Merge pull request #12269 from cv3d:improvements/binding_python

pull/12284/merge
Alexander Alekhin 7 years ago
commit 335e61dc47
  1. 3
      doc/Doxyfile.in
  2. 79
      doc/py_tutorials/py_bindings/py_bindings_basics/py_bindings_basics.markdown
  3. 3
      modules/core/include/opencv2/core/cvdef.h
  4. 8
      modules/java/generator/gen_java.py
  5. 137
      modules/python/src2/cv2.cpp
  6. 75
      modules/python/src2/gen2.py
  7. 32
      modules/python/src2/hdr_parser.py

@ -241,6 +241,9 @@ PREDEFINED = __cplusplus=1 \
CV_PROP_RW= \
CV_WRAP= \
CV_WRAP_AS(x)= \
CV_WRAP_MAPPABLE(x)= \
CV_WRAP_PHANTOM(x)= \
CV_WRAP_DEFAULT(x)= \
CV_CDECL= \
CV_Func = \
CV_DO_PRAGMA(x)= \

@ -20,20 +20,20 @@ A simple example on extending C++ functions to Python can be found in official P
documentation[1]. So extending all functions in OpenCV to Python by writing their wrapper functions
manually is a time-consuming task. So OpenCV does it in a more intelligent way. OpenCV generates
these wrapper functions automatically from the C++ headers using some Python scripts which are
located in modules/python/src2. We will look into what they do.
located in `modules/python/src2`. We will look into what they do.
First, modules/python/CMakeFiles.txt is a CMake script which checks the modules to be extended to
First, `modules/python/CMakeFiles.txt` is a CMake script which checks the modules to be extended to
Python. It will automatically check all the modules to be extended and grab their header files.
These header files contain list of all classes, functions, constants etc. for that particular
modules.
Second, these header files are passed to a Python script, modules/python/src2/gen2.py. This is the
Python bindings generator script. It calls another Python script modules/python/src2/hdr_parser.py.
Second, these header files are passed to a Python script, `modules/python/src2/gen2.py`. This is the
Python bindings generator script. It calls another Python script `modules/python/src2/hdr_parser.py`.
This is the header parser script. This header parser splits the complete header file into small
Python lists. So these lists contain all details about a particular function, class etc. For
example, a function will be parsed to get a list containing function name, return type, input
arguments, argument types etc. Final list contains details of all the functions, structs, classes
etc. in that header file.
arguments, argument types etc. Final list contains details of all the functions, enums, structs,
classes etc. in that header file.
But header parser doesn't parse all the functions/classes in the header file. The developer has to
specify which functions should be exported to Python. For that, there are certain macros added to
@ -44,15 +44,15 @@ macros will be given in next session.
So header parser returns a final big list of parsed functions. Our generator script (gen2.py) will
create wrapper functions for all the functions/classes/enums/structs parsed by header parser (You
can find these header files during compilation in the build/modules/python/ folder as
can find these header files during compilation in the `build/modules/python/` folder as
pyopencv_generated_\*.h files). But there may be some basic OpenCV datatypes like Mat, Vec4i,
Size. They need to be extended manually. For example, a Mat type should be extended to Numpy array,
Size should be extended to a tuple of two integers etc. Similarly, there may be some complex
structs/classes/functions etc. which need to be extended manually. All such manual wrapper functions
are placed in modules/python/src2/cv2.cpp.
are placed in `modules/python/src2/cv2.cpp`.
So now only thing left is the compilation of these wrapper files which gives us **cv2** module. So
when you call a function, say res = equalizeHist(img1,img2) in Python, you pass two numpy arrays and
when you call a function, say `res = equalizeHist(img1,img2)` in Python, you pass two numpy arrays and
you expect another numpy array as the output. So these numpy arrays are converted to cv::Mat and
then calls the equalizeHist() function in C++. Final result, res will be converted back into a Numpy
array. So in short, almost all operations are done in C++ which gives us almost same speed as that
@ -67,19 +67,19 @@ Header parser parse the header files based on some wrapper macros added to funct
Enumeration constants don't need any wrapper macros. They are automatically wrapped. But remaining
functions, classes etc. need wrapper macros.
