Merge pull request #9591 from dkurt:feature_dnn_caffe_importer_fp16

pull/9644/head
Vadim Pisarevsky 7 years ago
commit 3358b8910b
  1. 13
      modules/dnn/include/opencv2/dnn/dnn.hpp
  2. 1081
      modules/dnn/misc/caffe/caffe.pb.cc
  3. 155
      modules/dnn/misc/caffe/caffe.pb.h
  4. 15
      modules/dnn/src/caffe/caffe.proto
  5. 25
      modules/dnn/src/caffe/caffe_importer.cpp
  6. 65
      modules/dnn/src/caffe/caffe_shrinker.cpp
  7. 42
      modules/dnn/test/test_caffe_importer.cpp

@ -701,6 +701,19 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
CV_EXPORTS_W Mat blobFromImages(const std::vector<Mat>& images, double scalefactor=1.0,
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true);
/** @brief Convert all weights of Caffe network to half precision floating point.
* @param src Path to origin model from Caffe framework contains single
* precision floating point weights (usually has `.caffemodel` extension).
* @param dst Path to destination model with updated weights.
*
* @note Shrinked model has no origin float32 weights so it can't be used
* in origin Caffe framework anymore. However the structure of data
* is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
* So the resulting model may be used there.
*/
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst);
//! @}
CV__DNN_EXPERIMENTAL_NS_END
}

