Merge pull request #934 from SpecLad:parallel-for

pull/944/head
Roman Donchenko 12 years ago committed by OpenCV Buildbot
commit 34c5f47f60
  1. 30
      apps/traincascade/boost.cpp
  2. 25
      modules/calib3d/src/solvepnp.cpp
  3. 20
      modules/calib3d/src/stereobm.cpp
  4. 38
      modules/features2d/src/detectors.cpp
  5. 8
      modules/gpu/src/calib3d.cpp
  6. 334
      modules/imgproc/src/clahe.cpp
  7. 96
      modules/imgproc/src/color.cpp
  8. 16
      modules/imgproc/src/distransform.cpp
  9. 349
      modules/imgproc/src/histogram.cpp
  10. 16
      modules/imgproc/src/morph.cpp
  11. 55
      modules/ml/src/ann_mlp.cpp
  12. 54
      modules/ml/src/gbt.cpp
  13. 10
      modules/ml/src/knearest.cpp
  14. 12
      modules/ml/src/nbayes.cpp
  15. 8
      modules/ml/src/svm.cpp
  16. 44
      modules/nonfree/src/surf.cpp
  17. 5
      modules/objdetect/src/cascadedetect.cpp
  18. 8
      modules/objdetect/src/latentsvm.cpp
  19. 12
      modules/photo/src/denoising.cpp
  20. 10
      modules/photo/src/fast_nlmeans_denoising_invoker.hpp
  21. 10
      modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
  22. 10
      modules/stitching/src/matchers.cpp
  23. 24
      modules/video/src/bgfg_gaussmix2.cpp
  24. 14
      modules/video/src/lkpyramid.cpp
  25. 4
      modules/video/src/lkpyramid.hpp

@ -766,7 +766,7 @@ float CvCascadeBoostTrainData::getVarValue( int vi, int si )
}
struct FeatureIdxOnlyPrecalc
struct FeatureIdxOnlyPrecalc : ParallelLoopBody
{
FeatureIdxOnlyPrecalc( const CvFeatureEvaluator* _featureEvaluator, CvMat* _buf, int _sample_count, bool _is_buf_16u )
{
@ -776,11 +776,11 @@ struct FeatureIdxOnlyPrecalc
idst = _buf->data.i;
is_buf_16u = _is_buf_16u;
}
void operator()( const BlockedRange& range ) const
void operator()( const Range& range ) const
{
cv::AutoBuffer<float> valCache(sample_count);
float* valCachePtr = (float*)valCache;
for ( int fi = range.begin(); fi < range.end(); fi++)
for ( int fi = range.start; fi < range.end; fi++)
{
for( int si = 0; si < sample_count; si++ )
{
@ -803,7 +803,7 @@ struct FeatureIdxOnlyPrecalc
bool is_buf_16u;
};
struct FeatureValAndIdxPrecalc
struct FeatureValAndIdxPrecalc : ParallelLoopBody
{
FeatureValAndIdxPrecalc( const CvFeatureEvaluator* _featureEvaluator, CvMat* _buf, Mat* _valCache, int _sample_count, bool _is_buf_16u )
{
@ -814,9 +814,9 @@ struct FeatureValAndIdxPrecalc
idst = _buf->data.i;
is_buf_16u = _is_buf_16u;
}
void operator()( const BlockedRange& range ) const
void operator()( const Range& range ) const
{
for ( int fi = range.begin(); fi < range.end(); fi++)
for ( int fi = range.start; fi < range.end; fi++)
{
for( int si = 0; si < sample_count; si++ )
{
@ -840,7 +840,7 @@ struct FeatureValAndIdxPrecalc
bool is_buf_16u;
};
struct FeatureValOnlyPrecalc
struct FeatureValOnlyPrecalc : ParallelLoopBody
{
FeatureValOnlyPrecalc( const CvFeatureEvaluator* _featureEvaluator, Mat* _valCache, int _sample_count )
{
@ -848,9 +848,9 @@ struct FeatureValOnlyPrecalc
valCache = _valCache;
sample_count = _sample_count;
}
void operator()( const BlockedRange& range ) const
void operator()( const Range& range ) const
{
for ( int fi = range.begin(); fi < range.end(); fi++)
for ( int fi = range.start; fi < range.end; fi++)
for( int si = 0; si < sample_count; si++ )
valCache->at<float>(fi,si) = (*featureEvaluator)( fi, si );
}
@ -864,12 +864,12 @@ void CvCascadeBoostTrainData::precalculate()
int minNum = MIN( numPrecalcVal, numPrecalcIdx);
double proctime = -TIME( 0 );
parallel_for( BlockedRange(numPrecalcVal, numPrecalcIdx),
FeatureIdxOnlyPrecalc(featureEvaluator, buf, sample_count, is_buf_16u!=0) );
parallel_for( BlockedRange(0, minNum),
FeatureValAndIdxPrecalc(featureEvaluator, buf, &valCache, sample_count, is_buf_16u!=0) );
parallel_for( BlockedRange(minNum, numPrecalcVal),
FeatureValOnlyPrecalc(featureEvaluator, &valCache, sample_count) );
parallel_for_( Range(numPrecalcVal, numPrecalcIdx),
FeatureIdxOnlyPrecalc(featureEvaluator, buf, sample_count, is_buf_16u!=0) );
parallel_for_( Range(0, minNum),
FeatureValAndIdxPrecalc(featureEvaluator, buf, &valCache, sample_count, is_buf_16u!=0) );
parallel_for_( Range(minNum, numPrecalcVal),
FeatureValOnlyPrecalc(featureEvaluator, &valCache, sample_count) );
cout << "Precalculation time: " << (proctime + TIME( 0 )) << endl;
}

@ -115,31 +115,6 @@ namespace cv
transform(points, modif_points, transformation);
}
class Mutex
{
public:
Mutex() {
}
void lock()
{
#ifdef HAVE_TBB
resultsMutex.lock();
#endif
}
void unlock()
{
#ifdef HAVE_TBB
resultsMutex.unlock();
#endif
}
private:
#ifdef HAVE_TBB
tbb::mutex resultsMutex;
#endif
};
struct CameraParameters
{
void init(Mat _intrinsics, Mat _distCoeffs)

@ -699,7 +699,7 @@ struct PrefilterInvoker
};
struct FindStereoCorrespInvoker
struct FindStereoCorrespInvoker : ParallelLoopBody
{
FindStereoCorrespInvoker( const Mat& _left, const Mat& _right,
Mat& _disp, CvStereoBMState* _state,
@ -713,12 +713,12 @@ struct FindStereoCorrespInvoker
validDisparityRect = _validDisparityRect;
}
void operator()( const BlockedRange& range ) const
void operator()( const Range& range ) const
{
int cols = left->cols, rows = left->rows;
int _row0 = min(cvRound(range.begin() * rows / nstripes), rows);
int _row1 = min(cvRound(range.end() * rows / nstripes), rows);
uchar *ptr = state->slidingSumBuf->data.ptr + range.begin() * stripeBufSize;
int _row0 = min(cvRound(range.start * rows / nstripes), rows);
int _row1 = min(cvRound(range.end * rows / nstripes), rows);
uchar *ptr = state->slidingSumBuf->data.ptr + range.start * stripeBufSize;
int FILTERED = (state->minDisparity - 1)*16;
Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0);
@ -871,14 +871,10 @@ static void findStereoCorrespondenceBM( const Mat& left0, const Mat& right0, Mat
const bool useShorts = false;
#endif
#ifdef HAVE_TBB
const double SAD_overhead_coeff = 10.0;
double N0 = 8000000 / (useShorts ? 1 : 4); // approx tbb's min number instructions reasonable for one thread
double maxStripeSize = min(max(N0 / (width * ndisp), (wsz-1) * SAD_overhead_coeff), (double)height);
int nstripes = cvCeil(height / maxStripeSize);
#else
const int nstripes = 1;
#endif
int bufSize = max(bufSize0 * nstripes, max(bufSize1 * 2, bufSize2));
@ -898,9 +894,9 @@ static void findStereoCorrespondenceBM( const Mat& left0, const Mat& right0, Mat
state->minDisparity, state->numberOfDisparities,
state->SADWindowSize);
parallel_for(BlockedRange(0, nstripes),
FindStereoCorrespInvoker(left, right, disp, state, nstripes,
bufSize0, useShorts, validDisparityRect));
parallel_for_(Range(0, nstripes),
FindStereoCorrespInvoker(left, right, disp, state, nstripes,
bufSize0, useShorts, validDisparityRect));
if( state->speckleRange >= 0 && state->speckleWindowSize > 0 )
{

