|
|
|
@ -270,7 +270,7 @@ void DescriptorMatcher::knnMatch( const Mat& queryDescriptors, vector<vector<DMa |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
CV_Assert( knn > 0 ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkMasks( masks, queryDescriptors.rows ); |
|
|
|
|
|
|
|
|
|
train(); |
|
|
|
@ -285,7 +285,7 @@ void DescriptorMatcher::radiusMatch( const Mat& queryDescriptors, vector<vector< |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
CV_Assert( maxDistance > std::numeric_limits<float>::epsilon() ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkMasks( masks, queryDescriptors.rows ); |
|
|
|
|
|
|
|
|
|
train(); |
|
|
|
@ -315,9 +315,9 @@ bool DescriptorMatcher::isMaskedOut( const vector<Mat>& masks, int queryIdx ) |
|
|
|
|
return !masks.empty() && outCount == masks.size() ; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BFMatcher::BFMatcher( int _normType, bool _crossCheck ) |
|
|
|
|
{ |
|
|
|
|
normType = _normType; |
|
|
|
@ -342,24 +342,24 @@ void BFMatcher::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> |
|
|
|
|
{ |
|
|
|
|
const int IMGIDX_SHIFT = 18; |
|
|
|
|
const int IMGIDX_ONE = (1 << IMGIDX_SHIFT); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if( queryDescriptors.empty() || trainDescCollection.empty() ) |
|
|
|
|
{ |
|
|
|
|
matches.clear(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
CV_Assert( queryDescriptors.type() == trainDescCollection[0].type() ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
matches.reserve(queryDescriptors.rows); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mat dist, nidx; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int iIdx, imgCount = (int)trainDescCollection.size(), update = 0; |
|
|
|
|
int dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 || |
|
|
|
|
(normType == NORM_L1 && queryDescriptors.type() == CV_8U) ? CV_32S : CV_32F; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_Assert( (int64)imgCount*IMGIDX_ONE < INT_MAX ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( iIdx = 0; iIdx < imgCount; iIdx++ ) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( trainDescCollection[iIdx].rows < IMGIDX_ONE ); |
|
|
|
@ -367,23 +367,23 @@ void BFMatcher::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> |
|
|
|
|
normType, knn, masks.empty() ? Mat() : masks[iIdx], update, crossCheck); |
|
|
|
|
update += IMGIDX_ONE; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if( dtype == CV_32S ) |
|
|
|
|
{ |
|
|
|
|
Mat temp; |
|
|
|
|
dist.convertTo(temp, CV_32F); |
|
|
|
|
dist = temp; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
|
|
|
{ |
|
|
|
|
const float* distptr = dist.ptr<float>(qIdx); |
|
|
|
|
const int* nidxptr = nidx.ptr<int>(qIdx); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
matches.push_back( vector<DMatch>() ); |
|
|
|
|
vector<DMatch>& mq = matches.back(); |
|
|
|
|
mq.reserve(knn); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( int k = 0; k < nidx.cols; k++ ) |
|
|
|
|
{ |
|
|
|
|
if( nidxptr[k] < 0 ) |
|
|
|
@ -391,13 +391,13 @@ void BFMatcher::knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> |
|
|
|
|
mq.push_back( DMatch(qIdx, nidxptr[k] & (IMGIDX_ONE - 1), |
|
|
|
|
nidxptr[k] >> IMGIDX_SHIFT, distptr[k]) ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if( mq.empty() && compactResult ) |
|
|
|
|
matches.pop_back(); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void BFMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, |
|
|
|
|
float maxDistance, const vector<Mat>& masks, bool compactResult ) |
|
|
|
|
{ |
|
|
|
@ -407,14 +407,14 @@ void BFMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMat |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
CV_Assert( queryDescriptors.type() == trainDescCollection[0].type() ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
matches.resize(queryDescriptors.rows); |
|
|
|
|
Mat dist, distf; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int iIdx, imgCount = (int)trainDescCollection.size(); |
|
|
|
|
int dtype = normType == NORM_HAMMING || |
|
|
|
|
(normType == NORM_L1 && queryDescriptors.type() == CV_8U) ? CV_32S : CV_32F; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( iIdx = 0; iIdx < imgCount; iIdx++ ) |
|
|
|
|
{ |
|
|
|
|
batchDistance(queryDescriptors, trainDescCollection[iIdx], dist, dtype, noArray(), |
|
|
|
@ -423,36 +423,36 @@ void BFMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMat |
|
|
|
|
dist.convertTo(distf, CV_32F); |
|
|
|
|
else |
|
|
|
|
distf = dist; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
|
|
|
{ |
|
|
|
|
const float* distptr = dist.ptr<float>(qIdx); |
|
|
|
|
|
|
|
|
|
const float* distptr = distf.ptr<float>(qIdx); |
|
|
|
|
|
|
|
|
|
vector<DMatch>& mq = matches[qIdx]; |
|
|
|
|
for( int k = 0; k < dist.cols; k++ ) |
|
|
|
|
for( int k = 0; k < distf.cols; k++ ) |
|
|
|
|
{ |
|
|
|
|
if( distptr[k] <= maxDistance ) |
|
|
|
|
mq.push_back( DMatch(qIdx, k, iIdx, distptr[k]) ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int qIdx0 = 0; |
|
|
|
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
|
|
|
{ |
|
|
|
|
if( matches[qIdx].empty() && compactResult ) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if( qIdx0 < qIdx ) |
|
|
|
|
std::swap(matches[qIdx], matches[qIdx0]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::sort( matches[qIdx0].begin(), matches[qIdx0].end() ); |
|
|
|
|
qIdx0++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Factory function for DescriptorMatcher creating |
|
|
|
|
*/ |
|
|
|
@ -1025,7 +1025,7 @@ void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector<KeyPoint> |
|
|
|
|
|
|
|
|
|
KeyPointsFilter::runByImageBorder( queryKeypoints, queryImage.size(), 0 ); |
|
|
|
|
KeyPointsFilter::runByKeypointSize( queryKeypoints, std::numeric_limits<float>::epsilon() ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train(); |
|
|
|
|
knnMatchImpl( queryImage, queryKeypoints, matches, knn, masks, compactResult ); |
|
|
|
|
} |
|
|
|
@ -1041,7 +1041,7 @@ void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector<KeyPoi |
|
|
|
|
|
|
|
|
|
KeyPointsFilter::runByImageBorder( queryKeypoints, queryImage.size(), 0 ); |
|
|
|
|
KeyPointsFilter::runByKeypointSize( queryKeypoints, std::numeric_limits<float>::epsilon() ); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train(); |
|
|
|
|
radiusMatchImpl( queryImage, queryKeypoints, matches, maxDistance, masks, compactResult ); |
|
|
|
|
} |
|
|
|
@ -1065,7 +1065,7 @@ Ptr<GenericDescriptorMatcher> GenericDescriptorMatcher::create( const string& ge |
|
|
|
|
{ |
|
|
|
|
Ptr<GenericDescriptorMatcher> descriptorMatcher = |
|
|
|
|
Algorithm::create<GenericDescriptorMatcher>("DescriptorMatcher." + genericDescritptorMatcherType); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if( !paramsFilename.empty() && !descriptorMatcher.empty() ) |
|
|
|
|
{ |
|
|
|
|
FileStorage fs = FileStorage( paramsFilename, FileStorage::READ ); |
|
|
|
|