added gpu BM optical flow implementation

pull/485/head
Vladislav Vinogradov 12 years ago
parent fe2e89df1b
commit 36e42084f0
  1. 18
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 117
      modules/gpu/perf/perf_video.cpp
  3. 414
      modules/gpu/src/cuda/optflowbm.cu
  4. 243
      modules/gpu/src/optflowbm.cpp
  5. 175
      modules/gpu/test/test_optflow.cpp

@ -2074,6 +2074,24 @@ private:
};
//! Calculates optical flow for 2 images using block matching algorithm */
CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
Size block_size, Size shift_size, Size max_range, bool use_previous,
GpuMat& velx, GpuMat& vely, GpuMat& buf,
Stream& stream = Stream::Null());
class CV_EXPORTS FastOpticalFlowBM
{
public:
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());
private:
GpuMat buffer;
GpuMat extended_I0;
GpuMat extended_I1;
};
//! Interpolate frames (images) using provided optical flow (displacement field).
//! frame0 - frame 0 (32-bit floating point images, single channel)
//! frame1 - frame 1 (the same type and size)

@ -444,6 +444,123 @@ PERF_TEST_P(ImagePair, Video_OpticalFlowDual_TVL1,
}
}
//////////////////////////////////////////////////////
// OpticalFlowBM
void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr,
cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious,
cv::Mat& velx, cv::Mat& vely)
{
cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height);
velx.create(sz, CV_32FC1);
vely.create(sz, CV_32FC1);
CvMat cvprev = prev;
CvMat cvcurr = curr;
CvMat cvvelx = velx;
CvMat cvvely = vely;
cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
}
PERF_TEST_P(ImagePair, Video_OpticalFlowBM,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
declare.time(400);
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Size block_size(16, 16);
cv::Size shift_size(1, 1);
cv::Size max_range(16, 16);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_frame0(frame0);
cv::gpu::GpuMat d_frame1(frame1);
cv::gpu::GpuMat d_velx, d_vely, buf;
cv::gpu::calcOpticalFlowBM(d_frame0, d_frame1, block_size, shift_size, max_range, false, d_velx, d_vely, buf);
TEST_CYCLE()
{
cv::gpu::calcOpticalFlowBM(d_frame0, d_frame1, block_size, shift_size, max_range, false, d_velx, d_vely, buf);
}
GPU_SANITY_CHECK(d_velx);
GPU_SANITY_CHECK(d_vely);
}
else
{
cv::Mat velx, vely;
calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
TEST_CYCLE()
{
calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
}
CPU_SANITY_CHECK(velx);
CPU_SANITY_CHECK(vely);
}
}
PERF_TEST_P(ImagePair, Video_FastOpticalFlowBM,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
declare.time(400);
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Size block_size(16, 16);
cv::Size shift_size(1, 1);
cv::Size max_range(16, 16);
if (PERF_RUN_GPU())
{
cv::gpu::GpuMat d_frame0(frame0);
cv::gpu::GpuMat d_frame1(frame1);
cv::gpu::GpuMat d_velx, d_vely;
cv::gpu::FastOpticalFlowBM fastBM;
fastBM(d_frame0, d_frame1, d_velx, d_vely, max_range.width, block_size.width);
TEST_CYCLE()
{
fastBM(d_frame0, d_frame1, d_velx, d_vely, max_range.width, block_size.width);
}
GPU_SANITY_CHECK(d_velx);
GPU_SANITY_CHECK(d_vely);
}
else
{
cv::Mat velx, vely;
calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
TEST_CYCLE()
{
calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
}
CPU_SANITY_CHECK(velx);
CPU_SANITY_CHECK(vely);
}
}
//////////////////////////////////////////////////////
// FGDStatModel