@ -214,7 +214,7 @@ static void keepStrongest( int N, vector<KeyPoint>& keypoints )
}
namespace {
class GridAdaptedFeatureDetectorInvoker
class GridAdaptedFeatureDetectorInvoker : public ParallelLoopBody
{
private:
int gridRows_, gridCols_;
@ -223,29 +223,24 @@ private:
const Mat& image_;
const Mat& mask_;
const Ptr<FeatureDetector>& detector_;
#ifdef HAVE_TBB
tbb::mutex* kptLock_;
#endif
Mutex* kptLock_;
GridAdaptedFeatureDetectorInvoker& operator=(const GridAdaptedFeatureDetectorInvoker&); // to quiet MSVC
public:
GridAdaptedFeatureDetectorInvoker(const Ptr<FeatureDetector>& detector, const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints, int maxPerCell, int gridRows, int gridCols
#ifdef HAVE_TBB
, tbb::mutex* kptLock
#endif
) : gridRows_(gridRows), gridCols_(gridCols), maxPerCell_(maxPerCell),
keypoints_(keypoints), image_(image), mask_(mask), detector_(detector)
#ifdef HAVE_TBB
, kptLock_(kptLock)
#endif
GridAdaptedFeatureDetectorInvoker(const Ptr<FeatureDetector>& detector, const Mat& image, const Mat& mask,
vector<KeyPoint>& keypoints, int maxPerCell, int gridRows, int gridCols,
cv::Mutex* kptLock)
: gridRows_(gridRows), gridCols_(gridCols), maxPerCell_(maxPerCell),
keypoints_(keypoints), image_(image), mask_(mask), detector_(detector),
kptLock_(kptLock)
{
}
void operator() (const BlockedRange& range) const
void operator() (const Range& range) const
{
for (int i = range.begin(); i < range.end(); ++i)
for (int i = range.start; i < range.end; ++i)
{
int celly = i / gridCols_;
int cellx = i - celly * gridCols_;
@ -270,9 +265,8 @@ public:
it->pt.x += col_range.start;
it->pt.y += row_range.start;
}
#ifdef HAVE_TBB
tbb::mutex::scoped_lock join_keypoints(*kptLock_);
#endif
cv::AutoLock join_keypoints(*kptLock_);
keypoints_.insert( keypoints_.end(), sub_keypoints.begin(), sub_keypoints.end() );
}
}
@ -289,13 +283,9 @@ void GridAdaptedFeatureDetector::detectImpl( const Mat& image, vector<KeyPoint>&
keypoints.reserve(maxTotalKeypoints);
int maxPerCell = maxTotalKeypoints / (gridRows * gridCols);
#ifdef HAVE_TBB
tbb::mutex kptLock;
cv::parallel_for(cv::BlockedRange(0, gridRows * gridCols),
cv::Mutex kptLock;
cv::parallel_for_(cv::Range(0, gridRows * gridCols),
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols, &kptLock));
#else
GridAdaptedFeatureDetectorInvoker(detector, image, mask, keypoints, maxPerCell, gridRows, gridCols)(cv::BlockedRange(0, gridRows * gridCols));
#endif
}
/*

@ -151,7 +151,7 @@ namespace
}
// Computes rotation, translation pair for small subsets if the input data
class TransformHypothesesGenerator
class TransformHypothesesGenerator : public ParallelLoopBody
{
public:
TransformHypothesesGenerator(const Mat& object_, const Mat& image_, const Mat& dist_coef_,
@ -161,7 +161,7 @@ namespace
num_points(num_points_), subset_size(subset_size_), rot_matrices(rot_matrices_),
transl_vectors(transl_vectors_) {}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
// Input data for generation of the current hypothesis
vector<int> subset_indices(subset_size);
@ -173,7 +173,7 @@ namespace
Mat rot_mat(3, 3, CV_64F);
Mat transl_vec(1, 3, CV_64F);
for (int iter = range.begin(); iter < range.end(); ++iter)
for (int iter = range.start; iter < range.end; ++iter)
{
selectRandom(subset_size, num_points, subset_indices);
for (int i = 0; i < subset_size; ++i)
@ -239,7 +239,7 @@ void cv::gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& cam
// Generate set of hypotheses using small subsets of the input data
TransformHypothesesGenerator body(object, image_normalized, empty_dist_coef, eye_camera_mat,
num_points, subset_size, rot_matrices, transl_vectors);
parallel_for(BlockedRange(0, num_iters), body);
parallel_for_(Range(0, num_iters), body);
// Compute scores (i.e. number of inliers) for each hypothesis
GpuMat d_object(object);

@ -0,0 +1,334 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
// ----------------------------------------------------------------------
// CLAHE
namespace
{
class CLAHE_CalcLut_Body : public cv::ParallelLoopBody
{
public:
CLAHE_CalcLut_Body(const cv::Mat& src, cv::Mat& lut, cv::Size tileSize, int tilesX, int tilesY, int clipLimit, float lutScale) :
src_(src), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY), clipLimit_(clipLimit), lutScale_(lutScale)
{
}
void operator ()(const cv::Range& range) const;
private:
cv::Mat src_;
mutable cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int tilesY_;
int clipLimit_;
float lutScale_;
};
void CLAHE_CalcLut_Body::operator ()(const cv::Range& range) const
{
const int histSize = 256;
uchar* tileLut = lut_.ptr(range.start);
const size_t lut_step = lut_.step;
for (int k = range.start; k < range.end; ++k, tileLut += lut_step)
{
const int ty = k / tilesX_;
const int tx = k % tilesX_;
// retrieve tile submatrix
cv::Rect tileROI;
tileROI.x = tx * tileSize_.width;
tileROI.y = ty * tileSize_.height;
tileROI.width = tileSize_.width;
tileROI.height = tileSize_.height;
const cv::Mat tile = src_(tileROI);
// calc histogram
int tileHist[histSize] = {0, };
int height = tileROI.height;
const size_t sstep = tile.step;
for (const uchar* ptr = tile.ptr<uchar>(0); height--; ptr += sstep)
{
int x = 0;
for (; x <= tileROI.width - 4; x += 4)
{
int t0 = ptr[x], t1 = ptr[x+1];
tileHist[t0]++; tileHist[t1]++;
t0 = ptr[x+2]; t1 = ptr[x+3];
tileHist[t0]++; tileHist[t1]++;
}
for (; x < tileROI.width; ++x)
tileHist[ptr[x]]++;
}
// clip histogram
if (clipLimit_ > 0)
{
// how many pixels were clipped
int clipped = 0;
for (int i = 0; i < histSize; ++i)
{
if (tileHist[i] > clipLimit_)
{
clipped += tileHist[i] - clipLimit_;
tileHist[i] = clipLimit_;
}
}
// redistribute clipped pixels
int redistBatch = clipped / histSize;
int residual = clipped - redistBatch * histSize;
for (int i = 0; i < histSize; ++i)
tileHist[i] += redistBatch;
for (int i = 0; i < residual; ++i)
tileHist[i]++;
}
// calc Lut
int sum = 0;
for (int i = 0; i < histSize; ++i)
{
sum += tileHist[i];
tileLut[i] = cv::saturate_cast<uchar>(sum * lutScale_);
}
}
}
class CLAHE_Interpolation_Body : public cv::ParallelLoopBody
{
public:
CLAHE_Interpolation_Body(const cv::Mat& src, cv::Mat& dst, const cv::Mat& lut, cv::Size tileSize, int tilesX, int tilesY) :
src_(src), dst_(dst), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY)
{
}
void operator ()(const cv::Range& range) const;
private:
cv::Mat src_;
mutable cv::Mat dst_;
cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int tilesY_;
};
void CLAHE_Interpolation_Body::operator ()(const cv::Range& range) const
{
const size_t lut_step = lut_.step;
for (int y = range.start; y < range.end; ++y)
{
const uchar* srcRow = src_.ptr<uchar>(y);
uchar* dstRow = dst_.ptr<uchar>(y);
const float tyf = (static_cast<float>(y) / tileSize_.height) - 0.5f;
int ty1 = cvFloor(tyf);
int ty2 = ty1 + 1;
const float ya = tyf - ty1;
ty1 = std::max(ty1, 0);
ty2 = std::min(ty2, tilesY_ - 1);
const uchar* lutPlane1 = lut_.ptr(ty1 * tilesX_);
const uchar* lutPlane2 = lut_.ptr(ty2 * tilesX_);
for (int x = 0; x < src_.cols; ++x)
{
const float txf = (static_cast<float>(x) / tileSize_.width) - 0.5f;
int tx1 = cvFloor(txf);
int tx2 = tx1 + 1;
const float xa = txf - tx1;
tx1 = std::max(tx1, 0);
tx2 = std::min(tx2, tilesX_ - 1);
const int srcVal = srcRow[x];
const size_t ind1 = tx1 * lut_step + srcVal;
const size_t ind2 = tx2 * lut_step + srcVal;
float res = 0;
res += lutPlane1[ind1] * ((1.0f - xa) * (1.0f - ya));
res += lutPlane1[ind2] * ((xa) * (1.0f - ya));
res += lutPlane2[ind1] * ((1.0f - xa) * (ya));
res += lutPlane2[ind2] * ((xa) * (ya));
dstRow[x] = cv::saturate_cast<uchar>(res);
}
}
}
class CLAHE_Impl : public cv::CLAHE
{
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
cv::AlgorithmInfo* info() const;
void apply(cv::InputArray src, cv::OutputArray dst);
void setClipLimit(double clipLimit);
double getClipLimit() const;
void setTilesGridSize(cv::Size tileGridSize);
cv::Size getTilesGridSize() const;
void collectGarbage();
private:
double clipLimit_;
int tilesX_;
int tilesY_;
cv::Mat srcExt_;
cv::Mat lut_;
};
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
{
}
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE",
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
cv::Mat src = _src.getMat();
CV_Assert( src.type() == CV_8UC1 );
_dst.create( src.size(), src.type() );
cv::Mat dst = _dst.getMat();
const int histSize = 256;
lut_.create(tilesX_ * tilesY_, histSize, CV_8UC1);
cv::Size tileSize;
cv::Mat srcForLut;
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
{
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
srcForLut = src;
}
else
{
cv::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101);
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
srcForLut = srcExt_;
}
const int tileSizeTotal = tileSize.area();
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
int clipLimit = 0;
if (clipLimit_ > 0.0)
{
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
clipLimit = std::max(clipLimit, 1);
}
CLAHE_CalcLut_Body calcLutBody(srcForLut, lut_, tileSize, tilesX_, tilesY_, clipLimit, lutScale);
cv::parallel_for_(cv::Range(0, tilesX_ * tilesY_), calcLutBody);
CLAHE_Interpolation_Body interpolationBody(src, dst, lut_, tileSize, tilesX_, tilesY_);
cv::parallel_for_(cv::Range(0, src.rows), interpolationBody);
}
void CLAHE_Impl::setClipLimit(double clipLimit)
{
clipLimit_ = clipLimit;
}
double CLAHE_Impl::getClipLimit() const
{
return clipLimit_;
}
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
{
tilesX_ = tileGridSize.width;
tilesY_ = tileGridSize.height;
}
cv::Size CLAHE_Impl::getTilesGridSize() const
{
return cv::Size(tilesX_, tilesY_);
}
void CLAHE_Impl::collectGarbage()
{
srcExt_.release();
lut_.release();
}
}
cv::Ptr<cv::CLAHE> cv::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
}

