Journal of Real-Time Image Processing. 2013. DOI: 10.1007/s11554-012-0314-1
|
||||
// Pablo Márquez-Neila, Javier López-Alberca, José M. Buenaposada, Luis Baumela
|
||||
if ( !isMinimalSetConsistent( ms1, ms2 ) ) |
||||
continue; |
||||
} |
||||
|
||||
nmodels = runKernel( ms1, ms2, models ); |
||||
if( nmodels <= 0 ) |
||||
continue; |
||||
for( i = 0; i < nmodels; i++ ) |
||||
{ |
||||
CvMat model_i; |
||||
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height ); |
||||
goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold ); |
||||
|
||||
if( goodCount > MAX(maxGoodCount, modelPoints-1) ) |
||||
{ |
||||
std::swap(tmask, mask); |
||||
cvCopy( &model_i, model ); |
||||
maxGoodCount = goodCount; |
||||
niters = cvRANSACUpdateNumIters( confidence, |
||||
(double)(count - goodCount)/count, modelPoints, niters ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if( maxGoodCount > 0 ) |
||||
{ |
||||
if( mask != mask0 ) |
||||
cvCopy( mask, mask0 ); |
||||
result = true; |
||||
} |
||||
|
||||
return result; |
||||
} |
||||
|
||||
|
||||
static CV_IMPLEMENT_QSORT( icvSortDistances, int, CV_LT ) |
||||
|
||||
bool CvModelEstimator2::runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model, |
||||
CvMat* mask, double confidence, int maxIters ) |
||||
{ |
||||
const double outlierRatio = 0.45; |
||||
bool result = false; |
||||
cv::Ptr<CvMat> models; |
||||
cv::Ptr<CvMat> ms1, ms2; |
||||
cv::Ptr<CvMat> err; |
||||
|
||||
int iter, niters = maxIters; |
||||
int count = m1->rows*m1->cols; |
||||
double minMedian = DBL_MAX, sigma; |
||||
|
||||
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); |
||||
|
||||
if( count < modelPoints ) |
||||
return false; |
||||
|
||||
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); |
||||
err = cvCreateMat( 1, count, CV_32FC1 ); |
||||
|
||||
if( count > modelPoints ) |
||||
{ |
||||
ms1 = cvCreateMat( 1, modelPoints, m1->type ); |
||||
ms2 = cvCreateMat( 1, modelPoints, m2->type ); |
||||
} |
||||
else |
||||
{ |
||||
niters = 1; |
||||
ms1 = cvCloneMat(m1); |
||||
ms2 = cvCloneMat(m2); |
||||
} |
||||
|
||||
niters = cvRound(log(1-confidence)/log(1-pow(1-outlierRatio,(double)modelPoints))); |
||||
niters = MIN( MAX(niters, 3), maxIters ); |
||||
|
||||
for( iter = 0; iter < niters; iter++ ) |
||||
{ |
||||
int i, nmodels; |
||||
if( count > modelPoints ) |
||||
{ |
||||
bool found = getSubset( m1, m2, ms1, ms2, 300 ); |
||||
if( !found ) |
||||
{ |
||||
if( iter == 0 ) |
||||
return false; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
nmodels = runKernel( ms1, ms2, models ); |
||||
if( nmodels <= 0 ) |
||||
continue; |
||||
for( i = 0; i < nmodels; i++ ) |
||||
{ |
||||
CvMat model_i; |
||||
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height ); |
||||
computeReprojError( m1, m2, &model_i, err ); |
||||
icvSortDistances( err->data.i, count, 0 ); |
||||
|
||||
double median = count % 2 != 0 ? |
||||
err->data.fl[count/2] : (err->data.fl[count/2-1] + err->data.fl[count/2])*0.5; |
||||
|
||||
if( median < minMedian ) |
||||
{ |
||||
minMedian = median; |
||||
cvCopy( &model_i, model ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if( minMedian < DBL_MAX ) |