@ -0,0 +1,414 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/reduce.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace optflowbm
{
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_prev(false, cudaFilterModePoint, cudaAddressModeClamp);
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_curr(false, cudaFilterModePoint, cudaAddressModeClamp);
__device__ int cmpBlocks(int X1, int Y1, int X2, int Y2, int2 blockSize)
{
int s = 0;
for (int y = 0; y < blockSize.y; ++y)
{
for (int x = 0; x < blockSize.x; ++x)
s += ::abs(tex2D(tex_prev, X1 + x, Y1 + y) - tex2D(tex_curr, X2 + x, Y2 + y));
}
return s;
}
__global__ void calcOptFlowBM(PtrStepSzf velx, PtrStepf vely, const int2 blockSize, const int2 shiftSize, const bool usePrevious,
const int maxX, const int maxY, const int acceptLevel, const int escapeLevel,
const short2* ss, const int ssCount)
{
const int j = blockIdx.x * blockDim.x + threadIdx.x;
const int i = blockIdx.y * blockDim.y + threadIdx.y;
if (i >= velx.rows || j >= velx.cols)
return;
const int X1 = j * shiftSize.x;
const int Y1 = i * shiftSize.y;
const int offX = usePrevious ? __float2int_rn(velx(i, j)) : 0;
const int offY = usePrevious ? __float2int_rn(vely(i, j)) : 0;
int X2 = X1 + offX;
int Y2 = Y1 + offY;
int dist = numeric_limits<int>::max();
if (0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY)
dist = cmpBlocks(X1, Y1, X2, Y2, blockSize);
int countMin = 1;
int sumx = offX;
int sumy = offY;
if (dist > acceptLevel)
{
// do brute-force search
for (int k = 0; k < ssCount; ++k)
{
const short2 ssVal = ss[k];
const int dx = offX + ssVal.x;
const int dy = offY + ssVal.y;
X2 = X1 + dx;
Y2 = Y1 + dy;
if (0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY)
{
const int tmpDist = cmpBlocks(X1, Y1, X2, Y2, blockSize);
if (tmpDist < acceptLevel)
{
sumx = dx;
sumy = dy;
countMin = 1;
break;
}
if (tmpDist < dist)
{
dist = tmpDist;
sumx = dx;
sumy = dy;
countMin = 1;
}
else if (tmpDist == dist)
{
sumx += dx;
sumy += dy;
countMin++;
}
}
}
if (dist > escapeLevel)
{
sumx = offX;
sumy = offY;
countMin = 1;
}
}
velx(i, j) = static_cast<float>(sumx) / countMin;
vely(i, j) = static_cast<float>(sumy) / countMin;
}
void calc(PtrStepSzb prev, PtrStepSzb curr, PtrStepSzf velx, PtrStepSzf vely, int2 blockSize, int2 shiftSize, bool usePrevious,
int maxX, int maxY, int acceptLevel, int escapeLevel, const short2* ss, int ssCount, cudaStream_t stream)
{
bindTexture(&tex_prev, prev);
bindTexture(&tex_curr, curr);
const dim3 block(32, 8);
const dim3 grid(divUp(velx.cols, block.x), divUp(vely.rows, block.y));
calcOptFlowBM<<<grid, block, 0, stream>>>(velx, vely, blockSize, shiftSize, usePrevious,
maxX, maxY, acceptLevel, escapeLevel, ss, ssCount);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
/////////////////////////////////////////////////////////
// Fast approximate version
namespace optflowbm_fast
{
enum
{
CTA_SIZE = 128,
TILE_COLS = 128,
TILE_ROWS = 32,
STRIDE = CTA_SIZE
};
template <typename T> __device__ __forceinline__ int calcDist(T a, T b)
{
return ::abs(a - b);
}
template <class T> struct FastOptFlowBM
{
int search_radius;
int block_radius;
int search_window;
int block_window;
PtrStepSz<T> I0;
PtrStep<T> I1;
mutable PtrStepi buffer;
FastOptFlowBM(int search_window_, int block_window_,
PtrStepSz<T> I0_, PtrStepSz<T> I1_,
PtrStepi buffer_) :
search_radius(search_window_ / 2), block_radius(block_window_ / 2),
search_window(search_window_), block_window(block_window_),
I0(I0_), I1(I1_),