@ -2755,7 +2755,7 @@ const int ITUR_BT_601_CGV = -385875;
const int ITUR_BT_601_CBV = -74448;
template<int bIdx, int uIdx>
struct YUV420sp2RGB888Invoker
struct YUV420sp2RGB888Invoker : ParallelLoopBody
{
Mat* dst;
const uchar* my1, *muv;
@ -2764,10 +2764,10 @@ struct YUV420sp2RGB888Invoker
YUV420sp2RGB888Invoker(Mat* _dst, int _stride, const uchar* _y1, const uchar* _uv)
: dst(_dst), my1(_y1), muv(_uv), width(_dst->cols), stride(_stride) {}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
int rangeBegin = range.begin() * 2;
int rangeEnd = range.end() * 2;
int rangeBegin = range.start * 2;
int rangeEnd = range.end * 2;
//R = 1.164(Y - 16) + 1.596(V - 128)
//G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
@ -2824,7 +2824,7 @@ struct YUV420sp2RGB888Invoker
};
template<int bIdx, int uIdx>
struct YUV420sp2RGBA8888Invoker
struct YUV420sp2RGBA8888Invoker : ParallelLoopBody
{
Mat* dst;
const uchar* my1, *muv;
@ -2833,10 +2833,10 @@ struct YUV420sp2RGBA8888Invoker
YUV420sp2RGBA8888Invoker(Mat* _dst, int _stride, const uchar* _y1, const uchar* _uv)
: dst(_dst), my1(_y1), muv(_uv), width(_dst->cols), stride(_stride) {}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
int rangeBegin = range.begin() * 2;
int rangeEnd = range.end() * 2;
int rangeBegin = range.start * 2;
int rangeEnd = range.end * 2;
//R = 1.164(Y - 16) + 1.596(V - 128)
//G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
@ -2897,7 +2897,7 @@ struct YUV420sp2RGBA8888Invoker
};
template<int bIdx>
struct YUV420p2RGB888Invoker
struct YUV420p2RGB888Invoker : ParallelLoopBody
{
Mat* dst;
const uchar* my1, *mu, *mv;
@ -2907,19 +2907,19 @@ struct YUV420p2RGB888Invoker
YUV420p2RGB888Invoker(Mat* _dst, int _stride, const uchar* _y1, const uchar* _u, const uchar* _v, int _ustepIdx, int _vstepIdx)
: dst(_dst), my1(_y1), mu(_u), mv(_v), width(_dst->cols), stride(_stride), ustepIdx(_ustepIdx), vstepIdx(_vstepIdx) {}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
const int rangeBegin = range.begin() * 2;
const int rangeEnd = range.end() * 2;
const int rangeBegin = range.start * 2;
const int rangeEnd = range.end * 2;
size_t uvsteps[2] = {width/2, stride - width/2};
int usIdx = ustepIdx, vsIdx = vstepIdx;
const uchar* y1 = my1 + rangeBegin * stride;
const uchar* u1 = mu + (range.begin() / 2) * stride;
const uchar* v1 = mv + (range.begin() / 2) * stride;
const uchar* u1 = mu + (range.start / 2) * stride;
const uchar* v1 = mv + (range.start / 2) * stride;
if(range.begin() % 2 == 1)
if(range.start % 2 == 1)
{
u1 += uvsteps[(usIdx++) & 1];
v1 += uvsteps[(vsIdx++) & 1];
@ -2965,7 +2965,7 @@ struct YUV420p2RGB888Invoker
};
template<int bIdx>
struct YUV420p2RGBA8888Invoker
struct YUV420p2RGBA8888Invoker : ParallelLoopBody
{
Mat* dst;
const uchar* my1, *mu, *mv;
@ -2975,19 +2975,19 @@ struct YUV420p2RGBA8888Invoker
YUV420p2RGBA8888Invoker(Mat* _dst, int _stride, const uchar* _y1, const uchar* _u, const uchar* _v, int _ustepIdx, int _vstepIdx)
: dst(_dst), my1(_y1), mu(_u), mv(_v), width(_dst->cols), stride(_stride), ustepIdx(_ustepIdx), vstepIdx(_vstepIdx) {}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
int rangeBegin = range.begin() * 2;
int rangeEnd = range.end() * 2;
int rangeBegin = range.start * 2;
int rangeEnd = range.end * 2;
size_t uvsteps[2] = {width/2, stride - width/2};
int usIdx = ustepIdx, vsIdx = vstepIdx;
const uchar* y1 = my1 + rangeBegin * stride;
const uchar* u1 = mu + (range.begin() / 2) * stride;
const uchar* v1 = mv + (range.begin() / 2) * stride;
const uchar* u1 = mu + (range.start / 2) * stride;
const uchar* v1 = mv + (range.start / 2) * stride;
if(range.begin() % 2 == 1)
if(range.start % 2 == 1)
{
u1 += uvsteps[(usIdx++) & 1];
v1 += uvsteps[(vsIdx++) & 1];
@ -3042,48 +3042,40 @@ template<int bIdx, int uIdx>
inline void cvtYUV420sp2RGB(Mat& _dst, int _stride, const uchar* _y1, const uchar* _uv)
{
YUV420sp2RGB888Invoker<bIdx, uIdx> converter(&_dst, _stride, _y1, _uv);
#ifdef HAVE_TBB
if (_dst.total() >= MIN_SIZE_FOR_PARALLEL_YUV420_CONVERSION)
parallel_for(BlockedRange(0, _dst.rows/2), converter);
parallel_for_(Range(0, _dst.rows/2), converter);
else
#endif
converter(BlockedRange(0, _dst.rows/2));
converter(Range(0, _dst.rows/2));
}
template<int bIdx, int uIdx>
inline void cvtYUV420sp2RGBA(Mat& _dst, int _stride, const uchar* _y1, const uchar* _uv)
{
YUV420sp2RGBA8888Invoker<bIdx, uIdx> converter(&_dst, _stride, _y1, _uv);
#ifdef HAVE_TBB
if (_dst.total() >= MIN_SIZE_FOR_PARALLEL_YUV420_CONVERSION)
parallel_for(BlockedRange(0, _dst.rows/2), converter);
parallel_for_(Range(0, _dst.rows/2), converter);
else
#endif
converter(BlockedRange(0, _dst.rows/2));
converter(Range(0, _dst.rows/2));
}
template<int bIdx>
inline void cvtYUV420p2RGB(Mat& _dst, int _stride, const uchar* _y1, const uchar* _u, const uchar* _v, int ustepIdx, int vstepIdx)
{
YUV420p2RGB888Invoker<bIdx> converter(&_dst, _stride, _y1, _u, _v, ustepIdx, vstepIdx);
#ifdef HAVE_TBB
if (_dst.total() >= MIN_SIZE_FOR_PARALLEL_YUV420_CONVERSION)
parallel_for(BlockedRange(0, _dst.rows/2), converter);
parallel_for_(Range(0, _dst.rows/2), converter);
else
#endif
converter(BlockedRange(0, _dst.rows/2));
converter(Range(0, _dst.rows/2));
}
template<int bIdx>
inline void cvtYUV420p2RGBA(Mat& _dst, int _stride, const uchar* _y1, const uchar* _u, const uchar* _v, int ustepIdx, int vstepIdx)
{
YUV420p2RGBA8888Invoker<bIdx> converter(&_dst, _stride, _y1, _u, _v, ustepIdx, vstepIdx);
#ifdef HAVE_TBB
if (_dst.total() >= MIN_SIZE_FOR_PARALLEL_YUV420_CONVERSION)
parallel_for(BlockedRange(0, _dst.rows/2), converter);
parallel_for_(Range(0, _dst.rows/2), converter);
else
#endif
converter(BlockedRange(0, _dst.rows/2));
converter(Range(0, _dst.rows/2));
}
///////////////////////////////////// RGB -> YUV420p /////////////////////////////////////
@ -3167,7 +3159,7 @@ static void cvtRGBtoYUV420p(const Mat& src, Mat& dst)
///////////////////////////////////// YUV422 -> RGB /////////////////////////////////////
template<int bIdx, int uIdx, int yIdx>
struct YUV422toRGB888Invoker
struct YUV422toRGB888Invoker : ParallelLoopBody
{
Mat* dst;
const uchar* src;
@ -3176,10 +3168,10 @@ struct YUV422toRGB888Invoker
YUV422toRGB888Invoker(Mat* _dst, int _stride, const uchar* _yuv)
: dst(_dst), src(_yuv), width(_dst->cols), stride(_stride) {}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
int rangeBegin = range.begin();
int rangeEnd = range.end();
int rangeBegin = range.start;
int rangeEnd = range.end;
const int uidx = 1 - yIdx + uIdx * 2;
const int vidx = (2 + uidx) % 4;
@ -3213,7 +3205,7 @@ struct YUV422toRGB888Invoker
};
template<int bIdx, int uIdx, int yIdx>
struct YUV422toRGBA8888Invoker
struct YUV422toRGBA8888Invoker : ParallelLoopBody
{
Mat* dst;
const uchar* src;
@ -3222,10 +3214,10 @@ struct YUV422toRGBA8888Invoker
YUV422toRGBA8888Invoker(Mat* _dst, int _stride, const uchar* _yuv)
: dst(_dst), src(_yuv), width(_dst->cols), stride(_stride) {}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
int rangeBegin = range.begin();
int rangeEnd = range.end();
int rangeBegin = range.start;
int rangeEnd = range.end;
const int uidx = 1 - yIdx + uIdx * 2;
const int vidx = (2 + uidx) % 4;
@ -3266,24 +3258,20 @@ template<int bIdx, int uIdx, int yIdx>
inline void cvtYUV422toRGB(Mat& _dst, int _stride, const uchar* _yuv)
{
YUV422toRGB888Invoker<bIdx, uIdx, yIdx> converter(&_dst, _stride, _yuv);
#ifdef HAVE_TBB
if (_dst.total() >= MIN_SIZE_FOR_PARALLEL_YUV422_CONVERSION)
parallel_for(BlockedRange(0, _dst.rows), converter);
parallel_for_(Range(0, _dst.rows), converter);
else
#endif
converter(BlockedRange(0, _dst.rows));
converter(Range(0, _dst.rows));
}
template<int bIdx, int uIdx, int yIdx>
inline void cvtYUV422toRGBA(Mat& _dst, int _stride, const uchar* _yuv)
{
YUV422toRGBA8888Invoker<bIdx, uIdx, yIdx> converter(&_dst, _stride, _yuv);
#ifdef HAVE_TBB
if (_dst.total() >= MIN_SIZE_FOR_PARALLEL_YUV422_CONVERSION)
parallel_for(BlockedRange(0, _dst.rows), converter);
parallel_for_(Range(0, _dst.rows), converter);
else
#endif
converter(BlockedRange(0, _dst.rows));
converter(Range(0, _dst.rows));
}
/////////////////////////// RGBA <-> mRGBA (alpha premultiplied) //////////////