Functions are extended using CV_EXPORTS_W macro. An example is shown below.
Functions are extended using `CV_EXPORTS_W` macro. An example is shown below.
@code{.cpp}
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
@endcode
Header parser can understand the input and output arguments from keywords like
InputArray, OutputArray etc. But sometimes, we may need to hardcode inputs and outputs. For that,
macros like CV_OUT, CV_IN_OUT etc. are used.
macros like `CV_OUT`, `CV_IN_OUT` etc. are used.
@code{.cpp}
CV_EXPORTS_W void minEnclosingCircle( InputArray points,
CV_OUT Point2f& center, CV_OUT float& radius );
@endcode
For large classes also, CV_EXPORTS_W is used. To extend class methods, CV_WRAP is used.
Similarly, CV_PROP is used for class fields.
For large classes also, `CV_EXPORTS_W` is used. To extend class methods, `CV_WRAP` is used.
Similarly, `CV_PROP` is used for class fields.
@code{.cpp}
class CV_EXPORTS_W CLAHE : public Algorithm
{
@ -90,9 +90,9 @@ public:
CV_WRAP virtual double getClipLimit() const = 0;
}
@endcode
Overloaded functions can be extended using CV_EXPORTS_AS. But we need to pass a new name so that
Overloaded functions can be extended using `CV_EXPORTS_AS`. But we need to pass a new name so that
each function will be called by that name in Python. Take the case of integral function below. Three
functions are available, so each one is named with a suffix in Python. Similarly CV_WRAP_AS can be
functions are available, so each one is named with a suffix in Python. Similarly `CV_WRAP_AS` can be
used to wrap overloaded methods.
@code{.cpp}
//! computes the integral image
@ -107,9 +107,9 @@ CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
OutputArray sqsum, OutputArray tilted,
int sdepth = -1, int sqdepth = -1 );
@endcode
Small classes/structs are extended using CV_EXPORTS_W_SIMPLE. These structs are passed by value
to C++ functions. Examples are KeyPoint, Match etc. Their methods are extended by CV_WRAP and
fields are extended by CV_PROP_RW.
Small classes/structs are extended using `CV_EXPORTS_W_SIMPLE`. These structs are passed by value
to C++ functions. Examples are `KeyPoint`, `Match` etc. Their methods are extended by `CV_WRAP` and
fields are extended by `CV_PROP_RW`.
@code{.cpp}
class CV_EXPORTS_W_SIMPLE DMatch
{
@ -125,8 +125,8 @@ public:
CV_PROP_RW float distance;
};
@endcode
Some other small classes/structs can be exported using CV_EXPORTS_W_MAP where it is exported to a
Python native dictionary. Moments() is an example of it.
Some other small classes/structs can be exported using `CV_EXPORTS_W_MAP` where it is exported to a
Python native dictionary. `Moments()` is an example of it.
@code{.cpp}
class CV_EXPORTS_W_MAP Moments
{
@ -142,6 +142,41 @@ public:
So these are the major extension macros available in OpenCV. Typically, a developer has to put
proper macros in their appropriate positions. Rest is done by generator scripts. Sometimes, there
may be an exceptional cases where generator scripts cannot create the wrappers. Such functions need
to be handled manually, to do this write your own pyopencv_*.hpp extending headers and put them into
to be handled manually, to do this write your own `pyopencv_*.hpp` extending headers and put them into
misc/python subdirectory of your module. But most of the time, a code written according to OpenCV
coding guidelines will be automatically wrapped by generator scripts.
coding guidelines will be automatically wrapped by generator scripts.
More advanced cases involves providing Python with additional features that does not exist
in the C++ interface such as extra methods, type mappings, or to provide default arguments.
We will take `UMat` datatype as an example of such cases later on.
First, to provide Python-specific methods, `CV_WRAP_PHANTOM` is utilized in a similar manner to
`CV_WRAP`, except that it takes the method header as its argument, and you would need to provide
the method body in your own `pyopencv_*.hpp` extension. `UMat::queue()` and `UMat::context()` are
an example of such phantom methods that does not exist in C++ interface, but are needed to handle
OpenCL functionalities at the Python side.