||||
{ |
||||
sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian); |
||||
sigma = MAX( sigma, 0.001 ); |
||||
|
||||
count = findInliers( m1, m2, model, err, mask, sigma ); |
||||
result = count >= modelPoints; |
||||
} |
||||
|
||||
return result; |
||||
} |
||||
|
||||
|
||||
bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2, |
||||
CvMat* ms1, CvMat* ms2, int maxAttempts ) |
||||
{ |
||||
cv::AutoBuffer<int> _idx(modelPoints); |
||||
int* idx = _idx; |
||||
int i = 0, j, k, idx_i, iters = 0; |
||||
int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type); |
||||
const int *m1ptr = m1->data.i, *m2ptr = m2->data.i; |
||||
int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i; |
||||
int count = m1->cols*m1->rows; |
||||
|
||||
assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) ); |
||||
elemSize /= sizeof(int); |
||||
|
||||
for(; iters < maxAttempts; iters++) |
||||
{ |
||||
for( i = 0; i < modelPoints && iters < maxAttempts; ) |
||||
{ |
||||
idx[i] = idx_i = cvRandInt(&rng) % count; |
||||
for( j = 0; j < i; j++ ) |
||||
if( idx_i == idx[j] ) |
||||
break; |
||||
if( j < i ) |
||||
continue; |
||||
for( k = 0; k < elemSize; k++ ) |
||||
{ |
||||
ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k]; |
||||
ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k]; |
||||
} |
||||
if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 ))) |
||||
{ |
||||
iters++; |
||||
continue; |
||||
} |
||||
i++; |
||||
} |
||||
if( !checkPartialSubsets && i == modelPoints && |
||||
(!checkSubset( ms1, i ) || !checkSubset( ms2, i ))) |
||||
continue; |
||||
break; |
||||
} |
||||
|
||||
return i == modelPoints && iters < maxAttempts; |
||||
} |
||||
|
||||
|
||||
bool CvModelEstimator2::checkSubset( const CvMat* m, int count ) |
||||
{ |
||||
if( count <= 2 ) |
||||
return true; |
||||
|
||||
int j, k, i, i0, i1; |
||||
CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr; |
||||
|
||||
assert( CV_MAT_TYPE(m->type) == CV_64FC2 ); |
||||
|
||||
if( checkPartialSubsets ) |
||||
i0 = i1 = count - 1; |
||||
else |
||||
i0 = 0, i1 = count - 1; |
||||
|
||||
for( i = i0; i <= i1; i++ ) |
||||
{ |
||||
// check that the i-th selected point does not belong
|
||||
// to a line connecting some previously selected points
|
||||
for( j = 0; j < i; j++ ) |
||||
{ |
||||
double dx1 = ptr[j].x - ptr[i].x; |
||||
double dy1 = ptr[j].y - ptr[i].y; |
||||
for( k = 0; k < j; k++ ) |
||||
{ |
||||
double dx2 = ptr[k].x - ptr[i].x; |
||||
double dy2 = ptr[k].y - ptr[i].y; |
||||
if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2))) |
||||
break; |
||||
} |
||||
if( k < j ) |
||||
break; |
||||
} |
||||
if( j < i ) |
||||
break; |
||||
} |
||||
|
||||
return i > i1; |
||||
} |
||||
|
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
class Affine3DEstimator : public CvModelEstimator2 |
||||
{ |
||||
public: |
||||
Affine3DEstimator() : CvModelEstimator2(4, cvSize(4, 3), 1) {} |
||||
virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ); |
||||
protected: |
||||
virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ); |
||||
virtual bool checkSubset( const CvMat* ms1, int count ); |
