Merge pull request #24898 from Abdurrahheem:ash/yolo_ducumentation

Documentation for Yolo usage in Opencv #24898

This PR introduces documentation for the usage of yolo detection model family in open CV. This is not to be merge before #24691, as the sample will need to be changed. 


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
pull/24945/head
Abduragim Shtanchaev 10 months ago committed by GitHub
parent 8e43c8f200
commit 372b36c1d3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 228
      doc/tutorials/dnn/dnn_yolo/dnn_yolo.markdown
  2. 370
      samples/dnn/yolo_detector.cpp

@ -9,46 +9,224 @@ YOLO DNNs {#tutorial_dnn_yolo}
| | |
| -: | :- |
| Original author | Alessandro de Oliveira Faria |
| Compatibility | OpenCV >= 3.3.1 |
| Extended by | Abduragim Shtanchaev |
| Compatibility | OpenCV >= 4.9.0 |
Running pre-trained YOLO model in OpenCV
----------------------------------------
Deploying pre-trained models is a common task in machine learning, particularly when working with
hardware that does not support certain frameworks like PyTorch. This guide provides a comprehensive
overview of exporting pre-trained YOLO family models from PyTorch and deploying them using OpenCV's
DNN framework. For demonstration purposes, we will focus on the [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/blob/main)
model, but the methodology applies to other supported models.
@note Currently, OpenCV supports the following YOLO models:
- [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/blob/main),
- [YoloNas](https://github.com/Deci-AI/super-gradients/tree/master),
- [YOLOv8](https://github.com/ultralytics/ultralytics/tree/main),
- [YOLOv7](https://github.com/WongKinYiu/yolov7/tree/main),
- [YOLOv6](https://github.com/meituan/YOLOv6/blob/main),
- [YOLOv5](https://github.com/ultralytics/yolov5),
- [YOLOv4](https://github.com/Tianxiaomo/pytorch-YOLOv4).
This support includes pre and post-processing routines specific to these models. While other older
version of YOLO are also supported by OpenCV in Darknet format, they are out of the scope of this tutorial.
Assuming that we have successfully trained YOLOX model, the subsequent step involves exporting and
running this model with OpenCV. There are several critical considerations to address before
proceeding with this process. Let's delve into these aspects.
### YOLO's Pre-proccessing & Output
Understanding the nature of inputs and outputs associated with YOLO family detectors is pivotal.
These detectors, akin to most Deep Neural Networks (DNN), typically exhibit variation in input
sizes contingent upon the model's scale.
| Model Scale | Input Size |
|--------------|--------------|
| Small Models <sup>[1](https://github.com/Megvii-BaseDetection/YOLOX/tree/main#standard-models)</sup>| 416x416 |
| Midsize Models <sup>[2](https://github.com/Megvii-BaseDetection/YOLOX/tree/main#standard-models)</sup>| 640x640 |
| Large Models <sup>[3](https://github.com/meituan/YOLOv6/tree/main#benchmark)</sup>| 1280x1280 |
This table provides a quick reference to understand the different input dimensions commonly used in
various YOLO models inputs. These are standard input shapes. Make sure you use input size that you
trained model with, if it is differed from from the size mentioned in the table.
The next critical element in the process involves understanding the specifics of image pre-processing
for YOLO detectors. While the fundamental pre-processing approach remains consistent across the YOLO
family, there are subtle yet crucial differences that must be accounted for to avoid any degradation
in performance. Key among these are the `resize type` and the `padding value` applied post-resize.
For instance, the [YOLOX model](https://github.com/Megvii-BaseDetection/YOLOX/blob/ac58e0a5e68e57454b7b9ac822aced493b553c53/yolox/data/data_augment.py#L142)
utilizes a `LetterBox` resize method and a padding value of `114.0`. It is imperative to ensure that
these parameters, along with the normalization constants, are appropriately matched to the model being
exported.
Regarding the model's output, it typically takes the form of a tensor with dimensions [BxNxC+5] or
[BxNxC+4], where 'B' represents the batch size, 'N' denotes the number of anchors, and 'C' signifies
the number of classes (for instance, 80 classes if the model is trained on the COCO dataset).
The additional 5 in the former tensor structure corresponds to the objectness score (obj), confidence
score (conf), and the bounding box coordinates (cx, cy, w, h). Notably, the YOLOv8 model's output
is shaped as [BxNxC+4], where there is no explicit objectness score, and the object score is directly
inferred from the class score. For the YOLOX model, specifically, it is also necessary to incorporate
anchor points to rescale predictions back to the image domain. This step will be integrated into
the ONNX graph, a process that we will detail further in the subsequent sections.