Second, if an already-existing datatype(s) is mappable to your class, it is highly preferable to
indicate such capacity using `CV_WRAP_MAPPABLE` with the source type as its argument,
rather than crafting your own binding function(s). This is the case of `UMat` which maps from `Mat`.
Finally, if a default argument is needed, but it is not provided in the native C++ interface,
you can provide it for Python side as the argument of `CV_WRAP_DEFAULT`. As per the `UMat::getMat`
example below:
@code{.cpp}
class CV_EXPORTS_W UMat
{
public:
//! Mat is mappable to UMat.
// You would need to provide `static bool cv_mappable_to(const Ptr<Mat>& src, Ptr<UMat>& dst)`
CV_WRAP_MAPPABLE(Ptr<Mat>);
/! returns the OpenCL queue used by OpenCV UMat.
// You would need to provide the method body in the binder code
CV_WRAP_PHANTOM(static void* queue());
//! returns the OpenCL context used by OpenCV UMat
// You would need to provide the method body in the binder code
CV_WRAP_PHANTOM(static void* context());
//! The wrapped method become equvalent to `get(int flags = ACCESS_RW)`
CV_WRAP_AS(get) Mat getMat(int flags CV_WRAP_DEFAULT(ACCESS_RW)) const;
};
@endcode

@ -307,6 +307,9 @@ Cv64suf;
#define CV_PROP_RW
#define CV_WRAP
#define CV_WRAP_AS(synonym)
#define CV_WRAP_MAPPABLE(mappable)
#define CV_WRAP_PHANTOM(phantom_header)
#define CV_WRAP_DEFAULT(val)
/****************************************************************************************\
* Matrix type (Mat) *

@ -341,6 +341,7 @@ class JavaWrapperGenerator(object):
self.classes = { "Mat" : ClassInfo([ 'class Mat', '', [], [] ], self.namespaces) }
self.module = ""
self.Module = ""
self.enum_types = []
self.ported_func_list = []
self.skipped_func_list = []
self.def_args_hist = {} # { def_args_cnt : funcs_cnt }
@ -421,6 +422,10 @@ class JavaWrapperGenerator(object):
ci.addConst(constinfo)
logging.info('ok: %s', constinfo)
def add_enum(self, decl): # [ "enum cname", "", [], [] ]
enumname = decl[0].replace("enum ", "").strip()
self.enum_types.append(enumname)
def add_func(self, decl):
fi = FuncInfo(decl, namespaces=self.namespaces)
classname = fi.classname or self.Module
@ -479,6 +484,9 @@ class JavaWrapperGenerator(object):
self.add_class(decl)
elif name.startswith("const"):
self.add_const(decl)
elif name.startswith("enum"):
# enum
self.add_enum(decl)
else: # function
self.add_func(decl)

@ -27,6 +27,80 @@
# define CV_PYTHON_TYPE_HEAD_INIT() PyObject_HEAD_INIT(&PyType_Type) 0,
#endif
#define CV_PY_TO_CLASS(TYPE) \
template<> bool pyopencv_to(PyObject* dst, Ptr<TYPE>& src, const char* name); \
\
template<> \
bool pyopencv_to(PyObject* dst, TYPE& src, const char* name) \
{ \
if (!dst || dst == Py_None) \
return true; \
Ptr<TYPE> ptr; \
\
if (!pyopencv_to(dst, ptr, name)) return false; \
src = *ptr; \
return true; \
}
#define CV_PY_FROM_CLASS(TYPE) \
template<> PyObject* pyopencv_from(const Ptr<TYPE>& src); \
\
template<> \
PyObject* pyopencv_from(const TYPE& src) \
{ \
Ptr<TYPE> ptr(new TYPE()); \
\
*ptr = src; \
return pyopencv_from(ptr); \
}
#define CV_PY_TO_CLASS_PTR(TYPE) \
template<> bool pyopencv_to(PyObject* dst, Ptr<TYPE>& src, const char* name); \
\
template<> \
bool pyopencv_to(PyObject* dst, TYPE*& src, const char* name) \
{ \
if (!dst || dst == Py_None) \
return true; \
Ptr<TYPE> ptr; \
\
if (!pyopencv_to(dst, ptr, name)) return false; \
src = ptr; \
return true; \