||||
}; |
||||
|
||||
} |
||||
|
||||
int cv::Affine3DEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ) |
||||
{ |
||||
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr); |
||||
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr); |
||||
|
||||
Mat A(12, 12, CV_64F); |
||||
Mat B(12, 1, CV_64F); |
||||
A = Scalar(0.0); |
||||
|
||||
for(int i = 0; i < modelPoints; ++i) |
||||
{ |
||||
*B.ptr<Point3d>(3*i) = to[i]; |
||||
|
||||
double *aptr = A.ptr<double>(3*i); |
||||
for(int k = 0; k < 3; ++k) |
||||
{ |
||||
aptr[3] = 1.0; |
||||
*reinterpret_cast<Point3d*>(aptr) = from[i]; |
||||
aptr += 16; |
||||
} |
||||
} |
||||
|
||||
CvMat cvA = A; |
||||
CvMat cvB = B; |
||||
CvMat cvX; |
||||
cvReshape(model, &cvX, 1, 12); |
||||
cvSolve(&cvA, &cvB, &cvX, CV_SVD ); |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
void cv::Affine3DEstimator::computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ) |
||||
{ |
||||
int count = m1->rows * m1->cols; |
||||
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr); |
||||
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr); |
||||
const double* F = model->data.db; |
||||
float* err = error->data.fl; |
||||
|
||||
for(int i = 0; i < count; i++ ) |
||||
{ |
||||
const Point3d& f = from[i]; |
||||
const Point3d& t = to[i]; |
||||
|
||||
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x; |
||||
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y; |
||||
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z; |
||||
|
||||
err[i] = (float)std::sqrt(a*a + b*b + c*c); |
||||
} |
||||
} |
||||
|
||||
bool cv::Affine3DEstimator::checkSubset( const CvMat* ms1, int count ) |
||||
{ |
||||
CV_Assert( CV_MAT_TYPE(ms1->type) == CV_64FC3 ); |
||||
|
||||
int j, k, i = count - 1; |
||||
const Point3d* ptr = reinterpret_cast<const Point3d*>(ms1->data.ptr); |
||||
|
||||
// check that the i-th selected point does not belong
|
||||
// to a line connecting some previously selected points
|
||||
|
||||
for(j = 0; j < i; ++j) |
||||
{ |
||||
Point3d d1 = ptr[j] - ptr[i]; |
||||
double n1 = norm(d1); |
||||
|
||||
for(k = 0; k < j; ++k) |
||||
{ |
||||
Point3d d2 = ptr[k] - ptr[i]; |
||||
double n = norm(d2) * n1; |
||||
|
||||
if (fabs(d1.dot(d2) / n) > 0.996) |
||||
break; |
||||
} |
||||
if( k < j ) |
||||
break; |
||||
} |
||||
|
||||
return j == i; |
||||
} |
||||
|
||||
int cv::estimateAffine3D(InputArray _from, InputArray _to, |
||||
OutputArray _out, OutputArray _inliers, |
||||
double param1, double param2) |
||||
{ |
||||
Mat from = _from.getMat(), to = _to.getMat(); |
||||
int count = from.checkVector(3); |
||||
|
||||
CV_Assert( count >= 0 && to.checkVector(3) == count ); |
||||
|
||||
_out.create(3, 4, CV_64F); |
||||
Mat out = _out.getMat(); |
||||
|
||||
Mat inliers(1, count, CV_8U); |
||||
inliers = Scalar::all(1); |
||||
|
||||
Mat dFrom, dTo; |
||||
from.convertTo(dFrom, CV_64F); |
||||
to.convertTo(dTo, CV_64F); |
||||
dFrom = dFrom.reshape(3, 1); |
||||
dTo = dTo.reshape(3, 1); |
||||
|
||||
CvMat F3x4 = out; |
||||
CvMat mask = inliers; |
||||
CvMat m1 = dFrom; |
||||
CvMat m2 = dTo; |
||||
|
||||