### PyTorch Model Export
Now that we know know the parameters of the pre-precessing we can go on and export the model from
Pytorch to ONNX graph. Since in this tutorial we are using YOLOX as our sample model, lets use its
export for demonstration purposes (the process is identical for the rest of the YOLO detectors).
To exporting YOLOX we can just use [export script](https://github.com/Megvii-BaseDetection/YOLOX/blob/ac58e0a5e68e57454b7b9ac822aced493b553c53/tools/export_onnx.py). Particularly we need following commands:
Introduction
------------
In this text you will learn how to use opencv_dnn module using yolo_object_detection (Sample of using OpenCV dnn module in real time with device capture, video and image).
@code{.bash}
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
cd YOLOX
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth # download pre-trained weights
python3 -m tools.export_onnx --output-name yolox_s.onnx -n yolox-s -c yolox_s.pth --decode_in_inference
@endcode
We will demonstrate results of this example on the following picture.
![Picture example](images/yolo.jpg)
**NOTE:** Here `--decode_in_inference` is to include anchor box creation in the ONNX graph itself.
It sets [this value](https://github.com/Megvii-BaseDetection/YOLOX/blob/ac58e0a5e68e57454b7b9ac822aced493b553c53/yolox/models/yolo_head.py#L210C16-L210C39)
to `True`, which subsequently includes anchor generation function.
Below we demonstrated the minimal version of the export script (which could be used for models other
than YOLOX) in case it is needed. However, usually each YOLO repository has predefined export script.
@code{.py}
import onnx
import torch
from onnxsim import simplify
# load the model state dict
ckpt = torch.load(ckpt_file, map_location="cpu")
model.load_state_dict(ckpt)
# prepare dummy input
dummy_input = torch.randn(args.batch_size, 3, exp.test_size[0], exp.test_size[1])
#export the model
torch.onnx._export(
model,
dummy_input,
"yolox.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={"input": {0: 'batch'},
"output": {0: 'batch'}})
# use onnx-simplifier to reduce reduent model.
onnx_model = onnx.load(args.output_name)
model_simp, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simp, args.output_name)
@endcode
Examples
--------
### Running Yolo ONNX detector with OpenCV Sample
Once we have our ONNX graph of the model, we just simply can run with OpenCV's sample. To that we need to make sure:
1. OpenCV is build with -DBUILD_EXAMLES=ON flag.
2. Navigate to the OpenCV's `build` directory
3. Run the following command:
@code{.cpp}
./bin/example_dnn_yolo_detector --input=<path_to_your_input_file> \
--classes=<path_to_class_names_file> \
--thr=<confidence_threshold> \
--nms=<non_maximum_suppression_threshold> \
--mean=<mean_normalization_value> \
--scale=<scale_factor> \
--yolo=<yolo_model_version> \
--padvalue=<padding_value> \
--paddingmode=<padding_mode> \
--backend=<computation_backend> \
--target=<target_computation_device>
@endcode
VIDEO DEMO:
@youtube{NHtRlndE2cg}
Source Code
-----------
- --input: File path to your input image or video. If omitted, it will capture frames from a camera.
- --classes: File path to a text file containing class names for object detection.
- --thr: Confidence threshold for detection (e.g., 0.5).
- --nms: Non-maximum suppression threshold (e.g., 0.4).
- --mean: Mean normalization value (e.g., 0.0 for no mean normalization).
- --scale: Scale factor for input normalization (e.g., 1.0).
- --yolo: YOLO model version (e.g., YOLOv3, YOLOv4, etc.).
- --padvalue: Padding value used in pre-processing (e.g., 114.0).
- --paddingmode: Method for handling image resizing and padding. Options: 0 (resize without extra processing), 1 (crop after resize), 2 (resize with aspect ratio preservation).
- --backend: Selection of computation backend (0 for automatic, 1 for Halide, 2 for OpenVINO, etc.).
- --target: Selection of target computation device (0 for CPU, 1 for OpenCL, etc.).
- --device: Camera device number (0 for default camera). If `--input` is not provided camera with index 0 will used by default.