File diff suppressed because it is too large Load Diff

@ -641,6 +641,28 @@ inline bool V0LayerParameter_PoolMethod_Parse(
return ::google::protobuf::internal::ParseNamedEnum<V0LayerParameter_PoolMethod>(
V0LayerParameter_PoolMethod_descriptor(), name, value);
}
enum Type {
DOUBLE = 0,
FLOAT = 1,
FLOAT16 = 2,
INT = 3,
UINT = 4
};
bool Type_IsValid(int value);
const Type Type_MIN = DOUBLE;
const Type Type_MAX = UINT;
const int Type_ARRAYSIZE = Type_MAX + 1;
const ::google::protobuf::EnumDescriptor* Type_descriptor();
inline const ::std::string& Type_Name(Type value) {
return ::google::protobuf::internal::NameOfEnum(
Type_descriptor(), value);
}
inline bool Type_Parse(
const ::std::string& name, Type* value) {
return ::google::protobuf::internal::ParseNamedEnum<Type>(
Type_descriptor(), name, value);
}
enum Phase {
TRAIN = 0,
TEST = 1
@ -892,6 +914,25 @@ class BlobProto : public ::google::protobuf::Message /* @@protoc_insertion_point
::google::protobuf::RepeatedField< double >*
mutable_double_diff();
// optional .caffe.Type raw_data_type = 10;
bool has_raw_data_type() const;
void clear_raw_data_type();
static const int kRawDataTypeFieldNumber = 10;
::caffe::Type raw_data_type() const;
void set_raw_data_type(::caffe::Type value);
// optional bytes raw_data = 12 [packed = false];
bool has_raw_data() const;
void clear_raw_data();
static const int kRawDataFieldNumber = 12;
const ::std::string& raw_data() const;
void set_raw_data(const ::std::string& value);
void set_raw_data(const char* value);
void set_raw_data(const void* value, size_t size);
::std::string* mutable_raw_data();
::std::string* release_raw_data();
void set_allocated_raw_data(::std::string* raw_data);
// optional int32 num = 1 [default = 0];
bool has_num() const;
void clear_num();
@ -924,6 +965,10 @@ class BlobProto : public ::google::protobuf::Message /* @@protoc_insertion_point
private:
inline void set_has_shape();
inline void clear_has_shape();
inline void set_has_raw_data_type();
inline void clear_has_raw_data_type();
inline void set_has_raw_data();
inline void clear_has_raw_data();
inline void set_has_num();
inline void clear_has_num();
inline void set_has_channels();
@ -944,7 +989,9 @@ class BlobProto : public ::google::protobuf::Message /* @@protoc_insertion_point
mutable int _double_data_cached_byte_size_;
::google::protobuf::RepeatedField< double > double_diff_;
mutable int _double_diff_cached_byte_size_;
::google::protobuf::internal::ArenaStringPtr raw_data_;
::caffe::BlobShape* shape_;
int raw_data_type_;
::google::protobuf::int32 num_;
::google::protobuf::int32 channels_;
::google::protobuf::int32 height_;
@ -12884,15 +12931,94 @@ BlobProto::mutable_double_diff() {
return &double_diff_;
}
// optional .caffe.Type raw_data_type = 10;
inline bool BlobProto::has_raw_data_type() const {
return (_has_bits_[0] & 0x00000020u) != 0;
}
inline void BlobProto::set_has_raw_data_type() {
_has_bits_[0] |= 0x00000020u;
}
inline void BlobProto::clear_has_raw_data_type() {
_has_bits_[0] &= ~0x00000020u;
}
inline void BlobProto::clear_raw_data_type() {
raw_data_type_ = 0;
clear_has_raw_data_type();
}
inline ::caffe::Type BlobProto::raw_data_type() const {
// @@protoc_insertion_point(field_get:caffe.BlobProto.raw_data_type)
return static_cast< ::caffe::Type >(raw_data_type_);
}
inline void BlobProto::set_raw_data_type(::caffe::Type value) {
assert(::caffe::Type_IsValid(value));
set_has_raw_data_type();
raw_data_type_ = value;
// @@protoc_insertion_point(field_set:caffe.BlobProto.raw_data_type)
}
// optional bytes raw_data = 12 [packed = false];
inline bool BlobProto::has_raw_data() const {
return (_has_bits_[0] & 0x00000040u) != 0;
}
inline void BlobProto::set_has_raw_data() {
_has_bits_[0] |= 0x00000040u;
}
inline void BlobProto::clear_has_raw_data() {
_has_bits_[0] &= ~0x00000040u;
}
inline void BlobProto::clear_raw_data() {
raw_data_.ClearToEmptyNoArena(&::google::protobuf::internal::GetEmptyStringAlreadyInited());
clear_has_raw_data();
}
inline const ::std::string& BlobProto::raw_data() const {
// @@protoc_insertion_point(field_get:caffe.BlobProto.raw_data)
return raw_data_.GetNoArena(&::google::protobuf::internal::GetEmptyStringAlreadyInited());
}