const double epsilon = std::numeric_limits<double>::epsilon(); |
||||
param1 = param1 <= 0 ? 3 : param1; |
||||
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2; |
||||
|
||||
int ok = Affine3DEstimator().runRANSAC(&m1, &m2, &F3x4, &mask, param1, param2 ); |
||||
if( _inliers.needed() ) |
||||
transpose(inliers, _inliers); |
||||
|
||||
return ok; |
||||
} |
@ -0,0 +1,545 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#include <algorithm> |
||||
#include <iterator> |
||||
#include <limits> |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters ) |
||||
{ |
||||
if( modelPoints <= 0 ) |
||||
CV_Error( CV_StsOutOfRange, "the number of model points should be positive" ); |
||||
|
||||
p = MAX(p, 0.); |
||||
p = MIN(p, 1.); |
||||
ep = MAX(ep, 0.); |
||||
ep = MIN(ep, 1.); |
||||
|
||||
// avoid inf's & nan's
|
||||
double num = MAX(1. - p, DBL_MIN); |
||||
double denom = 1. - std::pow(1. - ep, modelPoints); |
||||
if( denom < DBL_MIN ) |
||||
return 0; |
||||
|
||||
num = std::log(num); |
||||
denom = std::log(denom); |
||||
|
||||
return denom >= 0 || -num >= maxIters*(-denom) ? maxIters : cvRound(num/denom); |
||||
} |
||||
|
||||
|
||||
class RANSACPointSetRegistrator : public PointSetRegistrator |
||||
{ |
||||
public: |
||||
RANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(), |
||||
int _modelPoints=0, double _threshold=0, double _confidence=0.99, int _maxIters=1000) |
||||
: cb(_cb), modelPoints(_modelPoints), threshold(_threshold), confidence(_confidence), maxIters(_maxIters) |
||||
{ |
||||
checkPartialSubsets = true; |
||||
} |
||||
|
||||
virtual ~RANSACPointSetRegistrator() {} |
||||
|
||||
int findInliers( const Mat& m1, const Mat& m2, const Mat& model, Mat& err, Mat& mask, double thresh ) const |
||||
{ |
||||
cb->computeError( m1, m2, model, err ); |
||||
mask.create(err.size(), CV_8U); |
||||
|
||||
CV_Assert( err.isContinuous() && err.type() == CV_32F && mask.isContinuous() && mask.type() == CV_8U); |
||||
const float* errptr = err.ptr<float>(); |
||||
uchar* maskptr = mask.ptr<uchar>(); |
||||
float t = (float)(thresh*thresh); |
||||
int i, n = (int)err.total(), nz = 0; |
||||
for( i = 0; i < n; i++ ) |
||||
{ |
||||
int f = errptr[i] <= t; |
||||
maskptr[i] = (uchar)f; |
||||
nz += f; |
||||
} |
||||
return nz; |
||||
} |
||||
|
||||
bool getSubset( const Mat& m1, const Mat& m2, |
||||
Mat& ms1, Mat& ms2, RNG& rng, |
||||
int maxAttempts=1000 ) const |
||||
{ |
||||
cv::AutoBuffer<int> _idx(modelPoints); |
||||
int* idx = _idx; |
||||
int i = 0, j, k, iters = 0; |
||||
int esz1 = (int)m1.elemSize(), esz2 = (int)m2.elemSize(); |
||||
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols; |
||||
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols; |
||||
int count = m1.checkVector(d1), count2 = m2.checkVector(d2); |
||||
const int *m1ptr = (const int*)m1.data, *m2ptr = (const int*)m2.data; |
||||
|
||||
ms1.create(modelPoints, 1, CV_MAKETYPE(m1.depth(), d1)); |
||||
ms2.create(modelPoints, 1, CV_MAKETYPE(m2.depth(), d2)); |
||||
|
||||
int *ms1ptr = (int*)ms1.data, *ms2ptr = (int*)ms2.data; |
||||
|
||||
CV_Assert( count >= modelPoints && count == count2 ); |
||||