@ -443,7 +443,7 @@ icvGetDistanceTransformMask( int maskType, float *metrics )
namespace cv
{
struct DTColumnInvoker
struct DTColumnInvoker : ParallelLoopBody
{
DTColumnInvoker( const CvMat* _src, CvMat* _dst, const int* _sat_tab, const float* _sqr_tab)
{
@ -453,9 +453,9 @@ struct DTColumnInvoker
sqr_tab = _sqr_tab;
}
void operator()( const BlockedRange& range ) const
void operator()( const Range& range ) const
{
int i, i1 = range.begin(), i2 = range.end();
int i, i1 = range.start, i2 = range.end;
int m = src->rows;
size_t sstep = src->step, dstep = dst->step/sizeof(float);
AutoBuffer<int> _d(m);
@ -490,7 +490,7 @@ struct DTColumnInvoker
};
struct DTRowInvoker
struct DTRowInvoker : ParallelLoopBody
{
DTRowInvoker( CvMat* _dst, const float* _sqr_tab, const float* _inv_tab )
{
@ -499,10 +499,10 @@ struct DTRowInvoker
inv_tab = _inv_tab;
}
void operator()( const BlockedRange& range ) const
void operator()( const Range& range ) const
{
const float inf = 1e15f;
int i, i1 = range.begin(), i2 = range.end();
int i, i1 = range.start, i2 = range.end;
int n = dst->cols;
AutoBuffer<uchar> _buf((n+2)*2*sizeof(float) + (n+2)*sizeof(int));
float* f = (float*)(uchar*)_buf;
@ -586,7 +586,7 @@ icvTrueDistTrans( const CvMat* src, CvMat* dst )
for( ; i <= m*3; i++ )
sat_tab[i] = i - shift;
cv::parallel_for(cv::BlockedRange(0, n), cv::DTColumnInvoker(src, dst, sat_tab, sqr_tab));
cv::parallel_for_(cv::Range(0, n), cv::DTColumnInvoker(src, dst, sat_tab, sqr_tab));
// stage 2: compute modified distance transform for each row
float* inv_tab = sqr_tab + n;
@ -598,7 +598,7 @@ icvTrueDistTrans( const CvMat* src, CvMat* dst )
sqr_tab[i] = (float)(i*i);
}
cv::parallel_for(cv::BlockedRange(0, m), cv::DTRowInvoker(dst, sqr_tab, inv_tab));
cv::parallel_for_(cv::Range(0, m), cv::DTRowInvoker(dst, sqr_tab, inv_tab));
}