Here `mean`, `scale`, `padvalue`, `paddingmode` should exactly match those that we discussed
in pre-processing section in order for the model to match result in PyTorch
To demonstrate how to run OpenCV YOLO samples without your own pretrained model, follow these instructions:
1. Ensure Python is installed on your platform.
2. Confirm that OpenCV is built with the `-DBUILD_EXAMPLES=ON` flag.
Run the YOLOX detector(with default values):
@code{.sh}
git clone https://github.com/opencv/opencv_extra.git
cd opencv_extra/testdata/dnn
python download_models.py yolox_s_inf_decoder
cd ..
export OPENCV_TEST_DATA_PATH=$(pwd)
cd <build directory of OpenCV>
./bin/example_dnn_yolo_detector
@endcode
Use a universal sample for object detection models written
[in C++](https://github.com/opencv/opencv/blob/4.x/samples/dnn/object_detection.cpp) and
[in Python](https://github.com/opencv/opencv/blob/4.x/samples/dnn/object_detection.py) languages
This will execute the YOLOX detector with your camera. For YOLOv8 (for instance), follow these additional steps:
Usage examples
--------------
@code{.sh}
cd opencv_extra/testdata/dnn
python download_models.py yolov8
cd ..
export OPENCV_TEST_DATA_PATH=$(pwd)
cd <build directory of OpenCV>
Execute in webcam:
./bin/example_dnn_yolo_detector --model=onnx/models/yolov8n.onnx --yolo=yolov8 --mean=0.0 --scale=0.003921568627 --paddingmode=2 --padvalue=144.0 --thr=0.5 --nms=0.4 --rgb=0
@endcode
@code{.bash}
$ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --rgb
### Building a Custom Pipeline
@endcode
Sometimes there is a need to make some custom adjustments in the inference pipeline. With OpenCV DNN
module this is also quite easy to achieve. Below we will outline the sample implementation details:
Execute with image or video file:
- Import required libraries
@code{.bash}
@snippet samples/dnn/yolo_detector.cpp includes
$ example_dnn_object_detection --config=[PATH-TO-DARKNET]/cfg/yolo.cfg --model=[PATH-TO-DARKNET]/yolo.weights --classes=object_detection_classes_pascal_voc.txt --width=416 --height=416 --scale=0.00392 --input=[PATH-TO-IMAGE-OR-VIDEO-FILE] --rgb
- Read ONNX graph and create neural network model:
@endcode
@snippet samples/dnn/yolo_detector.cpp read_net
- Read image and pre-process it:
@snippet samples/dnn/yolo_detector.cpp preprocess_params
@snippet samples/dnn/yolo_detector.cpp preprocess_call
@snippet samples/dnn/yolo_detector.cpp preprocess_call_func
- Inference:
@snippet samples/dnn/yolo_detector.cpp forward_buffers
@snippet samples/dnn/yolo_detector.cpp forward
- Post-Processing
All post-processing steps are implemented in function `yoloPostProcess`. Please pay attention,
that NMS step is not included into onnx graph. Sample uses OpenCV function for it.
@snippet samples/dnn/yolo_detector.cpp postprocess
- Draw predicted boxes
Questions and suggestions email to: Alessandro de Oliveira Faria cabelo@opensuse.org or OpenCV Team.
