Merge pull request #25880 from Jamim:fix/cuda-no-fp16

Fix CUDA for old GPUs without FP16 support #25880

Fixes #21461

~This is a build-time solution that reflects https://github.com/opencv/opencv/blob/4.10.0/modules/dnn/src/cuda4dnn/init.hpp#L68-L82.~
~We shouldn't add an invalid target while building with `CUDA_ARCH_BIN` < 53.~
_(please see [this discussion](https://github.com/opencv/opencv/pull/25880#discussion_r1668074505))_

This is a run-time solution that basically reverts [these lines](d0fe6ad109 (diff-757c5ab6ddf2f99cdd09f851e3cf17abff203aff4107d908c7ad3d0466f39604L245-R245)).

I've debugged these changes, [coupled with other fixes](https://github.com/gentoo/gentoo/pull/37479), on [Gentoo Linux](https://www.gentoo.org/) and [related tests passed](https://github.com/user-attachments/files/16135391/opencv-4.10.0.20240708-224733.log.gz) on my laptop with `GeForce GTX 960M`.

Alternative solution:
  - #21462

_Best regards!_

### Pull Request Readiness Checklist

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] `n/a` There is accuracy test, performance test and test data in opencv_extra repository, if applicable
- [ ] `n/a` The feature is well documented and sample code can be built with the project CMake
pull/25888/head
Aliaksei Urbanski 7 months ago committed by GitHub
parent b964943517
commit 35ca2f78d6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 22
      modules/dnn/src/cuda4dnn/init.hpp
  2. 14
      modules/dnn/src/net_impl_backend.cpp
  3. 26
      modules/dnn/src/registry.cpp
  4. 2
      modules/dnn/test/test_common.hpp
  5. 2
      modules/dnn/test/test_onnx_conformance.cpp

@ -15,7 +15,7 @@
namespace cv { namespace dnn { namespace cuda4dnn {
void checkVersions()
inline void checkVersions()
{
// https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#programming-model
// cuDNN API Compatibility
@ -44,21 +44,23 @@ namespace cv { namespace dnn { namespace cuda4dnn {
}
}
int getDeviceCount()
inline int getDeviceCount()
{
return cuda::getCudaEnabledDeviceCount();
}
int getDevice()
inline int getDevice()
{
int device_id = -1;
CUDA4DNN_CHECK_CUDA(cudaGetDevice(&device_id));
return device_id;
}
bool isDeviceCompatible()
inline bool isDeviceCompatible(int device_id = -1)
{
int device_id = getDevice();
if (device_id < 0)
device_id = getDevice();
if (device_id < 0)
return false;
@ -76,9 +78,11 @@ namespace cv { namespace dnn { namespace cuda4dnn {
return false;
}
bool doesDeviceSupportFP16()
inline bool doesDeviceSupportFP16(int device_id = -1)
{
int device_id = getDevice();
if (device_id < 0)
device_id = getDevice();
if (device_id < 0)
return false;
@ -87,9 +91,7 @@ namespace cv { namespace dnn { namespace cuda4dnn {
CUDA4DNN_CHECK_CUDA(cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, device_id));
int version = major * 10 + minor;
if (version < 53)
return false;
return true;
return (version >= 53);
}
}}} /* namespace cv::dnn::cuda4dnn */

@ -10,6 +10,10 @@
#include "backend.hpp"
#include "factory.hpp"
#ifdef HAVE_CUDA
#include "cuda4dnn/init.hpp"
#endif
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
@ -242,6 +246,16 @@ void Net::Impl::setPreferableTarget(int targetId)
#endif
}
if (IS_DNN_CUDA_TARGET(targetId))
{
preferableTarget = DNN_TARGET_CPU;
#ifdef HAVE_CUDA
if (cuda4dnn::doesDeviceSupportFP16() && targetId == DNN_TARGET_CUDA_FP16)
preferableTarget = DNN_TARGET_CUDA_FP16;
else
preferableTarget = DNN_TARGET_CUDA;
#endif
}
#if !defined(__arm64__) || !__arm64__
if (targetId == DNN_TARGET_CPU_FP16)
{

@ -18,6 +18,10 @@
#include "backend.hpp"
#include "factory.hpp"
#ifdef HAVE_CUDA
#include "cuda4dnn/init.hpp"
#endif
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
@ -118,10 +122,28 @@ private:
#endif
#ifdef HAVE_CUDA
if (haveCUDA())
cuda4dnn::checkVersions();
bool hasCudaCompatible = false;
bool hasCudaFP16 = false;
for (int i = 0; i < cuda4dnn::getDeviceCount(); i++)
{
if (cuda4dnn::isDeviceCompatible(i))
{
hasCudaCompatible = true;
if (cuda4dnn::doesDeviceSupportFP16(i))
{
hasCudaFP16 = true;
break; // we already have all we need here
}
}
}
if (hasCudaCompatible)
{
backends.push_back(std::make_pair(DNN_BACKEND_CUDA, DNN_TARGET_CUDA));
backends.push_back(std::make_pair(DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16));
if (hasCudaFP16)
backends.push_back(std::make_pair(DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16));
}
#endif

@ -211,7 +211,7 @@ public:
if ((!l->supportBackend(backend) || l->preferableTarget != target) && !fused)
{
hasFallbacks = true;
std::cout << "FALLBACK: Layer [" << l->type << "]:[" << l->name << "] is expected to has backend implementation" << endl;
std::cout << "FALLBACK: Layer [" << l->type << "]:[" << l->name << "] is expected to have backend implementation" << endl;
}
}
if (hasFallbacks && raiseError)

@ -1016,7 +1016,7 @@ public:
if ((!l->supportBackend(backend) || l->preferableTarget != target) && !fused)
{
hasFallbacks = true;
std::cout << "FALLBACK: Layer [" << l->type << "]:[" << l->name << "] is expected to has backend implementation" << endl;
std::cout << "FALLBACK: Layer [" << l->type << "]:[" << l->name << "] is expected to have backend implementation" << endl;
}
}
return hasFallbacks;

Loading…
Cancel
Save