}
#define CV_PY_FROM_CLASS_PTR(TYPE) \
template<> PyObject* pyopencv_from(const Ptr<TYPE>& src); \
\
static PyObject* pyopencv_from(TYPE*& src) \
{ \
return pyopencv_from(Ptr<TYPE>(src)); \
}
#define CV_PY_TO_ENUM(TYPE) \
template<> bool pyopencv_to(PyObject* dst, std::underlying_type<TYPE>::type& src, const char* name); \
\
template<> \
bool pyopencv_to(PyObject* dst, TYPE& src, const char* name) \
{ \
if (!dst || dst == Py_None) \
return true; \
std::underlying_type<TYPE>::type underlying; \
\
if (!pyopencv_to(dst, underlying, name)) return false; \
src = static_cast<TYPE>(underlying); \
return true; \
}
#define CV_PY_FROM_ENUM(TYPE) \
template<> PyObject* pyopencv_from(const std::underlying_type<TYPE>::type& src); \
\
template<> \
PyObject* pyopencv_from(const TYPE& src) \
{ \
return pyopencv_from(static_cast<std::underlying_type<TYPE>::type>(src)); \
}
#include "pyopencv_generated_include.h"
#include "opencv2/core/types_c.h"
@ -36,7 +110,7 @@
#include <map>
static PyObject* opencv_error = 0;
static PyObject* opencv_error = NULL;
static int failmsg(const char *fmt, ...)
{
@ -97,6 +171,12 @@ try \
} \
catch (const cv::Exception &e) \
{ \
PyObject_SetAttrString(opencv_error, "file", PyString_FromString(e.file.c_str())); \
PyObject_SetAttrString(opencv_error, "func", PyString_FromString(e.func.c_str())); \
PyObject_SetAttrString(opencv_error, "line", PyInt_FromLong(e.line)); \
PyObject_SetAttrString(opencv_error, "code", PyInt_FromLong(e.code)); \
PyObject_SetAttrString(opencv_error, "msg", PyString_FromString(e.msg.c_str())); \
PyObject_SetAttrString(opencv_error, "err", PyString_FromString(e.err.c_str())); \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}
@ -735,12 +815,31 @@ bool pyopencv_to(PyObject* o, UMat& um, const char* name)
}
template<>
PyObject* pyopencv_from(const UMat& m) {
PyObject* pyopencv_from(const UMat& m)
{
PyObject *o = PyObject_CallObject((PyObject *) &cv2_UMatWrapperType, NULL);
*((cv2_UMatWrapperObject *) o)->um = m;
return o;
}
template<>
bool pyopencv_to(PyObject* obj, void*& ptr, const char* name)
{
(void)name;
if (!obj || obj == Py_None)
return true;
if (!PyLong_Check(obj))
return false;
ptr = PyLong_AsVoidPtr(obj);
return ptr != NULL && !PyErr_Occurred();
}
static PyObject* pyopencv_from(void*& ptr)
{
return PyLong_FromVoidPtr(ptr);
}
static bool pyopencv_to(PyObject *o, Scalar& s, const ArgInfo info)
{
if(!o || o == Py_None)
@ -843,6 +942,30 @@ bool pyopencv_to(PyObject* obj, int& value, const char* name)
return value != -1 || !PyErr_Occurred();
}
#if defined (_M_AMD64) || defined (__x86_64__)
template<>
PyObject* pyopencv_from(const unsigned int& value)
{
return PyLong_FromUnsignedLong(value);
}
template<>
bool pyopencv_to(PyObject* obj, unsigned int& value, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyInt_Check(obj))
value = (unsigned int)PyInt_AsLong(obj);
else if(PyLong_Check(obj))
value = (unsigned int)PyLong_AsLong(obj);
else
return false;
return value != (unsigned int)-1 || !PyErr_Occurred();
}
#endif
template<>
PyObject* pyopencv_from(const uchar& value)
{
@ -1913,7 +2036,15 @@ void initcv2()
PyDict_SetItemString(d, "__version__", PyString_FromString(CV_VERSION));
opencv_error = PyErr_NewException((char*)MODULESTR".error", NULL, NULL);
PyObject *opencv_error_dict = PyDict_New();
PyDict_SetItemString(opencv_error_dict, "file", Py_None);