@ -2986,29 +2986,23 @@ cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask,
}
}
class EqualizeHistCalcHist_Invoker
class EqualizeHistCalcHist_Invoker : public cv::ParallelLoopBody
{
public:
enum {HIST_SZ = 256};
#ifdef HAVE_TBB
typedef tbb::mutex* MutextPtr;
#else
typedef void* MutextPtr;
#endif
EqualizeHistCalcHist_Invoker(cv::Mat& src, int* histogram, MutextPtr histogramLock)
EqualizeHistCalcHist_Invoker(cv::Mat& src, int* histogram, cv::Mutex* histogramLock)
: src_(src), globalHistogram_(histogram), histogramLock_(histogramLock)
{ }
void operator()( const cv::BlockedRange& rowRange ) const
void operator()( const cv::Range& rowRange ) const
{
int localHistogram[HIST_SZ] = {0, };
const size_t sstep = src_.step;
int width = src_.cols;
int height = rowRange.end() - rowRange.begin();
int height = rowRange.end - rowRange.start;
if (src_.isContinuous())
{
@ -3016,7 +3010,7 @@ public:
height = 1;
}
for (const uchar* ptr = src_.ptr<uchar>(rowRange.begin()); height--; ptr += sstep)
for (const uchar* ptr = src_.ptr<uchar>(rowRange.start); height--; ptr += sstep)
{
int x = 0;
for (; x <= width - 4; x += 4)
@ -3031,9 +3025,7 @@ public:
localHistogram[ptr[x]]++;
}
#ifdef HAVE_TBB
tbb::mutex::scoped_lock lock(*histogramLock_);
#endif
cv::AutoLock lock(*histogramLock_);
for( int i = 0; i < HIST_SZ; i++ )
globalHistogram_[i] += localHistogram[i];
@ -3041,12 +3033,7 @@ public:
static bool isWorthParallel( const cv::Mat& src )
{
#ifdef HAVE_TBB
return ( src.total() >= 640*480 );
#else
(void)src;
return false;
#endif
}
private:
@ -3054,10 +3041,10 @@ private:
cv::Mat& src_;
int* globalHistogram_;
MutextPtr histogramLock_;
cv::Mutex* histogramLock_;
};
class EqualizeHistLut_Invoker
class EqualizeHistLut_Invoker : public cv::ParallelLoopBody
{
public:
EqualizeHistLut_Invoker( cv::Mat& src, cv::Mat& dst, int* lut )
@ -3066,13 +3053,13 @@ public:
lut_(lut)
{ }
void operator()( const cv::BlockedRange& rowRange ) const
void operator()( const cv::Range& rowRange ) const
{
const size_t sstep = src_.step;
const size_t dstep = dst_.step;
int width = src_.cols;
int height = rowRange.end() - rowRange.begin();
int height = rowRange.end - rowRange.start;
int* lut = lut_;
if (src_.isContinuous() && dst_.isContinuous())
@ -3081,8 +3068,8 @@ public:
height = 1;
}
const uchar* sptr = src_.ptr<uchar>(rowRange.begin());
uchar* dptr = dst_.ptr<uchar>(rowRange.begin());
const uchar* sptr = src_.ptr<uchar>(rowRange.start);
uchar* dptr = dst_.ptr<uchar>(rowRange.start);
for (; height--; sptr += sstep, dptr += dstep)
{
@ -3111,12 +3098,7 @@ public:
static bool isWorthParallel( const cv::Mat& src )
{
#ifdef HAVE_TBB
return ( src.total() >= 640*480 );
#else
(void)src;
return false;
#endif
}
private:
@ -3143,23 +3125,18 @@ void cv::equalizeHist( InputArray _src, OutputArray _dst )
if(src.empty())
return;
#ifdef HAVE_TBB
tbb::mutex histogramLockInstance;
EqualizeHistCalcHist_Invoker::MutextPtr histogramLock = &histogramLockInstance;
#else
EqualizeHistCalcHist_Invoker::MutextPtr histogramLock = 0;
#endif
Mutex histogramLockInstance;
const int hist_sz = EqualizeHistCalcHist_Invoker::HIST_SZ;
int hist[hist_sz] = {0,};
int lut[hist_sz];
EqualizeHistCalcHist_Invoker calcBody(src, hist, histogramLock);
EqualizeHistCalcHist_Invoker calcBody(src, hist, &histogramLockInstance);
EqualizeHistLut_Invoker lutBody(src, dst, lut);
cv::BlockedRange heightRange(0, src.rows);
cv::Range heightRange(0, src.rows);
if(EqualizeHistCalcHist_Invoker::isWorthParallel(src))
parallel_for(heightRange, calcBody);
parallel_for_(heightRange, calcBody);
else
calcBody(heightRange);
@ -3183,303 +3160,11 @@ void cv::equalizeHist( InputArray _src, OutputArray _dst )
}
if(EqualizeHistLut_Invoker::isWorthParallel(src))
parallel_for(heightRange, lutBody);
parallel_for_(heightRange, lutBody);
else
lutBody(heightRange);
}
// ----------------------------------------------------------------------
// CLAHE
namespace
{
class CLAHE_CalcLut_Body : public cv::ParallelLoopBody
{
public:
CLAHE_CalcLut_Body(const cv::Mat& src, cv::Mat& lut, cv::Size tileSize, int tilesX, int tilesY, int clipLimit, float lutScale) :
src_(src), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY), clipLimit_(clipLimit), lutScale_(lutScale)
{
}
void operator ()(const cv::Range& range) const;
private:
cv::Mat src_;
mutable cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int tilesY_;
int clipLimit_;
float lutScale_;
};
void CLAHE_CalcLut_Body::operator ()(const cv::Range& range) const
{
const int histSize = 256;
uchar* tileLut = lut_.ptr(range.start);
const size_t lut_step = lut_.step;
for (int k = range.start; k < range.end; ++k, tileLut += lut_step)
{
const int ty = k / tilesX_;
const int tx = k % tilesX_;
// retrieve tile submatrix
cv::Rect tileROI;
tileROI.x = tx * tileSize_.width;
tileROI.y = ty * tileSize_.height;
tileROI.width = tileSize_.width;
tileROI.height = tileSize_.height;
const cv::Mat tile = src_(tileROI);
// calc histogram
int tileHist[histSize] = {0, };
int height = tileROI.height;
const size_t sstep = tile.step;
for (const uchar* ptr = tile.ptr<uchar>(0); height--; ptr += sstep)
{
int x = 0;
for (; x <= tileROI.width - 4; x += 4)
{
int t0 = ptr[x], t1 = ptr[x+1];
tileHist[t0]++; tileHist[t1]++;
t0 = ptr[x+2]; t1 = ptr[x+3];
tileHist[t0]++; tileHist[t1]++;
}
for (; x < tileROI.width; ++x)
tileHist[ptr[x]]++;
}
// clip histogram
if (clipLimit_ > 0)
{
// how many pixels were clipped
int clipped = 0;
for (int i = 0; i < histSize; ++i)
{
if (tileHist[i] > clipLimit_)
{
clipped += tileHist[i] - clipLimit_;
tileHist[i] = clipLimit_;
}
}
// redistribute clipped pixels
int redistBatch = clipped / histSize;
int residual = clipped - redistBatch * histSize;
for (int i = 0; i < histSize; ++i)
tileHist[i] += redistBatch;
for (int i = 0; i < residual; ++i)
tileHist[i]++;
}
// calc Lut
int sum = 0;
for (int i = 0; i < histSize; ++i)
{
sum += tileHist[i];
tileLut[i] = cv::saturate_cast<uchar>(sum * lutScale_);
}
}
}
class CLAHE_Interpolation_Body : public cv::ParallelLoopBody
{
public:
CLAHE_Interpolation_Body(const cv::Mat& src, cv::Mat& dst, const cv::Mat& lut, cv::Size tileSize, int tilesX, int tilesY) :
src_(src), dst_(dst), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY)
{
}
void operator ()(const cv::Range& range) const;
private:
cv::Mat src_;
mutable cv::Mat dst_;
cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int tilesY_;
};
void CLAHE_Interpolation_Body::operator ()(const cv::Range& range) const
{
const size_t lut_step = lut_.step;
for (int y = range.start; y < range.end; ++y)
{
const uchar* srcRow = src_.ptr<uchar>(y);
uchar* dstRow = dst_.ptr<uchar>(y);
const float tyf = (static_cast<float>(y) / tileSize_.height) - 0.5f;
int ty1 = cvFloor(tyf);
int ty2 = ty1 + 1;
const float ya = tyf - ty1;
ty1 = std::max(ty1, 0);
ty2 = std::min(ty2, tilesY_ - 1);
const uchar* lutPlane1 = lut_.ptr(ty1 * tilesX_);
const uchar* lutPlane2 = lut_.ptr(ty2 * tilesX_);
for (int x = 0; x < src_.cols; ++x)
{
const float txf = (static_cast<float>(x) / tileSize_.width) - 0.5f;
int tx1 = cvFloor(txf);
int tx2 = tx1 + 1;
const float xa = txf - tx1;
tx1 = std::max(tx1, 0);
tx2 = std::min(tx2, tilesX_ - 1);
const int srcVal = srcRow[x];
const size_t ind1 = tx1 * lut_step + srcVal;
const size_t ind2 = tx2 * lut_step + srcVal;
float res = 0;
res += lutPlane1[ind1] * ((1.0f - xa) * (1.0f - ya));
res += lutPlane1[ind2] * ((xa) * (1.0f - ya));
res += lutPlane2[ind1] * ((1.0f - xa) * (ya));
res += lutPlane2[ind2] * ((xa) * (ya));
dstRow[x] = cv::saturate_cast<uchar>(res);
}
}
}
class CLAHE_Impl : public cv::CLAHE
{
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
cv::AlgorithmInfo* info() const;
void apply(cv::InputArray src, cv::OutputArray dst);
void setClipLimit(double clipLimit);
double getClipLimit() const;
void setTilesGridSize(cv::Size tileGridSize);
cv::Size getTilesGridSize() const;
void collectGarbage();
private:
double clipLimit_;
int tilesX_;
int tilesY_;
cv::Mat srcExt_;
cv::Mat lut_;
};
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
{
}
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE",
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
cv::Mat src = _src.getMat();
CV_Assert( src.type() == CV_8UC1 );
_dst.create( src.size(), src.type() );
cv::Mat dst = _dst.getMat();
const int histSize = 256;
lut_.create(tilesX_ * tilesY_, histSize, CV_8UC1);
cv::Size tileSize;
cv::Mat srcForLut;
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
{
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
srcForLut = src;
}
else
{
cv::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101);
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
srcForLut = srcExt_;
}
const int tileSizeTotal = tileSize.area();
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
int clipLimit = 0;
if (clipLimit_ > 0.0)
{
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
clipLimit = std::max(clipLimit, 1);
}
CLAHE_CalcLut_Body calcLutBody(srcForLut, lut_, tileSize, tilesX_, tilesY_, clipLimit, lutScale);
cv::parallel_for_(cv::Range(0, tilesX_ * tilesY_), calcLutBody);
CLAHE_Interpolation_Body interpolationBody(src, dst, lut_, tileSize, tilesX_, tilesY_);
cv::parallel_for_(cv::Range(0, src.rows), interpolationBody);
}
void CLAHE_Impl::setClipLimit(double clipLimit)
{
clipLimit_ = clipLimit;
}
double CLAHE_Impl::getClipLimit() const
{
return clipLimit_;
}
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
{
tilesX_ = tileGridSize.width;
tilesY_ = tileGridSize.height;
}
cv::Size CLAHE_Impl::getTilesGridSize() const
{
return cv::Size(tilesX_, tilesY_);
}
void CLAHE_Impl::collectGarbage()
{
srcExt_.release();
lut_.release();
}
}
cv::Ptr<cv::CLAHE> cv::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
}
// ----------------------------------------------------------------------
/* Implementation of RTTI and Generic Functions for CvHistogram */