CV_Assert( (esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0 ); |
||||
esz1 /= sizeof(int); |
||||
esz2 /= sizeof(int); |
||||
|
||||
for(; iters < maxAttempts; iters++) |
||||
{ |
||||
for( i = 0; i < modelPoints && iters < maxAttempts; ) |
||||
{ |
||||
int idx_i = 0; |
||||
for(;;) |
||||
{ |
||||
idx_i = idx[i] = rng.uniform(0, count); |
||||
for( j = 0; j < i; j++ ) |
||||
if( idx_i == idx[j] ) |
||||
break; |
||||
if( j == i ) |
||||
break; |
||||
} |
||||
for( k = 0; k < esz1; k++ ) |
||||
ms1ptr[i*esz1 + k] = m1ptr[idx_i*esz1 + k]; |
||||
for( k = 0; k < esz2; k++ ) |
||||
ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k]; |
||||
if( checkPartialSubsets && !cb->checkSubset( ms1, ms2, i+1 )) |
||||
{ |
||||
iters++; |
||||
continue; |
||||
} |
||||
i++; |
||||
} |
||||
if( !checkPartialSubsets && i == modelPoints && !cb->checkSubset(ms1, ms2, i)) |
||||
continue; |
||||
break; |
||||
} |
||||
|
||||
return i == modelPoints && iters < maxAttempts; |
||||
} |
||||
|
||||
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const |
||||
{ |
||||
bool result = false; |
||||
Mat m1 = _m1.getMat(), m2 = _m2.getMat(); |
||||
Mat err, mask, model, bestModel, ms1, ms2; |
||||
|
||||
int iter, niters = MAX(maxIters, 1); |
||||
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols; |
||||
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols; |
||||
int count = m1.checkVector(d1), count2 = m2.checkVector(d2), maxGoodCount = 0; |
||||
|
||||
RNG rng((uint64)-1); |
||||
|
||||
CV_Assert( !cb.empty() ); |
||||
CV_Assert( confidence > 0 && confidence < 1 ); |
||||
|
||||
CV_Assert( count >= 0 && count2 == count ); |
||||
if( count < modelPoints ) |
||||
return false; |
||||
|
||||
Mat bestMask0, bestMask; |
||||
|
||||
if( _mask.needed() ) |
||||
{ |
||||
if( !_mask.fixedSize() ) |
||||
_mask.create(count, 1, CV_8U); |
||||
bestMask0 = bestMask = _mask.getMat(); |
||||
CV_Assert( (bestMask.cols == 1 || bestMask.rows == 1) && (int)bestMask.total() == count ); |
||||
} |
||||
else |
||||
{ |
||||
bestMask.create(count, 1, CV_8U); |
||||
bestMask0 = bestMask; |
||||
} |
||||
|
||||
if( count == modelPoints ) |
||||
{ |
||||
if( cb->runKernel(m1, m2, bestModel) <= 0 ) |
||||
return false; |
||||
bestModel.copyTo(_model); |
||||
bestMask.setTo(Scalar::all(1)); |
||||
return true; |
||||
} |
||||
|
||||
for( iter = 0; iter < niters; iter++ ) |
||||
{ |
||||
int i, goodCount, nmodels; |
||||
if( count > modelPoints ) |
||||
{ |
||||
bool found = getSubset( m1, m2, ms1, ms2, rng ); |
||||
if( !found ) |
||||
{ |
||||
if( iter == 0 ) |
||||
return false; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
nmodels = cb->runKernel( ms1, ms2, model ); |
||||
if( nmodels <= 0 ) |
||||
continue; |
||||
CV_Assert( model.rows % nmodels == 0 ); |
||||
Size modelSize(model.cols, model.rows/nmodels); |
||||
|
||||
for( i = 0; i < nmodels; i++ ) |
||||
{ |
||||
Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height ); |
||||
goodCount = findInliers( m1, m2, model_i, err, mask, threshold ); |
||||
|
||||
if( goodCount > MAX(maxGoodCount, modelPoints-1) ) |
||||
{ |
||||
std::swap(mask, bestMask); |
||||
model_i.copyTo(bestModel); |
||||
