|
|
|
@ -81,26 +81,60 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
namespace beliefpropagation_gpu |
|
|
|
|
{ |
|
|
|
|
template <typename T> |
|
|
|
|
__global__ void comp_data(uchar* l, uchar* r, size_t step, T* data, size_t data_step, int cols, int rows) |
|
|
|
|
__global__ void comp_data_gray(const uchar* l, const uchar* r, size_t step, T* data, size_t data_step, int cols, int rows) |
|
|
|
|
{ |
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
|
|
|
|
|
if (y < rows && x < cols) |
|
|
|
|
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1) |
|
|
|
|
{ |
|
|
|
|
uchar* ls = l + y * step + x; |
|
|
|
|
uchar* rs = r + y * step + x; |
|
|
|
|
const uchar* ls = l + y * step + x; |
|
|
|
|
const uchar* rs = r + y * step + x; |
|
|
|
|
|
|
|
|
|
T* ds = data + y * data_step + x; |
|
|
|
|
size_t disp_step = data_step * rows; |
|
|
|
|
|
|
|
|
|
for (int disp = 0; disp < cndisp; disp++) |
|
|
|
|
{ |
|
|
|
|
if (x - disp >= 0) |
|
|
|
|
if (x - disp >= 1) |
|
|
|
|
{ |
|
|
|
|
int le = ls[0]; |
|
|
|
|
int re = rs[-disp]; |
|
|
|
|
float val = abs(le - re); |
|
|
|
|
float val = abs((int)ls[0] - rs[-disp]); |
|
|
|
|
|
|
|
|
|
ds[disp * disp_step] = saturate_cast<T>(fmin(cdata_weight * val, cdata_weight * cmax_data_term)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
ds[disp * disp_step] = saturate_cast<T>(cdata_weight * cmax_data_term); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
|
__global__ void comp_data_bgr(const uchar* l, const uchar* r, size_t step, T* data, size_t data_step, int cols, int rows) |
|
|
|
|
{ |
|
|
|
|
int x = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
|
int y = blockIdx.y * blockDim.y + threadIdx.y; |
|
|
|
|
|
|
|
|
|
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1) |
|
|
|
|
{ |
|
|
|
|
const uchar* ls = l + y * step + x * 3; |
|
|
|
|
const uchar* rs = r + y * step + x * 3; |
|
|
|
|
|
|
|
|
|
T* ds = data + y * data_step + x; |
|
|
|
|
size_t disp_step = data_step * rows; |
|
|
|
|
|
|
|
|
|
for (int disp = 0; disp < cndisp; disp++) |
|
|
|
|
{ |
|
|
|
|
if (x - disp >= 1) |
|
|
|
|
{ |
|
|
|
|
const float tr = 0.299f; |
|
|
|
|
const float tg = 0.587f; |
|
|
|
|
const float tb = 0.114f; |
|
|
|
|
|
|
|
|
|
float val = tb * abs((int)ls[0] - rs[0-disp*3]); |
|
|
|
|
val += tg * abs((int)ls[1] - rs[1-disp*3]); |
|
|
|
|
val += tr * abs((int)ls[2] - rs[2-disp*3]); |
|
|
|
|
|
|
|
|
|
ds[disp * disp_step] = saturate_cast<T>(fmin(cdata_weight * val, cdata_weight * cmax_data_term)); |
|
|
|
|
} |
|
|
|
@ -114,10 +148,10 @@ namespace beliefpropagation_gpu |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace impl { |
|
|
|
|
typedef void (*CompDataFunc)(const DevMem2D& l, const DevMem2D& r, DevMem2D mdata, const cudaStream_t& stream); |
|
|
|
|
typedef void (*CompDataFunc)(const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream); |
|
|
|
|
|
|
|
|
|
template<typename T> |
|
|
|
|
void comp_data_(const DevMem2D& l, const DevMem2D& r, DevMem2D mdata, const cudaStream_t& stream) |
|
|
|
|
void comp_data_(const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream) |
|
|
|
|
{ |
|
|
|
|
dim3 threads(32, 8, 1); |
|
|
|
|
dim3 grid(1, 1, 1); |
|
|
|
@ -125,13 +159,16 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
grid.x = divUp(l.cols, threads.x); |
|
|
|
|
grid.y = divUp(l.rows, threads.y); |
|
|
|
|
|
|
|
|
|
beliefpropagation_gpu::comp_data<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows); |
|
|
|
|
if (channels == 1) |
|
|
|
|
beliefpropagation_gpu::comp_data_gray<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows); |
|
|
|
|
else |
|
|
|
|
beliefpropagation_gpu::comp_data_bgr<T><<<grid, threads, 0, stream>>>(l.ptr, r.ptr, l.step, (T*)mdata.ptr, mdata.step/sizeof(T), l.cols, l.rows); |
|
|
|
|
|
|
|
|
|
if (stream == 0) |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void comp_data(int msgType, const DevMem2D& l, const DevMem2D& r, DevMem2D mdata, const cudaStream_t& stream) |