buffer(buffer_)
{
}
__device__ __forceinline__ void initSums_BruteForce(int i, int j, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
{
for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
dist_sums[index] = 0;
for (int tx = 0; tx < block_window; ++tx)
col_sums(tx, index) = 0;
int y = index / search_window;
int x = index - y * search_window;
int ay = i;
int ax = j;
int by = i + y - search_radius;
int bx = j + x - search_radius;
for (int tx = -block_radius; tx <= block_radius; ++tx)
{
int col_sum = 0;
for (int ty = -block_radius; ty <= block_radius; ++ty)
{
int dist = calcDist(I0(ay + ty, ax + tx), I1(by + ty, bx + tx));
dist_sums[index] += dist;
col_sum += dist;
}
col_sums(tx + block_radius, index) = col_sum;
}
up_col_sums(j, index) = col_sums(block_window - 1, index);
}
}
__device__ __forceinline__ void shiftRight_FirstRow(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
{
for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
int y = index / search_window;
int x = index - y * search_window;
int ay = i;
int ax = j + block_radius;
int by = i + y - search_radius;
int bx = j + x - search_radius + block_radius;
int col_sum = 0;
for (int ty = -block_radius; ty <= block_radius; ++ty)
col_sum += calcDist(I0(ay + ty, ax), I1(by + ty, bx));
dist_sums[index] += col_sum - col_sums(first, index);
col_sums(first, index) = col_sum;
up_col_sums(j, index) = col_sum;
}
}
__device__ __forceinline__ void shiftRight_UpSums(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
{
int ay = i;
int ax = j + block_radius;
T a_up = I0(ay - block_radius - 1, ax);
T a_down = I0(ay + block_radius, ax);
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
int y = index / search_window;
int x = index - y * search_window;
int by = i + y - search_radius;
int bx = j + x - search_radius + block_radius;
T b_up = I1(by - block_radius - 1, bx);
T b_down = I1(by + block_radius, bx);
int col_sum = up_col_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up);
dist_sums[index] += col_sum - col_sums(first, index);
col_sums(first, index) = col_sum;
up_col_sums(j, index) = col_sum;
}
}
__device__ __forceinline__ void convolve_window(int i, int j, const int* dist_sums, float& velx, float& vely) const
{
int bestDist = numeric_limits<int>::max();
int bestInd = -1;
for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
{
int curDist = dist_sums[index];
if (curDist < bestDist)
{
bestDist = curDist;
bestInd = index;
}
}
__shared__ int cta_dist_buffer[CTA_SIZE];
__shared__ int cta_ind_buffer[CTA_SIZE];
reduceKeyVal<CTA_SIZE>(cta_dist_buffer, bestDist, cta_ind_buffer, bestInd, threadIdx.x, less<int>());
if (threadIdx.x == 0)
{
int y = bestInd / search_window;
int x = bestInd - y * search_window;
velx = x - search_radius;
vely = y - search_radius;
}
}
__device__ __forceinline__ void operator()(PtrStepf velx, PtrStepf vely) const
{
int tbx = blockIdx.x * TILE_COLS;
int tby = blockIdx.y * TILE_ROWS;
int tex = ::min(tbx + TILE_COLS, I0.cols);
int tey = ::min(tby + TILE_ROWS, I0.rows);
PtrStepi col_sums;
col_sums.data = buffer.ptr(I0.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window;
col_sums.step = buffer.step;
PtrStepi up_col_sums;
up_col_sums.data = buffer.data + blockIdx.y * search_window * search_window;
up_col_sums.step = buffer.step;
extern __shared__ int dist_sums[]; //search_window * search_window
int first = 0;
for (int i = tby; i < tey; ++i)
{
for (int j = tbx; j < tex; ++j)
{