@ -1081,7 +1081,7 @@ cv::Mat cv::getStructuringElement(int shape, Size ksize, Point anchor)
namespace cv
{
class MorphologyRunner
class MorphologyRunner : public ParallelLoopBody
{
public:
MorphologyRunner(Mat _src, Mat _dst, int _nStripes, int _iterations,
@ -1102,14 +1102,14 @@ public:
columnBorderType = _columnBorderType;
}
void operator () ( const BlockedRange& range ) const
void operator () ( const Range& range ) const
{
int row0 = min(cvRound(range.begin() * src.rows / nStripes), src.rows);
int row1 = min(cvRound(range.end() * src.rows / nStripes), src.rows);
int row0 = min(cvRound(range.start * src.rows / nStripes), src.rows);
int row1 = min(cvRound(range.end * src.rows / nStripes), src.rows);
/*if(0)
printf("Size = (%d, %d), range[%d,%d), row0 = %d, row1 = %d\n",
src.rows, src.cols, range.begin(), range.end(), row0, row1);*/
src.rows, src.cols, range.start, range.end, row0, row1);*/
Mat srcStripe = src.rowRange(row0, row1);
Mat dstStripe = dst.rowRange(row0, row1);
@ -1173,15 +1173,15 @@ static void morphOp( int op, InputArray _src, OutputArray _dst,
}
int nStripes = 1;
#if defined HAVE_TBB && defined HAVE_TEGRA_OPTIMIZATION
#if defined HAVE_TEGRA_OPTIMIZATION
if (src.data != dst.data && iterations == 1 && //NOTE: threads are not used for inplace processing
(borderType & BORDER_ISOLATED) == 0 && //TODO: check border types
src.rows >= 64 ) //NOTE: just heuristics
nStripes = 4;
#endif
parallel_for(BlockedRange(0, nStripes),
MorphologyRunner(src, dst, nStripes, iterations, op, kernel, anchor, borderType, borderType, borderValue));
parallel_for_(Range(0, nStripes),
MorphologyRunner(src, dst, nStripes, iterations, op, kernel, anchor, borderType, borderType, borderValue));
//Ptr<FilterEngine> f = createMorphologyFilter(op, src.type(),
// kernel, anchor, borderType, borderType, borderValue );

@ -40,10 +40,6 @@
#include "precomp.hpp"
#ifdef HAVE_TBB
#include <tbb/tbb.h>
#endif
CvANN_MLP_TrainParams::CvANN_MLP_TrainParams()
{
term_crit = cvTermCriteria( CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 1000, 0.01 );
@ -1022,7 +1018,7 @@ int CvANN_MLP::train_backprop( CvVectors x0, CvVectors u, const double* sw )
return iter;
}
struct rprop_loop {
struct rprop_loop : cv::ParallelLoopBody {
rprop_loop(const CvANN_MLP* _point, double**& _weights, int& _count, int& _ivcount, CvVectors* _x0,
int& _l_count, CvMat*& _layer_sizes, int& _ovcount, int& _max_count,
CvVectors* _u, const double*& _sw, double& _inv_count, CvMat*& _dEdw, int& _dcount0, double* _E, int _buf_sz)
@ -1063,7 +1059,7 @@ struct rprop_loop {
int buf_sz;
void operator()( const cv::BlockedRange& range ) const
void operator()( const cv::Range& range ) const
{
double* buf_ptr;
double** x = 0;
@ -1084,7 +1080,7 @@ struct rprop_loop {
buf_ptr += (df[i] - x[i])*2;
}
for(int si = range.begin(); si < range.end(); si++ )
for(int si = range.start; si < range.end; si++ )
{
if (si % dcount0 != 0) continue;
int n1, n2, k;
@ -1170,36 +1166,33 @@ struct rprop_loop {
}
// backward pass, update dEdw
#ifdef HAVE_TBB
static tbb::spin_mutex mutex;
tbb::spin_mutex::scoped_lock lock;
#endif
static cv::Mutex mutex;
for(int i = l_count-1; i > 0; i-- )
{
n1 = layer_sizes->data.i[i-1]; n2 = layer_sizes->data.i[i];
cvInitMatHeader( &_df, dcount, n2, CV_64F, df[i] );
cvMul( grad1, &_df, grad1 );
#ifdef HAVE_TBB
lock.acquire(mutex);
#endif
cvInitMatHeader( &_dEdw, n1, n2, CV_64F, dEdw->data.db+(weights[i]-weights[0]) );
cvInitMatHeader( x1, dcount, n1, CV_64F, x[i-1] );
cvGEMM( x1, grad1, 1, &_dEdw, 1, &_dEdw, CV_GEMM_A_T );
// update bias part of dEdw
for( k = 0; k < dcount; k++ )
{
double* dst = _dEdw.data.db + n1*n2;
const double* src = grad1->data.db + k*n2;
for(int j = 0; j < n2; j++ )
dst[j] += src[j];
{
cv::AutoLock lock(mutex);
cvInitMatHeader( &_dEdw, n1, n2, CV_64F, dEdw->data.db+(weights[i]-weights[0]) );
cvInitMatHeader( x1, dcount, n1, CV_64F, x[i-1] );
cvGEMM( x1, grad1, 1, &_dEdw, 1, &_dEdw, CV_GEMM_A_T );
// update bias part of dEdw
for( k = 0; k < dcount; k++ )
{
double* dst = _dEdw.data.db + n1*n2;
const double* src = grad1->data.db + k*n2;
for(int j = 0; j < n2; j++ )
dst[j] += src[j];
}
if (i > 1)
cvInitMatHeader( &_w, n1, n2, CV_64F, weights[i] );
}
if (i > 1)
cvInitMatHeader( &_w, n1, n2, CV_64F, weights[i] );
#ifdef HAVE_TBB
lock.release();
#endif
cvInitMatHeader( grad2, dcount, n1, CV_64F, grad2->data.db );
if( i > 1 )
cvGEMM( grad1, &_w, 1, 0, 0, grad2, CV_GEMM_B_T );
@ -1297,7 +1290,7 @@ int CvANN_MLP::train_rprop( CvVectors x0, CvVectors u, const double* sw )
double E = 0;
// first, iterate through all the samples and compute dEdw
cv::parallel_for(cv::BlockedRange(0, count),
cv::parallel_for_(cv::Range(0, count),
rprop_loop(this, weights, count, ivcount, &x0, l_count, layer_sizes,
ovcount, max_count, &u, sw, inv_count, dEdw, dcount0, &E, buf_sz)
);

@ -900,7 +900,7 @@ float CvGBTrees::predict_serial( const CvMat* _sample, const CvMat* _missing,
}
class Tree_predictor
class Tree_predictor : public cv::ParallelLoopBody
{
private:
pCvSeq* weak;
@ -910,9 +910,7 @@ private:
const CvMat* missing;
const float shrinkage;
#ifdef HAVE_TBB
static tbb::spin_mutex SumMutex;
#endif
static cv::Mutex SumMutex;
public:
@ -931,14 +929,11 @@ public:
Tree_predictor& operator=( const Tree_predictor& )
{ return *this; }
virtual void operator()(const cv::BlockedRange& range) const
virtual void operator()(const cv::Range& range) const
{
#ifdef HAVE_TBB
tbb::spin_mutex::scoped_lock lock;
#endif
CvSeqReader reader;
int begin = range.begin();
int end = range.end();
int begin = range.start;
int end = range.end;
int weak_count = end - begin;
CvDTree* tree;
@ -956,13 +951,11 @@ public:
tmp_sum += shrinkage*(float)(tree->predict(sample, missing)->value);
}
}
#ifdef HAVE_TBB
lock.acquire(SumMutex);
sum[i] += tmp_sum;
lock.release();
#else
sum[i] += tmp_sum;
#endif
{
cv::AutoLock lock(SumMutex);
sum[i] += tmp_sum;
}
}
} // Tree_predictor::operator()
@ -970,11 +963,7 @@ public:
}; // class Tree_predictor
#ifdef HAVE_TBB
tbb::spin_mutex Tree_predictor::SumMutex;
#endif
cv::Mutex Tree_predictor::SumMutex;
float CvGBTrees::predict( const CvMat* _sample, const CvMat* _missing,
@ -992,12 +981,7 @@ float CvGBTrees::predict( const CvMat* _sample, const CvMat* _missing,
Tree_predictor predictor = Tree_predictor(weak_seq, class_count,
params.shrinkage, _sample, _missing, sum);
//#ifdef HAVE_TBB
// tbb::parallel_for(cv::BlockedRange(begin, end), predictor,
// tbb::auto_partitioner());
//#else
cv::parallel_for(cv::BlockedRange(begin, end), predictor);
//#endif
cv::parallel_for_(cv::Range(begin, end), predictor);
for (int i=0; i<class_count; ++i)
sum[i] = sum[i] /** params.shrinkage*/ + base_value;
@ -1228,7 +1212,7 @@ void CvGBTrees::read( CvFileStorage* fs, CvFileNode* node )
//===========================================================================
class Sample_predictor
class Sample_predictor : public cv::ParallelLoopBody
{
private:
const CvGBTrees* gbt;
@ -1258,10 +1242,10 @@ public:
{}
virtual void operator()(const cv::BlockedRange& range) const
virtual void operator()(const cv::Range& range) const
{
int begin = range.begin();
int end = range.end();
int begin = range.start;
int end = range.end;
CvMat x;
CvMat miss;
@ -1317,11 +1301,7 @@ CvGBTrees::calc_error( CvMLData* _data, int type, std::vector<float> *resp )
Sample_predictor predictor = Sample_predictor(this, pred_resp, _data->get_values(),
_data->get_missing(), _sample_idx);
//#ifdef HAVE_TBB
// tbb::parallel_for(cv::BlockedRange(0,n), predictor, tbb::auto_partitioner());
//#else
cv::parallel_for(cv::BlockedRange(0,n), predictor);
//#endif
cv::parallel_for_(cv::Range(0,n), predictor);
int* sidx = _sample_idx ? _sample_idx->data.i : 0;
int r_step = CV_IS_MAT_CONT(response->type) ?