maxGoodCount = goodCount; |
||||
niters = RANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters ); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if( maxGoodCount > 0 ) |
||||
{ |
||||
if( bestMask.data != bestMask0.data ) |
||||
{ |
||||
if( bestMask.size() == bestMask0.size() ) |
||||
bestMask.copyTo(bestMask0); |
||||
else |
||||
transpose(bestMask, bestMask0); |
||||
} |
||||
bestModel.copyTo(_model); |
||||
result = true; |
||||
} |
||||
else |
||||
_model.release(); |
||||
|
||||
return result; |
||||
} |
||||
|
||||
void setCallback(const Ptr<PointSetRegistrator::Callback>& _cb) { cb = _cb; } |
||||
|
||||
AlgorithmInfo* info() const; |
||||
|
||||
Ptr<PointSetRegistrator::Callback> cb; |
||||
int modelPoints; |
||||
int maxBasicSolutions; |
||||
bool checkPartialSubsets; |
||||
double threshold; |
||||
double confidence; |
||||
int maxIters; |
||||
}; |
||||
|
||||
|
||||
static CV_IMPLEMENT_QSORT( sortDistances, int, CV_LT ) |
||||
|
||||
class LMeDSPointSetRegistrator : public RANSACPointSetRegistrator |
||||
{ |
||||
public: |
||||
LMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb=Ptr<PointSetRegistrator::Callback>(), |
||||
int _modelPoints=0, double _confidence=0.99, int _maxIters=1000) |
||||
: RANSACPointSetRegistrator(_cb, _modelPoints, 0, _confidence, _maxIters) {} |
||||
|
||||
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const |
||||
{ |
||||
const double outlierRatio = 0.45; |
||||
bool result = false; |
||||
Mat m1 = _m1.getMat(), m2 = _m2.getMat(); |
||||
Mat ms1, ms2, err, errf, model, bestModel, mask, mask0; |
||||
|
||||
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols; |
||||
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols; |
||||
int count = m1.checkVector(d1), count2 = m2.checkVector(d2); |
||||
double minMedian = DBL_MAX, sigma; |
||||
|
||||
RNG rng((uint64)-1); |
||||
|
||||
CV_Assert( !cb.empty() ); |
||||
CV_Assert( confidence > 0 && confidence < 1 ); |
||||
|
||||
CV_Assert( count >= 0 && count2 == count ); |
||||
if( count < modelPoints ) |
||||
return false; |
||||
|
||||
if( _mask.needed() ) |
||||
{ |
||||
if( !_mask.fixedSize() ) |
||||
_mask.create(count, 1, CV_8U); |
||||
mask0 = mask = _mask.getMat(); |
||||
CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == count ); |
||||
} |
||||
|
||||
if( count == modelPoints ) |
||||
{ |
||||
if( cb->runKernel(m1, m2, bestModel) <= 0 ) |
||||
return false; |
||||
bestModel.copyTo(_model); |
||||
mask.setTo(Scalar::all(1)); |
||||
return true; |
||||
} |
||||
|
||||
int iter, niters = cvRound(std::log(1-confidence)/ |
||||
std::log(1-std::pow(1-outlierRatio,(double)modelPoints))); |
||||
niters = MIN( MAX(niters, 3), maxIters ); |
||||
|
||||
for( iter = 0; iter < niters; iter++ ) |
||||
{ |
||||
int i, nmodels; |
||||
if( count > modelPoints ) |
||||
{ |
||||
bool found = getSubset( m1, m2, ms1, ms2, rng ); |
||||
if( !found ) |
||||
{ |
||||
if( iter == 0 ) |
||||
return false; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
nmodels = cb->runKernel( ms1, ms2, model ); |
||||
if( nmodels <= 0 ) |
||||
continue; |
||||
|
||||
CV_Assert( model.rows % nmodels == 0 ); |
||||