__syncthreads();
if (j == tbx)
{
initSums_BruteForce(i, j, dist_sums, col_sums, up_col_sums);
first = 0;
}
else
{
if (i == tby)
shiftRight_FirstRow(i, j, first, dist_sums, col_sums, up_col_sums);
else
shiftRight_UpSums(i, j, first, dist_sums, col_sums, up_col_sums);
first = (first + 1) % block_window;
}
__syncthreads();
convolve_window(i, j, dist_sums, velx(i, j), vely(i, j));
}
}
}
};
template<typename T> __global__ void optflowbm_fast_kernel(const FastOptFlowBM<T> fbm, PtrStepf velx, PtrStepf vely)
{
fbm(velx, vely);
}
void get_buffer_size(int src_cols, int src_rows, int search_window, int block_window, int& buffer_cols, int& buffer_rows)
{
dim3 grid(divUp(src_cols, TILE_COLS), divUp(src_rows, TILE_ROWS));
buffer_cols = search_window * search_window * grid.y;
buffer_rows = src_cols + block_window * grid.x;
}
template <typename T>
void calc(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream)
{
FastOptFlowBM<T> fbm(search_window, block_window, I0, I1, buffer);
dim3 block(CTA_SIZE, 1);
dim3 grid(divUp(I0.cols, TILE_COLS), divUp(I0.rows, TILE_ROWS));
size_t smem = search_window * search_window * sizeof(int);
optflowbm_fast_kernel<<<grid, block, smem, stream>>>(fbm, velx, vely);
cudaSafeCall ( cudaGetLastError () );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template void calc<uchar>(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream);
}
#endif // !defined CUDA_DISABLER

@ -0,0 +1,243 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
void cv::gpu::calcOpticalFlowBM(const GpuMat&, const GpuMat&, Size, Size, Size, bool, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::FastOpticalFlowBM::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, int, int, Stream&) { throw_nogpu(); }
#else // HAVE_CUDA
namespace optflowbm
{
void calc(PtrStepSzb prev, PtrStepSzb curr, PtrStepSzf velx, PtrStepSzf vely, int2 blockSize, int2 shiftSize, bool usePrevious,
int maxX, int maxY, int acceptLevel, int escapeLevel, const short2* ss, int ssCount, cudaStream_t stream);
}
void cv::gpu::calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr, Size blockSize, Size shiftSize, Size maxRange, bool usePrevious, GpuMat& velx, GpuMat& vely, GpuMat& buf, Stream& st)
{
CV_Assert( prev.type() == CV_8UC1 );
CV_Assert( curr.size() == prev.size() && curr.type() == prev.type() );
const Size velSize((prev.cols - blockSize.width + shiftSize.width) / shiftSize.width,
(prev.rows - blockSize.height + shiftSize.height) / shiftSize.height);
velx.create(velSize, CV_32FC1);
vely.create(velSize, CV_32FC1);
// scanning scheme coordinates
vector<short2> ss((2 * maxRange.width + 1) * (2 * maxRange.height + 1));
int ssCount = 0;
// Calculate scanning scheme
const int minCount = std::min(maxRange.width, maxRange.height);
// use spiral search pattern
//
// 9 10 11 12
// 8 1 2 13
// 7 * 3 14
// 6 5 4 15
//... 20 19 18 17
//
for (int i = 0; i < minCount; ++i)
{
// four cycles along sides
int x = -i - 1, y = x;
// upper side
for (int j = -i; j <= i + 1; ++j, ++ssCount)
{
ss[ssCount].x = ++x;
ss[ssCount].y = y;
}
// right side
for (int j = -i; j <= i + 1; ++j, ++ssCount)
{
ss[ssCount].x = x;
ss[ssCount].y = ++y;
}
// bottom side
for (int j = -i; j <= i + 1; ++j, ++ssCount)
{
ss[ssCount].x = --x;
ss[ssCount].y = y;
}
// left side
for (int j = -i; j <= i + 1; ++j, ++ssCount)
{
ss[ssCount].x = x;
ss[ssCount].y = --y;
}
}
// the rest part
if (maxRange.width < maxRange.height)
{
const int xleft = -minCount;