@ -306,7 +306,7 @@ float CvKNearest::write_results( int k, int k1, int start, int end,
return result;
}
struct P1 {
struct P1 : cv::ParallelLoopBody {
P1(const CvKNearest* _pointer, int _buf_sz, int _k, const CvMat* __samples, const float** __neighbors,
int _k1, CvMat* __results, CvMat* __neighbor_responses, CvMat* __dist, float* _result)
{
@ -333,10 +333,10 @@ struct P1 {
float* result;
int buf_sz;
void operator()( const cv::BlockedRange& range ) const
void operator()( const cv::Range& range ) const
{
cv::AutoBuffer<float> buf(buf_sz);
for(int i = range.begin(); i < range.end(); i += 1 )
for(int i = range.start; i < range.end; i += 1 )
{
float* neighbor_responses = &buf[0];
float* dist = neighbor_responses + 1*k;
@ -410,8 +410,8 @@ float CvKNearest::find_nearest( const CvMat* _samples, int k, CvMat* _results,
int k1 = get_sample_count();
k1 = MIN( k1, k );
cv::parallel_for(cv::BlockedRange(0, count), P1(this, buf_sz, k, _samples, _neighbors, k1,
_results, _neighbor_responses, _dist, &result)
cv::parallel_for_(cv::Range(0, count), P1(this, buf_sz, k, _samples, _neighbors, k1,
_results, _neighbor_responses, _dist, &result)
);
return result;

@ -277,7 +277,7 @@ bool CvNormalBayesClassifier::train( const CvMat* _train_data, const CvMat* _res
return result;
}
struct predict_body {
struct predict_body : cv::ParallelLoopBody {
predict_body(CvMat* _c, CvMat** _cov_rotate_mats, CvMat** _inv_eigen_values, CvMat** _avg,
const CvMat* _samples, const int* _vidx, CvMat* _cls_labels,
CvMat* _results, float* _value, int _var_count1
@ -307,7 +307,7 @@ struct predict_body {
float* value;
int var_count1;
void operator()( const cv::BlockedRange& range ) const
void operator()( const cv::Range& range ) const
{
int cls = -1;
@ -324,7 +324,7 @@ struct predict_body {
cv::AutoBuffer<double> buffer(nclasses + var_count1);
CvMat diff = cvMat( 1, var_count1, CV_64FC1, &buffer[0] );
for(int k = range.begin(); k < range.end(); k += 1 )
for(int k = range.start; k < range.end; k += 1 )
{
int ival;
double opt = FLT_MAX;
@ -397,9 +397,9 @@ float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results ) c
const int* vidx = var_idx ? var_idx->data.i : 0;
cv::parallel_for(cv::BlockedRange(0, samples->rows), predict_body(c, cov_rotate_mats, inv_eigen_values, avg, samples,
vidx, cls_labels, results, &value, var_count
));
cv::parallel_for_(cv::Range(0, samples->rows),
predict_body(c, cov_rotate_mats, inv_eigen_values, avg, samples,
vidx, cls_labels, results, &value, var_count));
return value;
}

@ -2143,7 +2143,7 @@ float CvSVM::predict( const CvMat* sample, bool returnDFVal ) const
return result;
}
struct predict_body_svm {
struct predict_body_svm : ParallelLoopBody {
predict_body_svm(const CvSVM* _pointer, float* _result, const CvMat* _samples, CvMat* _results)
{
pointer = _pointer;
@ -2157,9 +2157,9 @@ struct predict_body_svm {
const CvMat* samples;
CvMat* results;
void operator()( const cv::BlockedRange& range ) const
void operator()( const cv::Range& range ) const
{
for(int i = range.begin(); i < range.end(); i++ )
for(int i = range.start; i < range.end; i++ )
{
CvMat sample;
cvGetRow( samples, &sample, i );
@ -2175,7 +2175,7 @@ struct predict_body_svm {
float CvSVM::predict(const CvMat* samples, CV_OUT CvMat* results) const
{
float result = 0;
cv::parallel_for(cv::BlockedRange(0, samples->rows),
cv::parallel_for_(cv::Range(0, samples->rows),
predict_body_svm(this, &result, samples, results)
);
return result;

@ -258,7 +258,7 @@ interpolateKeypoint( float N9[3][9], int dx, int dy, int ds, KeyPoint& kpt )
}
// Multi-threaded construction of the scale-space pyramid
struct SURFBuildInvoker
struct SURFBuildInvoker : ParallelLoopBody
{
SURFBuildInvoker( const Mat& _sum, const vector<int>& _sizes,
const vector<int>& _sampleSteps,
@ -271,9 +271,9 @@ struct SURFBuildInvoker
traces = &_traces;
}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
for( int i=range.begin(); i<range.end(); i++ )
for( int i=range.start; i<range.end; i++ )
calcLayerDetAndTrace( *sum, (*sizes)[i], (*sampleSteps)[i], (*dets)[i], (*traces)[i] );
}
@ -285,7 +285,7 @@ struct SURFBuildInvoker
};
// Multi-threaded search of the scale-space pyramid for keypoints
struct SURFFindInvoker
struct SURFFindInvoker : ParallelLoopBody
{
SURFFindInvoker( const Mat& _sum, const Mat& _mask_sum,
const vector<Mat>& _dets, const vector<Mat>& _traces,
@ -310,9 +310,9 @@ struct SURFFindInvoker
const vector<int>& sizes, vector<KeyPoint>& keypoints,
int octave, int layer, float hessianThreshold, int sampleStep );
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
for( int i=range.begin(); i<range.end(); i++ )
for( int i=range.start; i<range.end; i++ )
{
int layer = (*middleIndices)[i];
int octave = i / nOctaveLayers;
@ -333,14 +333,10 @@ struct SURFFindInvoker
int nOctaveLayers;
float hessianThreshold;
#ifdef HAVE_TBB
static tbb::mutex findMaximaInLayer_m;
#endif
static Mutex findMaximaInLayer_m;
};
#ifdef HAVE_TBB
tbb::mutex SURFFindInvoker::findMaximaInLayer_m;
#endif
Mutex SURFFindInvoker::findMaximaInLayer_m;
/*
@ -437,9 +433,7 @@ void SURFFindInvoker::findMaximaInLayer( const Mat& sum, const Mat& mask_sum,
if( interp_ok )
{
/*printf( "KeyPoint %f %f %d\n", point.pt.x, point.pt.y, point.size );*/
#ifdef HAVE_TBB
tbb::mutex::scoped_lock lock(findMaximaInLayer_m);
#endif
cv::AutoLock lock(findMaximaInLayer_m);
keypoints.push_back(kpt);
}
}
@ -505,20 +499,20 @@ static void fastHessianDetector( const Mat& sum, const Mat& mask_sum, vector<Key
}
// Calculate hessian determinant and trace samples in each layer
parallel_for( BlockedRange(0, nTotalLayers),
SURFBuildInvoker(sum, sizes, sampleSteps, dets, traces) );
parallel_for_( Range(0, nTotalLayers),
SURFBuildInvoker(sum, sizes, sampleSteps, dets, traces) );
// Find maxima in the determinant of the hessian
parallel_for( BlockedRange(0, nMiddleLayers),
SURFFindInvoker(sum, mask_sum, dets, traces, sizes,
sampleSteps, middleIndices, keypoints,
nOctaveLayers, hessianThreshold) );
parallel_for_( Range(0, nMiddleLayers),
SURFFindInvoker(sum, mask_sum, dets, traces, sizes,
sampleSteps, middleIndices, keypoints,
nOctaveLayers, hessianThreshold) );
std::sort(keypoints.begin(), keypoints.end(), KeypointGreater());
}
struct SURFInvoker
struct SURFInvoker : ParallelLoopBody
{
enum { ORI_RADIUS = 6, ORI_WIN = 60, PATCH_SZ = 20 };
@ -566,7 +560,7 @@ struct SURFInvoker
}
}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
/* X and Y gradient wavelet data */
const int NX=2, NY=2;
@ -587,7 +581,7 @@ struct SURFInvoker
int dsize = extended ? 128 : 64;
int k, k1 = range.begin(), k2 = range.end();
int k, k1 = range.start, k2 = range.end;
float maxSize = 0;
for( k = k1; k < k2; k++ )
{
@ -954,7 +948,7 @@ void SURF::operator()(InputArray _img, InputArray _mask,
// we call SURFInvoker in any case, even if we do not need descriptors,
// since it computes orientation of each feature.
parallel_for(BlockedRange(0, N), SURFInvoker(img, sum, keypoints, descriptors, extended, upright) );
parallel_for_(Range(0, N), SURFInvoker(img, sum, keypoints, descriptors, extended, upright) );
// remove keypoints that were marked for deletion
for( i = j = 0; i < N; i++ )

@ -1165,15 +1165,10 @@ void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& object
int stripCount, stripSize;
#ifdef HAVE_TBB
const int PTS_PER_THREAD = 1000;
stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD;
stripCount = std::min(std::max(stripCount, 1), 100);
stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep;
#else
stripCount = 1;
stripSize = processingRectSize.height;
#endif
if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates,
rejectLevels, levelWeights, outputRejectLevels ) )