Size modelSize(model.cols, model.rows/nmodels); |
||||
|
||||
for( i = 0; i < nmodels; i++ ) |
||||
{ |
||||
Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height ); |
||||
cb->computeError( m1, m2, model_i, err ); |
||||
if( err.depth() != CV_32F ) |
||||
err.convertTo(errf, CV_32F); |
||||
else |
||||
errf = err; |
||||
CV_Assert( errf.isContinuous() && errf.type() == CV_32F && (int)errf.total() == count ); |
||||
sortDistances( (int*)errf.data, count, 0 ); |
||||
|
||||
double median = count % 2 != 0 ? |
||||
errf.at<float>(count/2) : (errf.at<float>(count/2-1) + errf.at<float>(count/2))*0.5; |
||||
|
||||
if( median < minMedian ) |
||||
{ |
||||
minMedian = median; |
||||
model_i.copyTo(bestModel); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if( minMedian < DBL_MAX ) |
||||
{ |
||||
sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian); |
||||
sigma = MAX( sigma, 0.001 ); |
||||
|
||||
count = findInliers( m1, m2, bestModel, err, mask, sigma ); |
||||
if( _mask.needed() && mask0.data != mask.data ) |
||||
{ |
||||
if( mask0.size() == mask.size() ) |
||||
mask.copyTo(mask0); |
||||
else |
||||
transpose(mask, mask0); |
||||
} |
||||
bestModel.copyTo(_model); |
||||
result = count >= modelPoints; |
||||
} |
||||
else |
||||
_model.release(); |
||||
|
||||
return result; |
||||
} |
||||
|
||||
AlgorithmInfo* info() const; |
||||
}; |
||||
|
||||
|
||||
CV_INIT_ALGORITHM(RANSACPointSetRegistrator, "PointSetRegistrator.RANSAC", |
||||
obj.info()->addParam(obj, "threshold", obj.threshold); |
||||
obj.info()->addParam(obj, "confidence", obj.confidence); |
||||
obj.info()->addParam(obj, "maxIters", obj.maxIters)); |
||||
|
||||
CV_INIT_ALGORITHM(LMeDSPointSetRegistrator, "PointSetRegistrator.LMeDS", |
||||
obj.info()->addParam(obj, "confidence", obj.confidence); |
||||
obj.info()->addParam(obj, "maxIters", obj.maxIters)); |
||||
|
||||
Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb, |
||||
int _modelPoints, double _threshold, |
||||
double _confidence, int _maxIters) |
||||
{ |
||||
CV_Assert( !RANSACPointSetRegistrator_info_auto.name().empty() ); |
||||
return new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters); |
||||
} |
||||
|
||||
|
||||
Ptr<PointSetRegistrator> createLMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb, |
||||
int _modelPoints, double _confidence, int _maxIters) |
||||
{ |
||||
CV_Assert( !LMeDSPointSetRegistrator_info_auto.name().empty() ); |
||||
return new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters); |
||||
} |
||||
|
||||
class Affine3DEstimatorCallback : public PointSetRegistrator::Callback |
||||
{ |
||||
public: |
||||
int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const |
||||
{ |
||||
Mat m1 = _m1.getMat(), m2 = _m2.getMat(); |
||||
const Point3f* from = m1.ptr<Point3f>(); |
||||
const Point3f* to = m2.ptr<Point3f>(); |
||||
|
||||
const int N = 12; |
||||
double buf[N*N + N + N]; |
||||
Mat A(N, N, CV_64F, &buf[0]); |
||||
Mat B(N, 1, CV_64F, &buf[0] + N*N); |
||||
Mat X(N, 1, CV_64F, &buf[0] + N*N + N); |
||||
double* Adata = A.ptr<double>(); |
||||
double* Bdata = B.ptr<double>(); |
||||
A = Scalar::all(0); |
||||
|