|
|
|
|
void comp_data(int msg_type, const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream) |
|
|
|
|
{ |
|
|
|
|
static CompDataFunc tab[8] = |
|
|
|
|
{ |
|
|
|
@ -145,10 +182,10 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
0 // user type |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
CompDataFunc func = tab[msgType]; |
|
|
|
|
CompDataFunc func = tab[msg_type]; |
|
|
|
|
if (func == 0) |
|
|
|
|
cv::gpu::error("Unsupported message type", __FILE__, __LINE__); |
|
|
|
|
func(l, r, mdata, stream); |
|
|
|
|
func(l, r, channels, mdata, stream); |
|
|
|
|
} |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
@ -200,7 +237,7 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void data_step_down(int dst_cols, int dst_rows, int src_rows, int msgType, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream) |
|
|
|
|
void data_step_down(int dst_cols, int dst_rows, int src_rows, int msg_type, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream) |
|
|
|
|
{ |
|
|
|
|
static DataStepDownFunc tab[8] = |
|
|
|
|
{ |
|
|
|
@ -214,7 +251,7 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
0 // user type |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
DataStepDownFunc func = tab[msgType]; |
|
|
|
|
DataStepDownFunc func = tab[msg_type]; |
|
|
|
|
if (func == 0) |
|
|
|
|
cv::gpu::error("Unsupported message type", __FILE__, __LINE__); |
|
|
|
|
func(dst_cols, dst_rows, src_rows, src, dst, stream); |
|
|
|
@ -270,7 +307,7 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void level_up_messages(int dst_idx, int dst_cols, int dst_rows, int src_rows, int msgType, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream) |
|
|
|
|
void level_up_messages(int dst_idx, int dst_cols, int dst_rows, int src_rows, int msg_type, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream) |
|
|
|
|
{ |
|
|
|
|
static LevelUpMessagesFunc tab[8] = |
|
|
|
|
{ |
|
|
|
@ -284,7 +321,7 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
0 // user type |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
LevelUpMessagesFunc func = tab[msgType]; |
|
|
|
|
LevelUpMessagesFunc func = tab[msg_type]; |
|
|
|
|
if (func == 0) |
|
|
|
|
cv::gpu::error("Unsupported message type", __FILE__, __LINE__); |
|
|
|
|
func(dst_idx, dst_cols, dst_rows, src_rows, mus, mds, mls, mrs, stream); |
|
|
|
@ -413,7 +450,7 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void calc_all_iterations(int cols, int rows, int iters, int msgType, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream) |
|
|
|
|
void calc_all_iterations(int cols, int rows, int iters, int msg_type, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream) |
|
|
|
|
{ |
|
|
|
|
static CalcAllIterationFunc tab[8] = |
|
|
|
|
{ |
|
|
|
@ -427,7 +464,7 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
0 // user type |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
CalcAllIterationFunc func = tab[msgType]; |
|
|
|
|
CalcAllIterationFunc func = tab[msg_type]; |
|
|
|
|
if (func == 0) |
|
|
|
|
cv::gpu::error("Unsupported message type", __FILE__, __LINE__); |
|
|
|
|
func(cols, rows, iters, u, d, l, r, data, stream); |
|
|
|
@ -496,7 +533,7 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void output(int msgType, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream) |
|
|
|
|
void output(int msg_type, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream) |
|
|
|
|
{ |
|
|
|
|
static OutputFunc tab[8] = |
|
|
|
|
{ |
|
|
|
@ -510,7 +547,7 @@ namespace cv { namespace gpu { namespace impl { |
|
|
|
|
0 // user type |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
OutputFunc func = tab[msgType]; |
|
|
|
|
OutputFunc func = tab[msg_type]; |
|
|
|
|
if (func == 0) |
|
|
|
|
cv::gpu::error("Unsupported message type", __FILE__, __LINE__); |
|
|
|
|
func(u, d, l, r, data, disp, stream); |
|
|
|
|