@ -582,7 +582,6 @@ int searchObjectThresholdSomeComponents(const CvLSVMFeaturePyramid *H,
// For each component perform searching
for (i = 0; i < kComponents; i++)
{
#ifdef HAVE_TBB
int error = searchObjectThreshold(H, &(filters[componentIndex]), kPartFilters[i],
b[i], maxXBorder, maxYBorder, scoreThreshold,
&(pointsArr[i]), &(levelsArr[i]), &(kPointsArr[i]),
@ -598,13 +597,6 @@ int searchObjectThresholdSomeComponents(const CvLSVMFeaturePyramid *H,
free(partsDisplacementArr);
return LATENT_SVM_SEARCH_OBJECT_FAILED;
}
#else
(void)numThreads;
searchObjectThreshold(H, &(filters[componentIndex]), kPartFilters[i],
b[i], maxXBorder, maxYBorder, scoreThreshold,
&(pointsArr[i]), &(levelsArr[i]), &(kPointsArr[i]),
&(scoreArr[i]), &(partsDisplacementArr[i]));
#endif
estimateBoxes(pointsArr[i], levelsArr[i], kPointsArr[i],
filters[componentIndex]->sizeX, filters[componentIndex]->sizeY, &(oppPointsArr[i]));
componentIndex += (kPartFilters[i] + 1);

@ -59,17 +59,17 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
switch (src.type()) {
case CV_8U:
parallel_for(cv::BlockedRange(0, src.rows),
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<uchar>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for(cv::BlockedRange(0, src.rows),
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec2b>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for(cv::BlockedRange(0, src.rows),
parallel_for_(cv::Range(0, src.rows),
FastNlMeansDenoisingInvoker<cv::Vec3b>(
src, dst, templateWindowSize, searchWindowSize, h));
break;
@ -159,19 +159,19 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
switch (srcImgs[0].type()) {
case CV_8U:
parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<uchar>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC2:
parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec2b>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));
break;
case CV_8UC3:
parallel_for(cv::BlockedRange(0, srcImgs[0].rows),
parallel_for_(cv::Range(0, srcImgs[0].rows),
FastNlMeansMultiDenoisingInvoker<cv::Vec3b>(
srcImgs, imgToDenoiseIndex, temporalWindowSize,
dst, templateWindowSize, searchWindowSize, h));

@ -55,12 +55,12 @@ using namespace std;
using namespace cv;
template <typename T>
struct FastNlMeansDenoisingInvoker {
struct FastNlMeansDenoisingInvoker : ParallelLoopBody {
public:
FastNlMeansDenoisingInvoker(const Mat& src, Mat& dst,
int template_window_size, int search_window_size, const float h);
void operator() (const BlockedRange& range) const;
void operator() (const Range& range) const;
private:
void operator= (const FastNlMeansDenoisingInvoker&);
@ -156,9 +156,9 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
}
template <class T>
void FastNlMeansDenoisingInvoker<T>::operator() (const BlockedRange& range) const {
int row_from = range.begin();
int row_to = range.end() - 1;
void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const {
int row_from = range.start;
int row_to = range.end - 1;
Array2d<int> dist_sums(search_window_size_, search_window_size_);

@ -55,13 +55,13 @@ using namespace std;
using namespace cv;
template <typename T>
struct FastNlMeansMultiDenoisingInvoker {
struct FastNlMeansMultiDenoisingInvoker : ParallelLoopBody {
public:
FastNlMeansMultiDenoisingInvoker(
const std::vector<Mat>& srcImgs, int imgToDenoiseIndex, int temporalWindowSize,
Mat& dst, int template_window_size, int search_window_size, const float h);
void operator() (const BlockedRange& range) const;
void operator() (const Range& range) const;
private:
void operator= (const FastNlMeansMultiDenoisingInvoker&);
@ -175,9 +175,9 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
}
template <class T>
void FastNlMeansMultiDenoisingInvoker<T>::operator() (const BlockedRange& range) const {
int row_from = range.begin();
int row_to = range.end() - 1;
void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const {
int row_from = range.start;
int row_to = range.end - 1;
Array3d<int> dist_sums(temporal_window_size_, search_window_size_, search_window_size_);

@ -66,7 +66,7 @@ struct DistIdxPair
};
struct MatchPairsBody
struct MatchPairsBody : ParallelLoopBody
{
MatchPairsBody(const MatchPairsBody& other)
: matcher(other.matcher), features(other.features),
@ -77,10 +77,10 @@ struct MatchPairsBody
: matcher(_matcher), features(_features),
pairwise_matches(_pairwise_matches), near_pairs(_near_pairs) {}
void operator ()(const BlockedRange &r) const
void operator ()(const Range &r) const
{
const int num_images = static_cast<int>(features.size());
for (int i = r.begin(); i < r.end(); ++i)
for (int i = r.start; i < r.end; ++i)
{
int from = near_pairs[i].first;
int to = near_pairs[i].second;
@ -526,9 +526,9 @@ void FeaturesMatcher::operator ()(const vector<ImageFeatures> &features, vector<
MatchPairsBody body(*this, features, pairwise_matches, near_pairs);
if (is_thread_safe_)
parallel_for(BlockedRange(0, static_cast<int>(near_pairs.size())), body);
parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body);
else
body(BlockedRange(0, static_cast<int>(near_pairs.size())));
body(Range(0, static_cast<int>(near_pairs.size())));
LOGLN_CHAT("");
}

@ -248,7 +248,7 @@ detectShadowGMM(const float* data, int nchannels, int nmodes,
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
struct MOG2Invoker
struct MOG2Invoker : ParallelLoopBody
{
MOG2Invoker(const Mat& _src, Mat& _dst,
GMM* _gmm, float* _mean,
@ -280,9 +280,9 @@ struct MOG2Invoker
cvtfunc = src->depth() != CV_32F ? getConvertFunc(src->depth(), CV_32F) : 0;
}
void operator()(const BlockedRange& range) const
void operator()(const Range& range) const
{
int y0 = range.begin(), y1 = range.end();
int y0 = range.start, y1 = range.end;
int ncols = src->cols, nchannels = src->channels();
AutoBuffer<float> buf(src->cols*nchannels);
float alpha1 = 1.f - alphaT;
@ -562,15 +562,15 @@ void BackgroundSubtractorMOG2::operator()(InputArray _image, OutputArray _fgmask
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./min( 2*nframes, history );
CV_Assert(learningRate >= 0);
parallel_for(BlockedRange(0, image.rows),
MOG2Invoker(image, fgmask,
(GMM*)bgmodel.data,
(float*)(bgmodel.data + sizeof(GMM)*nmixtures*image.rows*image.cols),
bgmodelUsedModes.data, nmixtures, (float)learningRate,
(float)varThreshold,
backgroundRatio, varThresholdGen,
fVarInit, fVarMin, fVarMax, float(-learningRate*fCT), fTau,
bShadowDetection, nShadowDetection));
parallel_for_(Range(0, image.rows),
MOG2Invoker(image, fgmask,
(GMM*)bgmodel.data,
(float*)(bgmodel.data + sizeof(GMM)*nmixtures*image.rows*image.cols),
bgmodelUsedModes.data, nmixtures, (float)learningRate,
(float)varThreshold,
backgroundRatio, varThresholdGen,
fVarInit, fVarMin, fVarMax, float(-learningRate*fCT), fTau,
bShadowDetection, nShadowDetection));
}
void BackgroundSubtractorMOG2::getBackgroundImage(OutputArray backgroundImage) const

@ -156,7 +156,7 @@ cv::detail::LKTrackerInvoker::LKTrackerInvoker(
minEigThreshold = _minEigThreshold;
}
void cv::detail::LKTrackerInvoker::operator()(const BlockedRange& range) const
void cv::detail::LKTrackerInvoker::operator()(const Range& range) const
{
Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
const Mat& I = *prevImg;
@ -170,7 +170,7 @@ void cv::detail::LKTrackerInvoker::operator()(const BlockedRange& range) const
Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (deriv_type*)_buf);
Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (deriv_type*)_buf + winSize.area()*cn);
for( int ptidx = range.begin(); ptidx < range.end(); ptidx++ )
for( int ptidx = range.start; ptidx < range.end; ptidx++ )
{
Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level));
Point2f nextPt;
@ -733,11 +733,11 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
typedef cv::detail::LKTrackerInvoker LKTrackerInvoker;
#endif
parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
nextPyr[level * lvlStep2], prevPts, nextPts,
status, err,
winSize, criteria, level, maxLevel,
flags, (float)minEigThreshold));
parallel_for_(Range(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI,
nextPyr[level * lvlStep2], prevPts, nextPts,
status, err,
winSize, criteria, level, maxLevel,
flags, (float)minEigThreshold));
}
}

@ -7,7 +7,7 @@ namespace detail
typedef short deriv_type;
struct LKTrackerInvoker
struct LKTrackerInvoker : ParallelLoopBody
{
LKTrackerInvoker( const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg,
const Point2f* _prevPts, Point2f* _nextPts,
@ -15,7 +15,7 @@ namespace detail
Size _winSize, TermCriteria _criteria,
int _level, int _maxLevel, int _flags, float _minEigThreshold );
void operator()(const BlockedRange& range) const;
void operator()(const Range& range) const;
const Mat* prevImg;
const Mat* nextImg;

Loading…
Cancel
Save