inline void BlobProto::set_raw_data(const ::std::string& value) {
set_has_raw_data();
raw_data_.SetNoArena(&::google::protobuf::internal::GetEmptyStringAlreadyInited(), value);
// @@protoc_insertion_point(field_set:caffe.BlobProto.raw_data)
}
inline void BlobProto::set_raw_data(const char* value) {
set_has_raw_data();
raw_data_.SetNoArena(&::google::protobuf::internal::GetEmptyStringAlreadyInited(), ::std::string(value));
// @@protoc_insertion_point(field_set_char:caffe.BlobProto.raw_data)
}
inline void BlobProto::set_raw_data(const void* value, size_t size) {
set_has_raw_data();
raw_data_.SetNoArena(&::google::protobuf::internal::GetEmptyStringAlreadyInited(),
::std::string(reinterpret_cast<const char*>(value), size));
// @@protoc_insertion_point(field_set_pointer:caffe.BlobProto.raw_data)
}
inline ::std::string* BlobProto::mutable_raw_data() {
set_has_raw_data();
// @@protoc_insertion_point(field_mutable:caffe.BlobProto.raw_data)
return raw_data_.MutableNoArena(&::google::protobuf::internal::GetEmptyStringAlreadyInited());
}
inline ::std::string* BlobProto::release_raw_data() {
// @@protoc_insertion_point(field_release:caffe.BlobProto.raw_data)
clear_has_raw_data();
return raw_data_.ReleaseNoArena(&::google::protobuf::internal::GetEmptyStringAlreadyInited());
}
inline void BlobProto::set_allocated_raw_data(::std::string* raw_data) {
if (raw_data != NULL) {
set_has_raw_data();
} else {
clear_has_raw_data();
}
raw_data_.SetAllocatedNoArena(&::google::protobuf::internal::GetEmptyStringAlreadyInited(), raw_data);
// @@protoc_insertion_point(field_set_allocated:caffe.BlobProto.raw_data)
}
// optional int32 num = 1 [default = 0];
inline bool BlobProto::has_num() const {
return (_has_bits_[0] & 0x00000020u) != 0;
return (_has_bits_[0] & 0x00000080u) != 0;
}
inline void BlobProto::set_has_num() {
_has_bits_[0] |= 0x00000020u;
_has_bits_[0] |= 0x00000080u;
}
inline void BlobProto::clear_has_num() {
_has_bits_[0] &= ~0x00000020u;
_has_bits_[0] &= ~0x00000080u;
}
inline void BlobProto::clear_num() {
num_ = 0;
@ -12910,13 +13036,13 @@ inline void BlobProto::set_num(::google::protobuf::int32 value) {
// optional int32 channels = 2 [default = 0];
inline bool BlobProto::has_channels() const {
return (_has_bits_[0] & 0x00000040u) != 0;
return (_has_bits_[0] & 0x00000100u) != 0;
}
inline void BlobProto::set_has_channels() {
_has_bits_[0] |= 0x00000040u;
_has_bits_[0] |= 0x00000100u;
}
inline void BlobProto::clear_has_channels() {
_has_bits_[0] &= ~0x00000040u;
_has_bits_[0] &= ~0x00000100u;
}
inline void BlobProto::clear_channels() {
channels_ = 0;
@ -12934,13 +13060,13 @@ inline void BlobProto::set_channels(::google::protobuf::int32 value) {
// optional int32 height = 3 [default = 0];
inline bool BlobProto::has_height() const {
return (_has_bits_[0] & 0x00000080u) != 0;
return (_has_bits_[0] & 0x00000200u) != 0;
}
inline void BlobProto::set_has_height() {
_has_bits_[0] |= 0x00000080u;
_has_bits_[0] |= 0x00000200u;
}
inline void BlobProto::clear_has_height() {
_has_bits_[0] &= ~0x00000080u;
_has_bits_[0] &= ~0x00000200u;
}
inline void BlobProto::clear_height() {
height_ = 0;
@ -12958,13 +13084,13 @@ inline void BlobProto::set_height(::google::protobuf::int32 value) {
// optional int32 width = 4 [default = 0];
inline bool BlobProto::has_width() const {
return (_has_bits_[0] & 0x00000100u) != 0;
return (_has_bits_[0] & 0x00000400u) != 0;
}
inline void BlobProto::set_has_width() {
_has_bits_[0] |= 0x00000100u;
_has_bits_[0] |= 0x00000400u;
}
inline void BlobProto::clear_has_width() {
_has_bits_[0] &= ~0x00000100u;
_has_bits_[0] &= ~0x00000400u;
}
inline void BlobProto::clear_width() {
width_ = 0;
@ -28597,6 +28723,11 @@ template <>
inline const EnumDescriptor* GetEnumDescriptor< ::caffe::V0LayerParameter_PoolMethod>() {
return ::caffe::V0LayerParameter_PoolMethod_descriptor();
}
template <> struct is_proto_enum< ::caffe::Type> : ::google::protobuf::internal::true_type {};
template <>
inline const EnumDescriptor* GetEnumDescriptor< ::caffe::Type>() {
return ::caffe::Type_descriptor();
}
template <> struct is_proto_enum< ::caffe::Phase> : ::google::protobuf::internal::true_type {};
template <>
inline const EnumDescriptor* GetEnumDescriptor< ::caffe::Phase>() {