PyDict_SetItemString(opencv_error_dict, "func", Py_None);
PyDict_SetItemString(opencv_error_dict, "line", Py_None);
PyDict_SetItemString(opencv_error_dict, "code", Py_None);
PyDict_SetItemString(opencv_error_dict, "msg", Py_None);
PyDict_SetItemString(opencv_error_dict, "err", Py_None);
opencv_error = PyErr_NewException((char*)MODULESTR".error", NULL, opencv_error_dict);
Py_DECREF(opencv_error_dict);
PyDict_SetItemString(d, "error", opencv_error);
//Registering UMatWrapper python class in cv2 module:

@ -81,16 +81,25 @@ template<> bool pyopencv_to(PyObject* src, ${cname}& dst, const char* name)
{
if(!src || src == Py_None)
return true;
if(!PyObject_TypeCheck(src, &pyopencv_${name}_Type))
if(PyObject_TypeCheck(src, &pyopencv_${name}_Type))
{
failmsg("Expected ${cname} for argument '%%s'", name);
return false;
dst = ((pyopencv_${name}_t*)src)->v;
return true;
}
dst = ((pyopencv_${name}_t*)src)->v;
return true;
failmsg("Expected ${cname} for argument '%%s'", name);
return false;
}
""" % head_init_str)
gen_template_mappable = Template("""
{
${mappable} _src;
if (pyopencv_to(src, _src, name))
{
return cv_mappable_to(_src, dst);
}
}
""")
gen_template_type_decl = Template("""
struct pyopencv_${name}_t
@ -124,13 +133,14 @@ template<> bool pyopencv_to(PyObject* src, Ptr<${cname}>& dst, const char* name)
{
if(!src || src == Py_None)
return true;
if(!PyObject_TypeCheck(src, &pyopencv_${name}_Type))
if(PyObject_TypeCheck(src, &pyopencv_${name}_Type))
{
failmsg("Expected ${cname} for argument '%%s'", name);
return false;
dst = ((pyopencv_${name}_t*)src)->v.dynamicCast<${cname}>();
return true;
}
dst = ((pyopencv_${name}_t*)src)->v.dynamicCast<${cname}>();
return true;
${mappable_code}
failmsg("Expected ${cname} for argument '%%s'", name);
return false;
}
""" % head_init_str)
@ -267,6 +277,7 @@ class ClassInfo(object):
self.isalgorithm = False
self.methods = {}
self.props = []
self.mappables = []
self.consts = {}
self.base = None
self.constructor = None
@ -412,10 +423,11 @@ class ArgInfo(object):
class FuncVariant(object):
def __init__(self, classname, name, decl, isconstructor):
def __init__(self, classname, name, decl, isconstructor, isphantom=False):
self.classname = classname
self.name = self.wname = name
self.isconstructor = isconstructor
self.isphantom = isphantom
self.docstring = decl[5]
@ -531,8 +543,8 @@ class FuncInfo(object):
self.isclassmethod = isclassmethod
self.variants = []
def add_variant(self, decl):
self.variants.append(FuncVariant(self.classname, self.name, decl, self.isconstructor))
def add_variant(self, decl, isphantom=False):
self.variants.append(FuncVariant(self.classname, self.name, decl, self.isconstructor, isphantom))
def get_wrapper_name(self):
name = self.name
@ -640,6 +652,9 @@ class FuncInfo(object):
all_cargs = []
parse_arglist = []
if v.isphantom and ismethod and not self.isclassmethod:
code_args += "_self_"
# declare all the C function arguments,
# add necessary conversions from Python objects to code_cvt_list,
# form the function/method call,
@ -664,6 +679,9 @@ class FuncInfo(object):
if tp.endswith("*"):
defval0 = "0"
tp1 = tp.replace("*", "_ptr")
tp_candidates = [a.tp, normalize_class_name(self.namespace + "." + a.tp)]
if any(tp in codegen.enum_types for tp in tp_candidates):
defval0 = "static_cast<%s>(%d)" % (a.tp, 0)
amapping = simple_argtype_mapping.get(tp, (tp, "O", defval0))