||||
for( int i = 0; i < (N/3); i++ ) |
||||
{ |
||||
Bdata[i*3] = to[i].x; |
||||
Bdata[i*3+1] = to[i].y; |
||||
Bdata[i*3+2] = to[i].z; |
||||
|
||||
double *aptr = Adata + i*3*N; |
||||
for(int k = 0; k < 3; ++k) |
||||
{ |
||||
aptr[0] = from[i].x; |
||||
aptr[1] = from[i].y; |
||||
aptr[2] = from[i].z; |
||||
aptr[3] = 1.0; |
||||
aptr += 16; |
||||
} |
||||
} |
||||
|
||||
solve(A, B, X, DECOMP_SVD); |
||||
X.reshape(1, 3).copyTo(_model); |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const |
||||
{ |
||||
Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat(); |
||||
const Point3f* from = m1.ptr<Point3f>(); |
||||
const Point3f* to = m2.ptr<Point3f>(); |
||||
const double* F = model.ptr<double>(); |
||||
|
||||
int count = m1.checkVector(3); |
||||
CV_Assert( count > 0 ); |
||||
|
||||
_err.create(count, 1, CV_32F); |
||||
Mat err = _err.getMat(); |
||||
float* errptr = err.ptr<float>(); |
||||
|
||||
for(int i = 0; i < count; i++ ) |
||||
{ |
||||
const Point3f& f = from[i]; |
||||
const Point3f& t = to[i]; |
||||
|
||||
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x; |
||||
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y; |
||||
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z; |
||||
|
||||
errptr[i] = (float)std::sqrt(a*a + b*b + c*c); |
||||
} |
||||
} |
||||
|
||||
bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const |
||||
{ |
||||
const float threshold = 0.996f; |
||||
Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat(); |
||||
|
||||
for( int inp = 1; inp <= 2; inp++ ) |
||||
{ |
||||
int j, k, i = count - 1; |
||||
const Mat* msi = inp == 1 ? &ms1 : &ms2; |
||||
const Point3f* ptr = msi->ptr<Point3f>(); |
||||
|
||||
CV_Assert( count <= msi->rows ); |
||||
|
||||
// check that the i-th selected point does not belong
|
||||
// to a line connecting some previously selected points
|
||||
for(j = 0; j < i; ++j) |
||||
{ |
||||
Point3f d1 = ptr[j] - ptr[i]; |
||||
float n1 = d1.x*d1.x + d1.y*d1.y; |
||||
|
||||
for(k = 0; k < j; ++k) |
||||
{ |
||||
Point3f d2 = ptr[k] - ptr[i]; |
||||
float denom = (d2.x*d2.x + d2.y*d2.y)*n1; |
||||
float num = d1.x*d2.x + d1.y*d2.y; |
||||
|
||||
if( num*num > threshold*threshold*denom ) |
||||
return false; |
||||
} |
||||
} |
||||
} |
||||
return true; |
||||
} |
||||
}; |
||||
|
||||
} |
||||
|
||||
int cv::estimateAffine3D(InputArray _from, InputArray _to, |
||||
OutputArray _out, OutputArray _inliers, |
||||
double param1, double param2) |
||||
{ |
||||
Mat from = _from.getMat(), to = _to.getMat(); |
||||
int count = from.checkVector(3); |
||||
|
||||
CV_Assert( count >= 0 && to.checkVector(3) == count ); |
||||
|
||||
Mat dFrom, dTo; |
||||
from.convertTo(dFrom, CV_32F); |
||||
to.convertTo(dTo, CV_32F); |
||||
dFrom = dFrom.reshape(3, count); |
||||
dTo = dTo.reshape(3, count); |
||||
|
||||
const double epsilon = DBL_EPSILON; |
||||
param1 = param1 <= 0 ? 3 : param1; |
||||
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2; |
||||
|
||||
return createRANSACPointSetRegistrator(new Affine3DEstimatorCallback, 4, param1, param2)->run(dFrom, dTo, _out, _inliers); |
||||
} |
||||
|
Loading…
Reference in new issue