// cycle by neighbor rings
for (int i = minCount; i < maxRange.height; ++i)
{
// two cycles by x
int y = -(i + 1);
int x = xleft;
// upper side
for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x)
{
ss[ssCount].x = x;
ss[ssCount].y = y;
}
x = xleft;
y = -y;
// bottom side
for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x)
{
ss[ssCount].x = x;
ss[ssCount].y = y;
}
}
}
else if (maxRange.width > maxRange.height)
{
const int yupper = -minCount;
// cycle by neighbor rings
for (int i = minCount; i < maxRange.width; ++i)
{
// two cycles by y
int x = -(i + 1);
int y = yupper;
// left side
for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y)
{
ss[ssCount].x = x;
ss[ssCount].y = y;
}
y = yupper;
x = -x;
// right side
for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y)
{
ss[ssCount].x = x;
ss[ssCount].y = y;
}
}
}
const cudaStream_t stream = StreamAccessor::getStream(st);
ensureSizeIsEnough(1, ssCount, CV_16SC2, buf);
if (stream == 0)
cudaSafeCall( cudaMemcpy(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice) );
else
cudaSafeCall( cudaMemcpyAsync(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice, stream) );
const int maxX = prev.cols - blockSize.width;
const int maxY = prev.rows - blockSize.height;
const int SMALL_DIFF = 2;
const int BIG_DIFF = 128;
const int blSize = blockSize.area();
const int acceptLevel = blSize * SMALL_DIFF;
const int escapeLevel = blSize * BIG_DIFF;
optflowbm::calc(prev, curr, velx, vely,
make_int2(blockSize.width, blockSize.height), make_int2(shiftSize.width, shiftSize.height), usePrevious,
maxX, maxY, acceptLevel, escapeLevel, buf.ptr<short2>(), ssCount, stream);
}
namespace optflowbm_fast
{
void get_buffer_size(int src_cols, int src_rows, int search_window, int block_window, int& buffer_cols, int& buffer_rows);
template <typename T>
void calc(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream);
}
void cv::gpu::FastOpticalFlowBM::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window, int block_window, Stream& stream)
{
CV_Assert( I0.type() == CV_8UC1 );
CV_Assert( I1.size() == I0.size() && I1.type() == I0.type() );
int border_size = search_window / 2 + block_window / 2;
Size esize = I0.size() + Size(border_size, border_size) * 2;
ensureSizeIsEnough(esize, I0.type(), extended_I0);
ensureSizeIsEnough(esize, I0.type(), extended_I1);
copyMakeBorder(I0, extended_I0, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream);
copyMakeBorder(I1, extended_I1, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream);
GpuMat I0_hdr = extended_I0(Rect(Point2i(border_size, border_size), I0.size()));
GpuMat I1_hdr = extended_I1(Rect(Point2i(border_size, border_size), I0.size()));
int bcols, brows;
optflowbm_fast::get_buffer_size(I0.cols, I0.rows, search_window, block_window, bcols, brows);
ensureSizeIsEnough(brows, bcols, CV_32SC1, buffer);
flowx.create(I0.size(), CV_32FC1);
flowy.create(I0.size(), CV_32FC1);
optflowbm_fast::calc<uchar>(I0_hdr, I1_hdr, flowx, flowy, buffer, search_window, block_window, StreamAccessor::getStream(stream));
}
#endif // HAVE_CUDA

@ -445,4 +445,179 @@ INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
ALL_DEVICES,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////
// OpticalFlowBM
namespace
{
void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr,
cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious,
cv::Mat& velx, cv::Mat& vely)
{
cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height);