parse_name = a.name
@ -714,6 +732,8 @@ class FuncInfo(object):
code_prelude = templ_prelude.substitute(name=selfinfo.name, cname=selfinfo.cname)
code_fcall = templ.substitute(name=selfinfo.name, cname=selfinfo.cname, args=code_args)
if v.isphantom:
code_fcall = code_fcall.replace("new " + selfinfo.cname, self.cname.replace("::", "_"))
else:
code_prelude = ""
code_fcall = ""
@ -835,6 +855,7 @@ class PythonWrapperGenerator(object):
self.classes = {}
self.namespaces = {}
self.consts = {}
self.enum_types = []
self.code_include = StringIO()
self.code_types = StringIO()
self.code_funcs = StringIO()
@ -892,6 +913,10 @@ class PythonWrapperGenerator(object):
py_signatures.append(dict(name=py_name, value=value))
#print(cname + ' => ' + str(py_name) + ' (value=' + value + ')')
def add_enum(self, name, decl):
enumname = normalize_class_name(name)
self.enum_types.append(enumname)
def add_func(self, decl):
namespace, classes, barename = self.split_decl_name(decl[0])
cname = "::".join(namespace+classes+[barename])
@ -905,11 +930,21 @@ class PythonWrapperGenerator(object):
isconstructor = name == bareclassname
isclassmethod = False
isphantom = False
mappable = None
for m in decl[2]:
if m == "/S":
isclassmethod = True
elif m == "/phantom":
isphantom = True
cname = cname.replace("::", "_")
elif m.startswith("="):
name = m[1:]
elif m.startswith("/mappable="):
mappable = m[10:]
self.classes[classname].mappables.append(mappable)
return
if isconstructor:
name = "_".join(classes[:-1]+[name])
@ -917,13 +952,13 @@ class PythonWrapperGenerator(object):
# Add it as a method to the class
func_map = self.classes[classname].methods
func = func_map.setdefault(name, FuncInfo(classname, name, cname, isconstructor, namespace, isclassmethod))
func.add_variant(decl)
func.add_variant(decl, isphantom)
# Add it as global function
g_name = "_".join(classes+[name])
func_map = self.namespaces.setdefault(namespace, Namespace()).funcs
func = func_map.setdefault(g_name, FuncInfo("", g_name, cname, isconstructor, namespace, False))
func.add_variant(decl)
func.add_variant(decl, isphantom)
else:
if classname and not isconstructor:
cname = barename
@ -932,7 +967,7 @@ class PythonWrapperGenerator(object):
func_map = self.namespaces.setdefault(namespace, Namespace()).funcs
func = func_map.setdefault(name, FuncInfo(classname, name, cname, isconstructor, namespace, isclassmethod))
func.add_variant(decl)
func.add_variant(decl, isphantom)
if classname and isconstructor:
self.classes[classname].constructor = func
@ -996,6 +1031,9 @@ class PythonWrapperGenerator(object):
elif name.startswith("const"):
# constant
self.add_const(name.replace("const ", "").strip(), decl)
elif name.startswith("enum"):
# enum
self.add_enum(name.replace("enum ", "").strip(), decl)
else:
# function
self.add_func(decl)
@ -1045,8 +1083,11 @@ class PythonWrapperGenerator(object):
templ = gen_template_simple_type_decl
else:
templ = gen_template_type_decl
mappable_code = "\n".join([
gen_template_mappable.substitute(cname=classinfo.cname, mappable=mappable)
for mappable in classinfo.mappables])
self.code_types.write(templ.substitute(name=name, wname=classinfo.wname, cname=classinfo.cname, sname=classinfo.sname,
cname1=("cv::Algorithm" if classinfo.isalgorithm else classinfo.cname)))
cname1=("cv::Algorithm" if classinfo.isalgorithm else classinfo.cname), mappable_code=mappable_code))