@ -50,6 +50,16 @@ syntax = "proto2";
package caffe;
// NVidia's Caffe feature is used to store fp16 weights, https://github.com/NVIDIA/caffe:
// Math and storage types
enum Type {
DOUBLE = 0;
FLOAT = 1;
FLOAT16 = 2;
INT = 3; // math not supported
UINT = 4; // math not supported
}
// Specifies the shape (dimensions) of a Blob.
message BlobShape {
repeated int64 dim = 1 [packed = true];
@ -62,6 +72,11 @@ message BlobProto {
repeated double double_data = 8 [packed = true];
repeated double double_diff = 9 [packed = true];
// NVidia's Caffe fields begin.
optional Type raw_data_type = 10;
optional bytes raw_data = 12 [packed = false];
// NVidia's Caffe fields end.
// 4D dimensions -- deprecated. Use "shape" instead.
optional int32 num = 1 [default = 0];
optional int32 channels = 2 [default = 0];

@ -225,13 +225,28 @@ public:
blobShapeFromProto(pbBlob, shape);
dstBlob.create((int)shape.size(), &shape[0], CV_32F);
CV_Assert(pbBlob.data_size() == (int)dstBlob.total());
CV_DbgAssert(pbBlob.GetDescriptor()->FindFieldByLowercaseName("data")->cpp_type() == FieldDescriptor::CPPTYPE_FLOAT);
float *dstData = dstBlob.ptr<float>();
if (pbBlob.data_size())
{
// Single precision floats.
CV_Assert(pbBlob.data_size() == (int)dstBlob.total());
CV_DbgAssert(pbBlob.GetDescriptor()->FindFieldByLowercaseName("data")->cpp_type() == FieldDescriptor::CPPTYPE_FLOAT);
for (int i = 0; i < pbBlob.data_size(); i++)
dstData[i] = pbBlob.data(i);
for (int i = 0; i < pbBlob.data_size(); i++)
dstData[i] = pbBlob.data(i);
}
else
{
// Half precision floats.
CV_Assert(pbBlob.raw_data_type() == caffe::FLOAT16);
std::string raw_data = pbBlob.raw_data();
CV_Assert(raw_data.size() / 2 == (int)dstBlob.total());
Mat halfs((int)shape.size(), &shape[0], CV_16SC1, (void*)raw_data.c_str());
convertFp16(halfs, dstBlob);
}
}
void extractBinaryLayerParms(const caffe::LayerParameter& layer, LayerParams& layerParams)

@ -0,0 +1,65 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include <fstream>
#include "caffe_io.hpp"
#endif
namespace cv { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
#ifdef HAVE_PROTOBUF
void shrinkCaffeModel(const String& src, const String& dst)
{
CV_TRACE_FUNCTION();
caffe::NetParameter net;
ReadNetParamsFromBinaryFileOrDie(src.c_str(), &net);
for (int i = 0; i < net.layer_size(); ++i)
{
caffe::LayerParameter* lp = net.mutable_layer(i);
for (int j = 0; j < lp->blobs_size(); ++j)
{
caffe::BlobProto* blob = lp->mutable_blobs(j);
CV_Assert(blob->data_size() != 0); // float32 array.
Mat floats(1, blob->data_size(), CV_32FC1, (void*)blob->data().data());
Mat halfs(1, blob->data_size(), CV_16SC1);
convertFp16(floats, halfs); // Convert to float16.
blob->clear_data(); // Clear float32 data.
// Set float16 data.
blob->set_raw_data(halfs.data, halfs.total() * halfs.elemSize());
blob->set_raw_data_type(caffe::FLOAT16);
}
}
size_t msgSize = net.ByteSizeLong();
std::vector<uint8_t> output(msgSize);
net.SerializeWithCachedSizesToArray(&output[0]);
std::ofstream ofs(dst.c_str(), std::ios::binary);
ofs.write((const char*)&output[0], msgSize);
ofs.close();
}
#else
void shrinkCaffeModel(const String& src, const String& dst)
{
CV_Error(cv::Error::StsNotImplemented, "libprotobuf required to import data from Caffe models");
}
#endif // HAVE_PROTOBUF
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace

@ -188,4 +188,46 @@ TEST(Reproducibility_SqueezeNet_v1_1, Accuracy)
normAssert(ref, out);
}
TEST(Reproducibility_AlexNet_fp16, Accuracy)
{
const float l1 = 1e-5;
const float lInf = 2e-4;
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false);
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false);
shrinkCaffeModel(model, "bvlc_alexnet.caffemodel_fp16");
Net net = readNetFromCaffe(proto, "bvlc_alexnet.caffemodel_fp16");
Mat sample = imread(findDataFile("dnn/grace_hopper_227.png", false));
net.setInput(blobFromImage(sample, 1, Size(227, 227)));
Mat out = net.forward();
Mat ref = blobFromNPY(findDataFile("dnn/caffe_alexnet_prob.npy", false));
normAssert(ref, out, "", l1, lInf);
}
TEST(Reproducibility_GoogLeNet_fp16, Accuracy)
{
const float l1 = 1e-5;
const float lInf = 3e-3;
const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false);
const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false);
shrinkCaffeModel(model, "bvlc_googlenet.caffemodel_fp16");
Net net = readNetFromCaffe(proto, "bvlc_googlenet.caffemodel_fp16");
std::vector<Mat> inpMats;
inpMats.push_back( imread(_tf("googlenet_0.png")) );
inpMats.push_back( imread(_tf("googlenet_1.png")) );
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty());
net.setInput(blobFromImages(inpMats), "data");
Mat out = net.forward("prob");
Mat ref = blobFromNPY(_tf("googlenet_prob.npy"));
normAssert(out, ref, "", l1, lInf);
}
}

Loading…
Cancel
Save