|
|
|
@ -53,6 +53,7 @@ static void magSpectrums( InputArray _src, OutputArray _dst) |
|
|
|
|
_dst.create( src.rows, src.cols, CV_64FC1 ); |
|
|
|
|
|
|
|
|
|
Mat dst = _dst.getMat(); |
|
|
|
|
dst.setTo(0);//Mat elements are not equal to zero by default!
|
|
|
|
|
|
|
|
|
|
bool is_1d = (rows == 1 || (cols == 1 && src.isContinuous() && dst.isContinuous())); |
|
|
|
|
|
|
|
|
@ -547,10 +548,11 @@ void cv::createHanningWindow(OutputArray _dst, cv::Size winSize, int type) |
|
|
|
|
|
|
|
|
|
int rows = dst.rows; |
|
|
|
|
int cols = dst.cols; |
|
|
|
|
int step = dst.step/dst.elemSize1(); |
|
|
|
|
|
|
|
|
|
if(dst.depth() == CV_32F) |
|
|
|
|
{ |
|
|
|
|
float* dstData = (float*)dst.data; |
|
|
|
|
float* dstData = dst.ptr<float>(); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < rows; i++) |
|
|
|
|
{ |
|
|
|
@ -558,16 +560,13 @@ void cv::createHanningWindow(OutputArray _dst, cv::Size winSize, int type) |
|
|
|
|
for(int j = 0; j < cols; j++) |
|
|
|
|
{ |
|
|
|
|
double wc = 0.5 * (1.0f - cos(2.0f * CV_PI * (double)j / (double)(cols - 1))); |
|
|
|
|
dstData[i*cols + j] = (float)(wr * wc); |
|
|
|
|
dstData[i*step + j] = (float)(wr * wc); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// perform batch sqrt for SSE performance gains
|
|
|
|
|
cv::sqrt(dst, dst); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
double* dstData = (double*)dst.data; |
|
|
|
|
double* dstData = dst.ptr<double>(); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < rows; i++) |
|
|
|
|
{ |
|
|
|
@ -575,11 +574,11 @@ void cv::createHanningWindow(OutputArray _dst, cv::Size winSize, int type) |
|
|
|
|
for(int j = 0; j < cols; j++) |
|
|
|
|
{ |
|
|
|
|
double wc = 0.5 * (1.0 - cos(2.0 * CV_PI * (double)j / (double)(cols - 1))); |
|
|
|
|
dstData[i*cols + j] = wr * wc; |
|
|
|
|
dstData[i*step + j] = wr * wc; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// perform batch sqrt for SSE performance gains
|
|
|
|
|
cv::sqrt(dst, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// perform batch sqrt for SSE performance gains
|
|
|
|
|
cv::sqrt(dst, dst); |
|
|
|
|
} |
|
|
|
|