# register classes in the same order as they have been declared.
# this way, base classes will be registered in Python before their derivatives.

@ -6,6 +6,7 @@ import os, sys, re, string, io
# the list only for debugging. The real list, used in the real OpenCV build, is specified in CMakeLists.txt
opencv_hdr_list = [
"../../core/include/opencv2/core.hpp",
"../../core/include/opencv2/core/mat.hpp",
"../../core/include/opencv2/core/ocl.hpp",
"../../flann/include/opencv2/flann/miniflann.hpp",
"../../ml/include/opencv2/ml.hpp",
@ -376,8 +377,6 @@ class CppHeaderParser(object):
decl[2].append("/A")
if bool(re.match(r".*\)\s*const(\s*=\s*0)?", decl_str)):
decl[2].append("/C")
if "virtual" in decl_str:
print(decl_str)
return decl
def parse_func_decl(self, decl_str, mat="Mat", docstring=""):
@ -393,8 +392,7 @@ class CppHeaderParser(object):
"""
if self.wrap_mode:
if not (("CV_EXPORTS_AS" in decl_str) or ("CV_EXPORTS_W" in decl_str) or \
("CV_WRAP" in decl_str) or ("CV_WRAP_AS" in decl_str)):
if not (("CV_EXPORTS_AS" in decl_str) or ("CV_EXPORTS_W" in decl_str) or ("CV_WRAP" in decl_str)):
return []
# ignore old API in the documentation check (for now)
@ -414,6 +412,16 @@ class CppHeaderParser(object):
arg, npos3 = self.get_macro_arg(decl_str, npos)
func_modlist.append("="+arg)
decl_str = decl_str[:npos] + decl_str[npos3+1:]
npos = decl_str.find("CV_WRAP_PHANTOM")
if npos >= 0:
decl_str, _ = self.get_macro_arg(decl_str, npos)
func_modlist.append("/phantom")
npos = decl_str.find("CV_WRAP_MAPPABLE")
if npos >= 0:
mappable, npos3 = self.get_macro_arg(decl_str, npos)
func_modlist.append("/mappable="+mappable)
classname = top[1]
return ['.'.join([classname, classname]), None, func_modlist, [], None, None]
virtual_method = False
pure_virtual_method = False
@ -527,8 +535,6 @@ class CppHeaderParser(object):
t, npos = self.find_next_token(decl_str, ["(", ")", ",", "<", ">"], npos)
if not t:
print("Error: no closing ')' at %d" % (self.lineno,))
print(decl_str)
print(decl_str[arg_start:])
sys.exit(-1)
if t == "<":
angle_balance += 1
@ -705,20 +711,19 @@ class CppHeaderParser(object):
decl[1] = ": " + ", ".join([self.get_dotted_name(b).replace(".","::") for b in bases])
return stmt_type, classname, True, decl
if stmt.startswith("enum"):
return "enum", "", True, None
if stmt.startswith("namespace"):
if stmt.startswith("enum") or stmt.startswith("namespace"):
stmt_list = stmt.split()
if len(stmt_list) < 2:
stmt_list.append("<unnamed>")
return stmt_list[0], stmt_list[1], True, None
if stmt.startswith("extern") and "\"C\"" in stmt:
return "namespace", "", True, None
if end_token == "}" and context == "enum":
decl = self.parse_enum(stmt)
return "enum", "", False, decl
name = stack_top[self.BLOCK_NAME]
return "enum", name, False, decl
if end_token == ";" and stmt.startswith("typedef"):
# TODO: handle typedef's more intelligently
@ -896,8 +901,9 @@ class CppHeaderParser(object):
stmt_type, name, parse_flag, decl = self.parse_stmt(stmt, token, docstring=docstring)
if decl:
if stmt_type == "enum":
for d in decl:
decls.append(d)
if name != "<unnamed>":
decls.append(["enum " + self.get_dotted_name(name), "", [], [], None, ""])
decls.extend(decl)
else:
decls.append(decl)

Loading…
Cancel
Save