@snippet samples/dnn/yolo_detector.cpp draw_boxes

@ -0,0 +1,370 @@
/**
* @file yolo_detector.cpp
* @brief Yolo Object Detection Sample
* @author OpenCV team
*/
//![includes]
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <fstream>
#include <sstream>
#include "iostream"
#include "common.hpp"
#include <opencv2/highgui.hpp>
//![includes]
using namespace cv;
using namespace cv::dnn;
void getClasses(std::string classesFile);
void drawPrediction(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
void yoloPostProcessing(
std::vector<Mat>& outs,
std::vector<int>& keep_classIds,
std::vector<float>& keep_confidences,
std::vector<Rect2d>& keep_boxes,
float conf_threshold,
float iou_threshold,
const std::string& test_name
);
std::vector<std::string> classes;
std::string keys =
"{ help h | | Print help message. }"
"{ device | 0 | camera device number. }"
"{ model | onnx/models/yolox_s_inf_decoder.onnx | Default model. }"
"{ yolo | yolox | yolo model version. }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ classes | | Optional path to a text file with names of classes to label detected objects. }"
"{ thr | .5 | Confidence threshold. }"
"{ nms | .4 | Non-maximum suppression threshold. }"
"{ mean | 0.0 | Normalization constant. }"
"{ scale | 1.0 | Preprocess input image by multiplying on a scale factor. }"
"{ width | 640 | Preprocess input image by resizing to a specific width. }"
"{ height | 640 | Preprocess input image by resizing to a specific height. }"
"{ rgb | 1 | Indicate that model works with RGB input images instead BGR ones. }"
"{ padvalue | 114.0 | padding value. }"
"{ paddingmode | 2 | Choose one of computation backends: "
"0: resize to required input size without extra processing, "
"1: Image will be cropped after resize, "
"2: Resize image to the desired size while preserving the aspect ratio of original image }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation, "
"4: VKCOM, "
"5: CUDA }"
"{ target | 0 | Choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU, "
"4: Vulkan, "
"6: CUDA, "
"7: CUDA fp16 (half-float preprocess) }"
"{ async | 0 | Number of asynchronous forwards at the same time. "
"Choose 0 for synchronous mode }";
void getClasses(std::string classesFile)
{
std::ifstream ifs(classesFile.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " + classesFile + " not found");
std::string line;
while (std::getline(ifs, line))
classes.push_back(line);
}
void drawPrediction(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
std::string label = format("%.2f", conf);
if (!classes.empty())
{
CV_Assert(classId < (int)classes.size());
label = classes[classId] + ": " + label;
}
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
rectangle(frame, Point(left, top - labelSize.height),
Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
}
void yoloPostProcessing(
std::vector<Mat>& outs,
std::vector<int>& keep_classIds,
std::vector<float>& keep_confidences,
std::vector<Rect2d>& keep_boxes,
float conf_threshold,
float iou_threshold,
const std::string& test_name)
{
// Retrieve
std::vector<int> classIds;
std::vector<float> confidences;
std::vector<Rect2d> boxes;
if (test_name == "yolov8")
{
cv::transposeND(outs[0], {0, 2, 1}, outs[0]);
}
if (test_name == "yolonas")
{
// outs contains 2 elemets of shape [1, 8400, 80] and [1, 8400, 4]. Concat them to get [1, 8400, 84]
Mat concat_out;
// squeeze the first dimension
outs[0] = outs[0].reshape(1, outs[0].size[1]);
outs[1] = outs[1].reshape(1, outs[1].size[1]);
cv::hconcat(outs[1], outs[0], concat_out);
outs[0] = concat_out;
// remove the second element
outs.pop_back();
// unsqueeze the first dimension
outs[0] = outs[0].reshape(0, std::vector<int>{1, 8400, 84});
}
for (auto preds : outs)
{
preds = preds.reshape(1, preds.size[1]); // [1, 8400, 85] -> [8400, 85]
for (int i = 0; i < preds.rows; ++i)
{
// filter out non object
float obj_conf = (test_name == "yolov8" || test_name == "yolonas") ? 1.0f : preds.at<float>(i, 4) ;
if (obj_conf < conf_threshold)
continue;
Mat scores = preds.row(i).colRange((test_name == "yolov8" || test_name == "yolonas") ? 4 : 5, preds.cols);
double conf;
Point maxLoc;
minMaxLoc(scores, 0, &conf, 0, &maxLoc);
conf = (test_name == "yolov8" || test_name == "yolonas") ? conf : conf * obj_conf;
if (conf < conf_threshold)
continue;
// get bbox coords
float* det = preds.ptr<float>(i);
double cx = det[0];
double cy = det[1];
double w = det[2];
double h = det[3];
// [x1, y1, x2, y2]
if (test_name == "yolonas"){
boxes.push_back(Rect2d(cx, cy, w, h));