velx.create(sz, CV_32FC1);
vely.create(sz, CV_32FC1);
CvMat cvprev = prev;
CvMat cvcurr = curr;
CvMat cvvelx = velx;
CvMat cvvely = vely;
cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
}
}
struct OpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
{
};
GPU_TEST_P(OpticalFlowBM, Accuracy)
{
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Size block_size(16, 16);
cv::Size shift_size(1, 1);
cv::Size max_range(16, 16);
cv::gpu::GpuMat d_velx, d_vely, buf;
cv::gpu::calcOpticalFlowBM(loadMat(frame0), loadMat(frame1),
block_size, shift_size, max_range, false,
d_velx, d_vely, buf);
cv::Mat velx, vely;
calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, velx, vely);
EXPECT_MAT_NEAR(velx, d_velx, 0);
EXPECT_MAT_NEAR(vely, d_vely, 0);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowBM, ALL_DEVICES);
//////////////////////////////////////////////////////
// FastOpticalFlowBM
namespace
{
void FastOpticalFlowBM_gold(const cv::Mat_<uchar>& I0, const cv::Mat_<uchar>& I1, cv::Mat_<float>& velx, cv::Mat_<float>& vely, int search_window, int block_window)
{
velx.create(I0.size());
vely.create(I0.size());
int search_radius = search_window / 2;
int block_radius = block_window / 2;
for (int y = 0; y < I0.rows; ++y)
{
for (int x = 0; x < I0.cols; ++x)
{
int bestDist = std::numeric_limits<int>::max();
int bestDx = 0;
int bestDy = 0;
for (int dy = -search_radius; dy <= search_radius; ++dy)
{
for (int dx = -search_radius; dx <= search_radius; ++dx)
{
int dist = 0;
for (int by = -block_radius; by <= block_radius; ++by)
{
for (int bx = -block_radius; bx <= block_radius; ++bx)
{
int I0_val = I0(cv::borderInterpolate(y + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + bx, I0.cols, cv::BORDER_DEFAULT));
int I1_val = I1(cv::borderInterpolate(y + dy + by, I0.rows, cv::BORDER_DEFAULT), cv::borderInterpolate(x + dx + bx, I0.cols, cv::BORDER_DEFAULT));
dist += std::abs(I0_val - I1_val);
}
}
if (dist < bestDist)
{
bestDist = dist;
bestDx = dx;
bestDy = dy;
}
}
}
velx(y, x) = (float) bestDx;
vely(y, x) = (float) bestDy;
}
}
}
double calc_rmse(const cv::Mat_<float>& flow1, const cv::Mat_<float>& flow2)
{
double sum = 0.0;
for (int y = 0; y < flow1.rows; ++y)
{
for (int x = 0; x < flow1.cols; ++x)
{
double diff = flow1(y, x) - flow2(y, x);
sum += diff * diff;
}
}
return std::sqrt(sum / flow1.size().area());
}
}
struct FastOpticalFlowBM : testing::TestWithParam<cv::gpu::DeviceInfo>
{
};
GPU_TEST_P(FastOpticalFlowBM, Accuracy)
{
const double MAX_RMSE = 0.6;
int search_window = 15;
int block_window = 5;
cv::gpu::DeviceInfo devInfo = GetParam();
cv::gpu::setDevice(devInfo.deviceID());
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::Size smallSize(320, 240);
cv::Mat frame0_small;
cv::Mat frame1_small;
cv::resize(frame0, frame0_small, smallSize);
cv::resize(frame1, frame1_small, smallSize);
cv::gpu::GpuMat d_flowx;
cv::gpu::GpuMat d_flowy;
cv::gpu::FastOpticalFlowBM fastBM;
fastBM(loadMat(frame0_small), loadMat(frame1_small), d_flowx, d_flowy, search_window, block_window);
cv::Mat_<float> flowx;
cv::Mat_<float> flowy;
FastOpticalFlowBM_gold(frame0_small, frame1_small, flowx, flowy, search_window, block_window);
double err;
err = calc_rmse(flowx, cv::Mat(d_flowx));
EXPECT_LE(err, MAX_RMSE);
err = calc_rmse(flowy, cv::Mat(d_flowy));
EXPECT_LE(err, MAX_RMSE);
}
INSTANTIATE_TEST_CASE_P(GPU_Video, FastOpticalFlowBM, ALL_DEVICES);
#endif // HAVE_CUDA

Loading…
Cancel
Save