} else {
boxes.push_back(Rect2d(cx - 0.5 * w, cy - 0.5 * h,
cx + 0.5 * w, cy + 0.5 * h));
}
classIds.push_back(maxLoc.x);
confidences.push_back(static_cast<float>(conf));
}
}
// NMS
std::vector<int> keep_idx;
NMSBoxes(boxes, confidences, conf_threshold, iou_threshold, keep_idx);
for (auto i : keep_idx)
{
keep_classIds.push_back(classIds[i]);
keep_confidences.push_back(confidences[i]);
keep_boxes.push_back(boxes[i]);
}
}
/**
* @function main
* @brief Main function
*/
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
parser.about("Use this script to run object detection deep learning networks using OpenCV.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
CV_Assert(parser.has("model"));
CV_Assert(parser.has("yolo"));
// if model is default, use findFile to get the full path otherwise use the given path
std::string weightPath = findFile(parser.get<String>("model"));
std::string yolo_model = parser.get<String>("yolo");
float confThreshold = parser.get<float>("thr");
float nmsThreshold = parser.get<float>("nms");
//![preprocess_params]
float paddingValue = parser.get<float>("padvalue");
bool swapRB = parser.get<bool>("rgb");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
Scalar scale = parser.get<float>("scale");
Scalar mean = parser.get<Scalar>("mean");
ImagePaddingMode paddingMode = static_cast<ImagePaddingMode>(parser.get<int>("paddingmode"));
//![preprocess_params]
// check if yolo model is valid
if (yolo_model != "yolov5" && yolo_model != "yolov6"
&& yolo_model != "yolov7" && yolo_model != "yolov8"
&& yolo_model != "yolox" && yolo_model != "yolonas")
CV_Error(Error::StsError, "Invalid yolo model: " + yolo_model);
// get classes
if (parser.has("classes"))
{
getClasses(findFile(parser.get<String>("classes")));
}
// load model
//![read_net]
Net net = readNet(weightPath);
int backend = parser.get<int>("backend");
net.setPreferableBackend(backend);
net.setPreferableTarget(parser.get<int>("target"));
//![read_net]
VideoCapture cap;
Mat img;
bool isImage = false;
bool isCamera = false;
// Check if input is given
if (parser.has("input"))
{
String input = parser.get<String>("input");
// Check if the input is an image
if (input.find(".jpg") != String::npos || input.find(".png") != String::npos)
{
img = imread(findFile(input));
if (img.empty())
{
CV_Error(Error::StsError, "Cannot read image file: " + input);
}
isImage = true;
}
else
{
cap.open(input);
if (!cap.isOpened())
{
CV_Error(Error::StsError, "Cannot open video " + input);
}
isCamera = true;
}
}
else
{
int cameraIndex = parser.get<int>("device");
cap.open(cameraIndex);
if (!cap.isOpened())
{
CV_Error(Error::StsError, cv::format("Cannot open camera #%d", cameraIndex));
}
isCamera = true;
}
// image pre-processing
//![preprocess_call]
Size size(inpWidth, inpHeight);
Image2BlobParams imgParams(
scale,
size,
mean,
swapRB,
CV_32F,
DNN_LAYOUT_NCHW,
paddingMode,
paddingValue);
// rescale boxes back to original image
Image2BlobParams paramNet;
paramNet.scalefactor = scale;
paramNet.size = size;
paramNet.mean = mean;
paramNet.swapRB = swapRB;
paramNet.paddingmode = paddingMode;
//![preprocess_call]
//![forward_buffers]
std::vector<Mat> outs;
std::vector<int> keep_classIds;
std::vector<float> keep_confidences;
std::vector<Rect2d> keep_boxes;
std::vector<Rect> boxes;
//![forward_buffers]
Mat inp;
while (waitKey(1) < 0)
{
if (isCamera)
cap >> img;
if (img.empty())
{
std::cout << "Empty frame" << std::endl;
waitKey();
break;
}
//![preprocess_call_func]
inp = blobFromImageWithParams(img, imgParams);
//![preprocess_call_func]
//![forward]
net.setInput(inp);
net.forward(outs, net.getUnconnectedOutLayersNames());
//![forward]
//![postprocess]
yoloPostProcessing(
outs, keep_classIds, keep_confidences, keep_boxes,
confThreshold, nmsThreshold,
yolo_model);
//![postprocess]
// covert Rect2d to Rect
//![draw_boxes]
for (auto box : keep_boxes)
{
boxes.push_back(Rect(cvFloor(box.x), cvFloor(box.y), cvFloor(box.width - box.x), cvFloor(box.height - box.y)));
}
paramNet.blobRectsToImageRects(boxes, boxes, img.size());
for (size_t idx = 0; idx < boxes.size(); ++idx)
{
Rect box = boxes[idx];
drawPrediction(keep_classIds[idx], keep_confidences[idx], box.x, box.y,
box.width + box.x, box.height + box.y, img);
}
const std::string kWinName = "Yolo Object Detector";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, img);
//![draw_boxes]
outs.clear();
keep_classIds.clear();
keep_confidences.clear();
keep_boxes.clear();
boxes.clear();
if (isImage)
{
waitKey();
break;
}
}
}
Loading…
Cancel
Save